Next Article in Journal
Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives
Previous Article in Journal
New Furan and Cyclopentenone Derivatives from the Sponge-Associated Fungus Hypocrea Koningii PF04
Open AccessArticle

Micrometam C Protects against Oxidative Stress in Inflammation Models in Zebrafish and RAW264.7 Macrophages

1
Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
2
Department of Health Care Clinic, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
3
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
4
Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Academic Editor: Keith B. Glaser
Mar. Drugs 2015, 13(9), 5593-5605; https://doi.org/10.3390/md13095593
Received: 29 May 2015 / Revised: 13 August 2015 / Accepted: 18 August 2015 / Published: 28 August 2015
Micrometam C is a core of novel marine compound isolated from the mangrove associates Micromelum falcatum. In this study, we investigated the protective effects of micrometam C in inflammation models in the transgenic zebrafish line Tg (corola: eGFP) and RAW264.7 macrophages. We found that micrometam C significantly suppressed the migration of immune cells in tail-cutting-induced inflammation in transgenic zebrafish and reduced lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) in both zebrafish and macrophages. In addition, micrometam C also restored LPS-induced reduction of endogenous antioxidants, such as catalase (CAT), glutathione (GSH) and superoxide dismutase (SOD). The protective effects of micrometam C were in parallel to its inhibition of NADPH oxidase and nuclear factor-kappa-binding (NF-κB) activity. Thus, the present results demonstrate that micrometam C protects against LPS-induced inflammation possibly through its antioxidant property. View Full-Text
Keywords: micrometam C; inflammatory; zebrafish; NF-κB; NADPH oxidase micrometam C; inflammatory; zebrafish; NF-κB; NADPH oxidase
Show Figures

Figure 1

MDPI and ACS Style

Tang, H.; Ge, H.; Chen, Z.-B.; Luo, X.-M.; Su, F.-J.; Liang, Y.-B.; Li, Z.-Y.; Wu, J.-G.; Yang, Q.; Zeng, L.-J.; Ma, Z.-F. Micrometam C Protects against Oxidative Stress in Inflammation Models in Zebrafish and RAW264.7 Macrophages. Mar. Drugs 2015, 13, 5593-5605.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop