Next Article in Journal
Butremycin, the 3-Hydroxyl Derivative of Ikarugamycin and a Protonated Aromatic Tautomer of 5′-Methylthioinosine from a Ghanaian Micromonospora sp. K310
Next Article in Special Issue
Single and Competitive Adsorption of 17α-Ethinylestradiol and Bisphenol A with Estrone, β-Estradiol, and Estriol onto Sediment
Previous Article in Journal
Dietary Fucoxanthin Increases Metabolic Rate and Upregulated mRNA Expressions of the PGC-1alpha Network, Mitochondrial Biogenesis and Fusion Genes in White Adipose Tissues of Mice
Previous Article in Special Issue
The Effect of 17α-Ethynylestradiol on Steroidogenesis and Gonadal Cytokine Gene Expression Is Related to the Reproductive Stage in Marine Hermaphrodite Fish
Open AccessArticle

Transcriptional Changes Caused by Bisphenol A in Oryzias javanicus, a Fish Species Highly Adaptable to Environmental Salinity

by Seonock Woo 1,†, Vianney Denis 2,† and Seungshic Yum 1,*
1
South Sea Environment Research Division, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea
2
Biodiversity Research Centre, Academia Sinica, Taipei 115, Taiwan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mar. Drugs 2014, 12(2), 983-998; https://doi.org/10.3390/md12020983
Received: 10 December 2013 / Revised: 6 January 2014 / Accepted: 6 February 2014 / Published: 14 February 2014
(This article belongs to the Special Issue Marine Fish Endocrine Disruption)
The Javanese medaka, Oryzias javanicus, is a fish highly adaptable to various environmental salinities. Here, we investigated the effects of the environmental pollutant bisphenol A (BPA; an endocrine disrupting chemical) on gene expression levels in this species acclimated to different salinities. Using cDNA microarrays, we detected the induction of differential expression of genes by BPA, and compared the transcriptional changes caused by chemical exposure at different salinities. There were marked transcriptional changes induced by BPA between treatments. While 533 genes were induced by a factor of more than two when O. javanicus was exposed to BPA in seawater, only 215 genes were induced in freshwater. Among those genes, only 78 were shared and changed significantly their expression in both seawater and freshwater. Those genes were mainly involved in cellular processes and signaling pathway. We then categorized by functional group genes specifically induced by BPA exposure in seawater or freshwater. Gene expression changes were further confirmed in O. javanicus exposed to various concentrations of BPA, using quantitative real-time reverse transcription PCR based on primer sets for 28 selected genes. View Full-Text
Keywords: Oryzias javanicus; cDNA microarray; bisphenol A; gene expression; salinity Oryzias javanicus; cDNA microarray; bisphenol A; gene expression; salinity
Show Figures

Graphical abstract

MDPI and ACS Style

Woo, S.; Denis, V.; Yum, S. Transcriptional Changes Caused by Bisphenol A in Oryzias javanicus, a Fish Species Highly Adaptable to Environmental Salinity. Mar. Drugs 2014, 12, 983-998.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop