Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Structure Elucidation
2.2. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. Computational Details
3.5. Antifungal Activity Assay
3.6. Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, C.M.; Zhu, H.C.; Li, X.N.; Yang, J.; Wang, J.P.; Li, G.T.; Li, Y.; Tong, Q.Y.; Yao, G.M.; Luo, Z.W.; et al. Armochaeglobines A and B, two new indole-based alkaloids from the arthropod-derived fungus Chaetomium globosum. Org. Lett. 2015, 17, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.X.; Feng, Y.J.; Blunt, J.W.; Cole, A.L.J.; Munro, M.H.G. Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. J. Nat. Prod. 2004, 67, 1722–1725. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.C.; Zhang, Y.M.; Gao, J.M.; Bai, M.S.; Yang, S.X.; Laatsch, H.; Zhang, A.L. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg. Med. Chem. Lett. 2009, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Probst, A.; Tamm, C. 19-O-Acetylchaetoglobosin B and 19-O-Acetylchaetoglobosin D, two new metabolites of Chaetomium globosum. Helv. Chim. Acta 1981, 64, 2056–2064. [Google Scholar] [CrossRef]
- Zheng, Q.C.; Kong, M.Z.; Zhao, Q.; Chen, G.D.; Tian, H.Y.; Li, X.X.; Guo, L.D.; Li, J.; Zheng, Y.Z.; Gao, H. Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 2014, 93, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Sekita, S.; Yoshihira, K.; Natori, S. Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13] cytochalasans from Chaetomium spp. IV. 13C-nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem. Pharm. Bull. 1983, 31, 490–498. [Google Scholar] [CrossRef]
- Dou, H.; Song, Y.X.; Liu, X.Q.; Gong, W.; Li, E.G.; Tan, R.X.; Hou, Y.Y. Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol. Pharm. Bull. 2011, 34, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Donoso, R.; Rivera-sagredo, A.; Hueso-rodriguez, J.A.; Elson, S.W. A new chaetoglobosin isolated from a fungus of the genus Discosia. Nat. Prod. Lett. 1997, 10, 49–54. [Google Scholar] [CrossRef]
- Ichihara, A.; Katayama, K.; Teshima, H.; Oikawa, H.; Sakamura, S. Chaetoglobosin O and other phytotoxic metabolites from Cylindrocladium floridanum, a causal fungus of Alfalfa black rot disease. Biosci. Biotechnol. Biochem. 1996, 60, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, C.; Yamada, T.; Ito, Y.; Minoura, K.; Numata, A. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 2001, 57, 2997–3004. [Google Scholar] [CrossRef]
- Numafa, A.; Takahashi, C.; Ito, Y.; Minoura, K.; Yamada, T.; Matsuda, C.; Nomoto, K. Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: Structure determination and solution confromation. J. Chem. Soc. Perkin Trans. 1 1996, 239–245. [Google Scholar] [CrossRef]
- Von Wallbrunn, C.; Luftmann, H.; Bergander, K.; Meinhardt, F. Phytotoxic chaetoglobosins are produced by the plant pathogen Calonectria morganii (anamorph Cylindrocladium scoparium). J. Gen. Appl. Microbiol. 2001, 47, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.P.; Cox, R.H.; Cutler, H.G.; Crumley, F.G. The structure of chaetoglobosin K. Tetrahedron Lett. 1980, 21, 1905–1908. [Google Scholar] [CrossRef]
- Christian, O.E.; Compton, J.; Christian, K.R.; Mooberry, S.L.; Valeriote, F.A.; Crews, P. Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. J. Nat. Prod. 2005, 68, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ge, H.M.; Jiao, R.H.; Li, J.; Peng, H.; Wang, Y.R.; Wu, J.H.; Song, Y.C.; Tan, R.X. Cytotoxic chaetoglobosins from the endophyte Chaetomium globosum. Planta Med. 2010, 76, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Song, Y.C.; Chen, J.R.; Xu, C.; Ge, H.M.; Wang, X.T.; Tan, R.X. Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J. Nat. Prod. 2006, 69, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Zhu, H.C.; Wang, J.P.; Yang, J.; Li, X.N.; Wang, J.; Chen, K.L.; Wang, Y.Y.; Luo, Z.W.; Yao, G.M.; et al. Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from Chaetomium globosum TW1-1. Eur. J. Org. Chem. 2015, 2015, 3086–3094. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Wang, F.T.; Qin, J.C.; Wang, D.; Zhang, J.Y.; Zhang, Y.H.; Zhang, S.H.; Pan, H.Y. Efficacy assessment of antifungal metabolites from Chaetomium globosum No. 05, a new biocontrol agent, against Setosphaeria turcica. Biol. Control 2013, 64, 90–98. [Google Scholar] [CrossRef]
- Li, H.; Xiao, J.; Gao, Y.Q.; Tang, J.J.; Zhang, A.L.; Gao, J.M. Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J. Agric. Food Chem. 2014, 62, 3734–3741. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.H.; Zhou, G.L.; Zhu, M.L.; Wang, W.; Zhu, T.J.; Gu, Q.Q.; Li, D.H. Neosartoryadins A and B, fumiquinazoline alkaloids from a mangrove-derived fungus Neosartorya udagawae HDN13-313. Org. Lett. 2016, 18, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Yang, Q.; Xia, G.P.; Huang, H.B.; Li, H.X.; Ma, L.; Lu, Y.J.; He, L.; Xia, X.K.; She, Z.G. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J. Nat. Prod. 2015, 78, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.L.; Li, J.W.; Ni, C.L.; Gu, W.X.; Li, C.Y. Isolation, crystal structure and inhibitory activity against Magnaporthe Grisea of (2R,3R)-3,5,7-trihydroxyflavanone 3-acetate from Myoporum Bontioides A. Gray. Chin. J. Struct. Chem. 2011, 30, 1298–1304. [Google Scholar]
- Wang, J.H.; Cox, D.G.; Ding, W.J.; Huang, G.H.; Lin, Y.C.; Li, C.Y. Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp. Mar. Drugs 2014, 12, 2840–2850. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Ding, W.J.; Wang, R.M.; Du, Y.P.; Liu, H.L.; Kong, X.H.; Li, C.Y. Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar. Drugs 2015, 13, 4492–4504. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Zhang, Q.; Gao, J.M.; Li, H.; Tian, J.M.; Pescitelli, G. Chaetoglobosin Vb from endophytic Chaetomium Globosum: Absolute configuration of chaetoglobosins. Chirality 2012, 24, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Thohinung, S.; Kanokmedhakul, S.; Kanokmedhakul, K.; Kukongviriyapan, V.; Tusskorn, O.; Soytong, K. Cytotoxic 10-(indol-3-yl)-[13] cytochalasans from the fungus Chaetomium elatum ChE01. Arch. Pharm. Res. 2010, 33, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Wang, J.P.; Liu, J.J.; Zhu, H.C.; Sun, B.; Wang, J.; Zhang, J.W.; Luo, Z.W.; Yao, G.M.; Xue, Y.B.; et al. Armochaetoglobins A–J: Cytochalasan alkaloids from Chaetomium globosum TW1-1, a fungus derived from the terrestrial arthropod Armadillidium vulgare. J. Nat. Prod. 2015, 78, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.M.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Cytoglobosins A–G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J. Nat. Prod. 2010, 73, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Guo, Z.; Wei, S.P.; Ji, Z.Q. Investigation on the antimicrobial ingredients of Chaetomium globosum ZH-32, an endophytic fungus from Platycladus orientalis. Chin. J. Pestic. Sci. 2014, 16, 605–609. [Google Scholar]
- Zhang, G.Z.; Zhang, Y.H.; Qin, J.C.; Qu, X.Y.; Liu, J.L.; Li, X.; Pan, H.Y. Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J. Microbiol. 2013, 53, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.M.; Yan, W.; Guo, Z.K.; Luo, Q.; Feng, R.; Zang, L.Y.; Shen, Y.; Jiao, R.H.; Xu, Q.; Tan, R.X. Precursor-directed fungal generation of novel halogenated chaetoglobosins with more preferable immunosuppressive action. Chem. Commun. 2011, 47, 2321–2323. [Google Scholar] [CrossRef] [PubMed]
- Sekita, S.; Yoshihira, K.; Natori, S.; Udagawa, S.; Sakabe, F.; Kurata, H.; Umeda, M. Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13] cytochalasans from Chaetomium spp. I. production, isolation and some cytological effects of chaetoglobosins A–J. Chem. Pharm. Bull. 1982, 30, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Pedretti, A.; Villa, L.; Vistoli, G. VEGA-an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput.-Aided Mol. Des. 2004, 18, 167–173. [Google Scholar] [CrossRef] [PubMed]
No. | 1 a | 2 a | ||
---|---|---|---|---|
δC | δH, Mult. (J in Hz) | δC | δH, Mult. (J in Hz) | |
1 | 173.9, C | 175.0, C | ||
2-NH | 7.61, s | unobservable | ||
3 | 53.4, CH | 3.75, m (10.2) | 54.6, CH | 3.47, m |
4 | 52.5, CH | 3.25, d (10.2) | 51.6, CH | 2.62, d (3.6) |
5 | 41.8, C | 36.1, CH | 2.40, m | |
6 | 142.3, C | 140.4, C | ||
7 | 124.9, CH | 5.19, t (1.8) | 126.8, CH | 5.32, m |
8 | 41.5, CH | 3.07, dt (9.6, 2.4) | 48.5, CH | 2.77, d (10.2) |
9 | 61.9, C | 67.5, C | ||
10 | 29.1, CH2 | a2.55, dd (13.8, 10.8) | 33.4, CH2 | a2.80, dd (14.4, 4.8) |
b3.19, dd (13.8, 10.8) | b2.99, d (4.2) | |||
11 | 23.2, CH3 | 1.41, s | 14.0, CH3 | 1.23, d (7.2) |
12 | 21.5, CH3 | 1.66, s | 20.2, CH3 | 1.77, s |
13 | 133.1, CH | 5.68, qd (15.4, 10.2, 2.4) | 131.8, CH | 6.01, ddd (15.0, 10.2, 1.8) |
14 | 133.7, CH | 5.42, td (15.4, 10.8, 2.4) | 131.8, CH | 5.02, ddd (15.0, 10.8, 3.6) |
15 | 41.1, CH2 | a2.06, m | 42.5, CH2 | a1.84, m |
b2.45, m | b2.17, m | |||
16 | 33.6, CH | 2.77, m | 33.2, CH | 2.44, m |
16-CH3 | 21.0, CH3 | 1.07, d (6.6) | 21.8, CH3 | 0.91, d (6.6) |
17 | 140.3, CH | 5.60, dd (10.8, 1.8) | 137.7, CH | 5.07, d (9.0) |
18 | 133.4, C | 129.1, C | ||
18-CH3 | 11.2, CH3 | 1.48, s | 16.4, CH3 | 1.55, s |
19 | 82.7, CH | 4.98, d (4.8) | 53.9, CH2 | a2.66, d (15.6) |
b3.01, d (15.6) | ||||
19-OH | 4.22, d (4.8) | |||
20 | 201.7, C | 209.7, C | ||
21 | 133.3, CH | 6.76, d (16.8) | 36.9, CH2 | a1.80, m |
b2.21, m | ||||
22 | 138.8, CH | 8.23, d (16.8) | 37.9, CH2 | a1.60, m |
b3.08, m | ||||
23 | 198.2, C | 210.2, C | ||
1′-NH | 10.29, s | 10.16, s | ||
1′a | 137.8, C | 137.5, C | ||
2′ | 139.9, C | 125.6, CH | 7.13, s | |
3′ | 108.4, C | 110.5, C | ||
3′a | 127.9, C | 128.9, C | ||
4′ | 118.7, CH | 7.44, d (7.8) | 119.5, CH | 7.56 d (7.8) |
5′ | 119.9, CH | 7.01, t (8.4, 7.8) | 119.9, CH | 6.99 t (8.4, 7.8) |
6′ | 122.1, CH | 7.08, t (8.4, 7.8) | 122.1, CH | 7.04 t (8.4, 7.8) |
7′ | 111.9, CH | 7.34, d (8.4) | 112.4, CH | 7.35 d (8.4) |
Compounds | C. musae | P. italicum | R. solani | C. gloeosporioides |
---|---|---|---|---|
1 | >391.96 | >391.96 | 195.98 | >391.96 |
2 | 100.34 | 100.34 | 50.17 | 25.08 |
4 | 47.14 | 47.14 | ND | 94.29 |
5 | 94.65 | 94.65 | 23.66 | 94.65 |
6 | 94.70 | 94.70 | 11.83 | 47.35 |
7 | 94.34 | 23.58 | 11.79 | 23.58 |
8 | 96.90 | 48.45 | 12.11 | ND |
Carbendazim a | 32.69 | 16.34 | 32.69 | 65.38 |
Compounds | Cell Lines | ||
---|---|---|---|
MDA-MB-435 | SGC-7901 | A549 | |
1 | 7.55 ± 0.71 | 7.32 ± 0.68 | 16.13 ± 0.82 |
2 | 36.68 ± 0.90 | 37.70 ± 1.30 | 35.93 ± 0.66 |
3 | 38.77 ± 0.65 | 25.86 ± 0.84 | 27.63 ± 0.45 |
4 | 37.77 ± 0.41 | 26.53 ± 0.56 | 27.72 ± 0.81 |
5 | 19.97 ± 1.03 | 15.36 ± 0.89 | 17.82 ± 0.85 |
6 | 37.56 ± 0.95 | 7.48 ± 1.01 | 6.56 ± 0.67 |
7 | >40 | >40 | 36.63 ± 0.45 |
8 | >40 | >40 | >40 |
9 | 12.58 ± 0.90 | 8.15 ± 0.64 | 3.35 ± 0.47 |
Epirubicin b | 0.56 ± 0.06 | 0.37 ± 0.11 | 0.61 ± 0.05 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. https://doi.org/10.3390/md14100172
Huang S, Chen H, Li W, Zhu X, Ding W, Li C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Marine Drugs. 2016; 14(10):172. https://doi.org/10.3390/md14100172
Chicago/Turabian StyleHuang, Song, Haiyan Chen, Wensheng Li, Xinwei Zhu, Weijia Ding, and Chunyuan Li. 2016. "Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum" Marine Drugs 14, no. 10: 172. https://doi.org/10.3390/md14100172
APA StyleHuang, S., Chen, H., Li, W., Zhu, X., Ding, W., & Li, C. (2016). Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Marine Drugs, 14(10), 172. https://doi.org/10.3390/md14100172