Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management
Abstract
:1. Introduction
2. Neuropathic Pain
2.1. Epidemiology
2.2. Physiology of Pain Signaling
3. VGCCs and Their Role in Neuropathic Pain
3.1. Structure and Function of VGCCs
VGCC Classification | Gene | α1 subunit | Voltage activation | Distribution |
---|---|---|---|---|
L-type | Cav1.1 | α1S | HVA * | Skeletal muscle cells |
Cav1.2 | α1C | Neurons, cardiac myocytes, endocrine cells | ||
Cav1.3 | α1D | Neurons, cardiac myocytes, pancreatic β-cells | ||
Cav1.4 | α1F | Retinal cells | ||
P/Q-type | Cav2.1 | α1A | Neurons, pancreatic β-cells | |
N-type | Cav2.2 | α1B | Neurons, pancreatic β-cells | |
R-type | Cav2.3 | α1E | Neurons, endocrine cells | |
T-type | Cav3.1 | α1G | LVA | Neurons, cardiac myocytes, smooth muscle cells, endocrine cells |
Cav3.2 | α1H | Neurons, cardiac myocytes, smooth muscle cells, endocrine cells, kidney cells | ||
Cav3.3 | α1I | Neurons |
3.2. Ca2+i Perturbations in Neuropathic Pain States
4. Targeting VGCCs with Biotoxins in the Management of Pain
4.1. The Biodiversity of Conotoxins
4.2. Use of ω-Conotoxins as Analgesics in Models of Neuropathic Pain
4.3. The Clinical Application of Ziconotide
4.4. Emerging Approaches to Reduce the Side Effect Profile of ω-Conotoxins
5. Conclusions
Acknowledgments
References
- Alford, D.P.; Liebschutz, J.; Chen, I.A.; Nicolaidis, C.; Panda, M.; Berg, K.M.; Gibson, J.; Picchioni, M.; Bair, M.J. Update in pain medicine. J. Gen. Intern. Med. 2008, 23, 841–845. [Google Scholar] [CrossRef]
- Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain 2006, 10, 287–333. [Google Scholar]
- Scholz, J.; Woolf, C.J. Can we conquer pain? Nat. Neurosci. 2002, 5, S1062–S1067. [Google Scholar] [CrossRef]
- Perret, D.; Luo, Z.D. Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics 2009, 6, 679–692. [Google Scholar] [CrossRef]
- O’Connor, A.B.; Dworkin, R.H. Treatment of neuropathic pain: an overview of recent guidelines. Am. J. Med. 2009, 122, S22–S32. [Google Scholar]
- Kroenke, K.; Krebs, E.E.; Bair, M.J. Pharmacotherapy of chronic pain: A synthesis of recommendations from systematic reviews. Gen. Hosp. Psychiatry 2009, 31, 206–219. [Google Scholar] [CrossRef]
- Staats, P.S.; Yearwood, T.; Charapata, S.G.; Presley, R.W.; Wallace, M.S.; Byas-Smith, M.; Fisher, R.; Bryce, D.A.; Mangieri, E.A.; Luther, R.R.; et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: A randomized controlled trial. JAMA 2004, 291, 63–70. [Google Scholar]
- Deer, T.; Krames, E.T.; Hassenbusch, S.; Burton, A.; Caraway, D.; Dupen, S.; Eisenach, J.; Erdek, M.; Grigsby, E.; Kim, P.; et al. Future directions for intrathecal pain management: A review and update from the interdisciplinary Polyanalgesic Consensus Conference 2007. Neruromodulation 2008, 11, 92–97. [Google Scholar] [CrossRef]
- Britland, S.T.; Young, R.J.; Sharma, A.K.; Clarke, B.F. Association of painful and painless diabetic polyneuropathy with different patterns of nerve fiber degeneration and regeneration. Diabetes 1990, 39, 898–908. [Google Scholar]
- Campbell, J.N.; Basbaum, A.I.; Dray, A.; Dubner, R.; Dworkin, R.H.; Sang, C.N. Emerging Strategies for the Treatment of Neuropathic Pain; IASP Press: Seattle, WA, USA, 2006. [Google Scholar]
- Mitka, M. Virtual textbook on pain developed: Effort seeks to remedy gap in medical education. JAMA 2003, 290, 2395. [Google Scholar] [CrossRef]
- Baron, R. Mechanisms of disease: Neuropathic pain–a clinical perspective. Nat. Clin. Pract. Neurol. 2006, 2, 95–106. [Google Scholar] [CrossRef]
- Bonica, J.J. Causalgia and Other Reflex Sympathetic Dystrophies. In The Management of Pain; Bonica, J.J., Ed.; Lea and Febiger: Philadelphia, PA, USA, 1990; Volume 1, pp. 220–243. [Google Scholar]
- Porreca, F.; Ossipov, M.H.; Gebhart, G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002, 25, 319–325. [Google Scholar] [CrossRef]
- Boron, W.F.; Boulpaep, E.L. Medical Physiology, 2nd ed; Saunders: Philadelphia, PA, USA, 2009. [Google Scholar]
- Kraup, C. An update on electrophysiological studies in neuropathy. Curr. Opin. Neurol. 2003, 16, 603–612. [Google Scholar] [CrossRef]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef]
- Catterall, W.A.; Striessnig, J.; Snutch, T.P.; Perez-Reyes, E. Compendium of voltage-gated ion channels: Calcium channels. Pharmacol. Rev. 2003, 55, 579–581. [Google Scholar] [CrossRef]
- Ertel, E.A.; Campbell, K.P.; Harpold, M.M.; Hofmann, F.; Mori, Y.; Perez-Reyes, E.; Schwartz, A.; Snutch, T.P.; Tanabe, T.; Birnbaumer, L.; et al. Nomenclature of voltage-gated calcium channels. Neuron 2000, 25, 533–535. [Google Scholar] [CrossRef]
- Levitan, I.B.; Kaczmarek, L.K. Neuron, 3rd ed; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Moreno, D.H. Molecular and functional diversity of voltage-gated calcium channels. Ann. N. Y. Acad. Sci. 1999, 868, 102–117. [Google Scholar] [CrossRef]
- Bell, T.J.; Thaler, C.; Castiglioni, A.J.; Helton, T.D.; Lipscombe, D. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004, 41, 127–138. [Google Scholar] [CrossRef]
- Altier, C.; Dale, C.S.; Kisilevsky, A.E.; Chapman, K.; Castiglioni, A.J.; Matthews, E.A.; Evans, R.M.; Dickenson, A.H.; Lipscombe, D.; Vergnolle, N.; Zamponi, G.W. Differential role of N-type calcium channel splice isoforms in pain. J. Neurosci. 2007, 27, 6363–6373. [Google Scholar] [CrossRef]
- Marrero-Rosado, B.; Fox, S.M.; Hannon, H.E.; Atchison, W.D. Effects of Mercury and Lead on Voltage-Gated Calcium Channel Function. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Berridge, M.J. Neuronal calcium signaling. Neuron 1998, 21, 13–26. [Google Scholar] [CrossRef]
- Jan, L.Y.; Jan, Y.N. Voltage-sensitive ion channels. Cell 1989, 56, 13–25. [Google Scholar] [CrossRef]
- Tsien, R.W.; Ellinor, P.T.; Horne, W.A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 1991, 12, 349–354. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Lewis, R.J.; Todorovic, S.M.; Arneric, S.P.; Snutch, T.P. Role of voltage-gated calcium channels in ascending pain pathways. Brain. Res. Rev. 2009, 60, 84–89. [Google Scholar] [CrossRef]
- Cheng, J.K.; Ji, R.R. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem. Res. 2008, 33, 1970–1978. [Google Scholar] [CrossRef]
- Devor, M. The Pathophysiology of Damaged Peripheral Nerves; Churchill Livingstone: Edinburgh, UK, 1994. [Google Scholar]
- Kajander, K.C.; Wakisaka, S.; Bennett, G.J. Spontaneous discharge originates in the dorsal root ganglion at the onset of painful peripheral neuropathy in the rat. Neurosci. Lett. 1992, 138, 225–228. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Peterson, M.; LaMotte, R.H. Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat. J. Neurophysiol. 1995, 73, 1811–1820. [Google Scholar]
- McGivern, J.G.; McDonough, S.I. Voltage-gated calcium channels as targets for the treatment of chronic pain. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 457–478. [Google Scholar] [CrossRef]
- McGivern, J.G. Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discov. Today 2006, 11, 245–253. [Google Scholar] [CrossRef]
- Matthews, E.A.; Dickenson, A.H. Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain 2001, 92, 235–246. [Google Scholar] [CrossRef]
- Luvisetto, S.; Marinelli, S.; Panasiti, M.S.; D’Amato, F.R.; Fletcher, C.F.; Pavone, F.; Pietrobon, D. Pain sensitivity in mice lacking the Cav2.1 α1 subunit of P/Q-type Ca2+ channels. Neuroscience 2006, 142, 823–832. [Google Scholar] [CrossRef]
- Matthews, E.A.; Bee, L.A.; Stephens, G.J.; Dickenson, A.H. The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur. J. Neurosci. 2007, 25, 3561–3569. [Google Scholar] [CrossRef]
- Fang, Z.; Park, C.K.; Li, H.Y.; Kim, H.Y.; Parkk, S.H.; Jung, S.J.; Kim, J.S.; Monteil, A.; Oh, S.B.; Miller, R.J. Molecular basis of Cav2.3 calcium channels in rat nociceptive neurons. J. Biol. Chem. 2007, 282, 4757–4764. [Google Scholar]
- McGivern, J.G. Voltage-Gated Calcium Channels as the Targets for the Treatment of Chronic Pain; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Huang, L.Y. Calcium channels in isolated rat dorsal horn neurones, including labelled spinothalamic and trigeminothalamic cells. J. Physiol. (Lond.) 1989, 411, 161–177. [Google Scholar]
- Ryu, P.D.; Randic, M. Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons. J. Neurophysiol. 1990, 63, 273–285. [Google Scholar]
- Westenbroek, R.E.; Hoskins, L.; Catterall, W.A. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 1998, 18, 6319–6330. [Google Scholar]
- Saegusa, H.; Kurihara, T.; Zong, S.; Minowa, O.; Kazuno, A.; Han, W.; Matsuda, Y.; Yamanaka, H.; Osanai, M.; Noda, T.; Tanabe, T. Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel. Proc. Natl. Acad. Sci. USA 2000, 97, 6132–6137. [Google Scholar] [CrossRef]
- Cizkova, D.; Marsala, J.; Lukacova, N.; Marsala, M.; Jergova, S.; Orendacova, J.; Yaksh, T.L. Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury. Exp. Brain Res. 2002, 147, 456–463. [Google Scholar] [CrossRef]
- Westenbroek, R.E.; Hell, J.W.; Warner, C.; Dubel, S.J.; Snutch, T.P.; Catterall, W.A. Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 1992, 9, 1099–1115. [Google Scholar] [CrossRef]
- Takemura, M.; Kiyama, H.; Fukui, H.; Tohyama, M.; Wada, H. Distribution of the ω-conotoxin receptor in rat brain. An autoradiographic mapping. Neuroscience 1989, 32, 405–416. [Google Scholar] [CrossRef]
- Luebke, J.; Dunlap, K. Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflügers Arch. 1994, 428, 499–507. [Google Scholar] [CrossRef]
- Bean, B.P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 1989, 340, 153–156. [Google Scholar]
- Tedford, H.W.; Kisilevsky, A.E.; Vieira, L.B.; Varela, D.; Chen, L.; Zamponi, G.W. Scanning mutagenesis of the I-II loop of Cav2.2 calcium channel identifies residues of Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition. Mol. Brain 2010, 3, 6. [Google Scholar] [CrossRef]
- Dolphin, A.C. G protein modulation of voltage-gated calcium channels. Pharmacol. Rev. 2003, 55, 607–627. [Google Scholar] [CrossRef]
- Tedford, H.W.; Zamponi, G.W. Direct G protein modulation of Cav2 calcium channels. Pharmacol. Rev. 2006, 58, 837–862. [Google Scholar] [CrossRef]
- Cervero, F.; Laird, J.M.; Garcías-Nicas, E. Secondary hyperalgesia and presynaptic inhibition: An update. Eur. J. Pain 2003, 7, 345–351. [Google Scholar] [CrossRef]
- Zamponi, G.W. Regulation of presynaptic calcium channels by synaptic proteins. J. Pharmacol. Sci. 2003, 92, 79–83. [Google Scholar] [CrossRef]
- Schmidtko, A.; Lötsch, J.; Freynhagen, R.; Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 2010, 375, 1569–1577. [Google Scholar]
- Kim, C.; Jun, K.; Lee, T.; Kim, S.; McEnery, M.W.; Chin, H.; Kim, H.L.; Park, J.M.; Kim, D.K.; Jung, S.J.; Kim, J.; Shin, H.S. Altered nociceptive response in mice deficient in the α1B subunit of the voltage-dependent calcium channel. Mol. Cell. Neurosci. 2001, 18, 235–245. [Google Scholar] [CrossRef]
- Saegusa, H.; Kurihara, T.; Zong, S.; Kazuno, A.; Matsuda, Y.; Nonaka, T.; Han, W.; Toriyama, H.; Tanabe, T. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J. 2001, 20, 2349–2356. [Google Scholar] [CrossRef]
- Saegusa, H.; Matsuda, Y.; Tanabe, T. Effects of ablation of N-type and R-type Ca2+ channels on pain transmission. Pain 2002, 88, 113–118. [Google Scholar]
- Hatakeyama, S.; Wakamori, M.; Ino, M.; Miyamoto, N.; Takahashi, E.; Yoshinaga, T.; Sawada, K.; Imoto, K.; Tanaka, I.; Yoshizawa, T.; Nishizawa, Y.; Mori, Y.; Niidome, T. Differential nociceptive responses in mice lacking the α1B subunit of N-type Ca2+ channels. Neuroreport 2001, 12, 2423–2427. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Moran, T.D.; Balasubramanyan, S.; Smith, P.A. Effects and consequences of nerve injury on the electrical properties of sensory neurons. Can. J. Physiol. Pharmacol. 2003, 81, 663–682. [Google Scholar] [CrossRef]
- Yokoyama, K.; Kurihara, T.; Makita, K.; Tanabe, T. Plastic change of N-type Ca2+ channel expression after preconditioning is responsible for prostaglandin E2-induced long-lasting allodynia. Anesthesiology 2003, 99, 1364–1370. [Google Scholar] [CrossRef]
- Lancaster, E.; Oh, E.J.; Gover, T.; Weinreich, D. Calcium and calcium-activated currents in vagotomized rat primary vagal afferent neurons. J. Physiol. (Lond.) 2002, 540, 543–556. [Google Scholar] [CrossRef]
- Castiglioni, A.J.; Raingo, J.; Lipscombe, D. Alternative splicing in the C-terminus of Cav2.2 controls expression and gating of N-type calcium channels. J. Physiol. (Lond.) 2006, 576, 119–134. [Google Scholar] [CrossRef]
- Raingo, J.; Castiglioni, A.J.; Lipscombe, D. Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat. Neurosci. 2007, 10, 285–292. [Google Scholar] [CrossRef]
- Lipscombe, D.; Raingo, J. Alternative splicing matters: N-type calcium channels in nociceptors. Channels (Austin) 2007, 1, 225–227. [Google Scholar]
- Andrade, A.; Denome, S.; Jiang, Y.O.; Marangoudakis, S.; Lipscombe, D. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing. Nat. Neurosci. 2010, 13, 1249–1256. [Google Scholar] [CrossRef]
- Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; de Santos, V.; Cruz, L.J. Peptide neurotoxins from fish-hunting cone snails. Science 1985, 230, 1338–1343. [Google Scholar]
- Malmberg, A.B.; Yaksh, T.L. Effect of continuous intrathecal infusion of ω-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995, 60, 83–90. [Google Scholar] [CrossRef]
- Smith, M.T.; Cabot, P.J.; Ross, F.B.; Robertson, A.D.; Lewis, R.J. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 2002, 96, 119–127. [Google Scholar] [CrossRef]
- Endean, R.; Gyr, P.; Parish, G. Pharmacology of the venom of the gastropod Conus magus. Toxicon 1974, 12, 117–129. [Google Scholar] [CrossRef]
- Endean, R.; Parish, G.; Gyr, P. Pharmacology of the venom of Conus geographus. Toxicon 1974, 12, 131–138. [Google Scholar] [CrossRef]
- Olivera, B.M. Conus peptides: Biodiversity-based discovery and exogenomics. J. Biol. Chem. 2006, 281, 31173–31177. [Google Scholar] [CrossRef]
- Olivera, B.M.; Teichert, R.W. Diversity of the neurotoxic Conus peptides: A model for concerted pharmacologic discovery. Mol. Interv. 2007, 7, 251–260. [Google Scholar] [CrossRef]
- Motin, L.; Adams, D.J. ω-conotoxin inhibition of excitatory synaptic transmission evoked by dorsal root stimulation in rat superficial dorsal horn. Neuropharmacology 2008, 55, 860–864. [Google Scholar] [CrossRef]
- Wang, Y.X.; Bezprozvannaya, S.; Bowersox, S.S.; Nadasdi, L.; Miljanich, G.; Mezo, G.; Silva, D.; Tarczy-Hornoch, K.; Luther, R.R. Peripheral versus central potencies of N-type voltage-sensitive calcium channel blockers. Naunyn Schmiedebergs Arch. Pharmacol. 1998, 357, 159–168. [Google Scholar] [CrossRef]
- Uchitel, O.D.; Protti, D.A.; Sanchez, V.; Cherksey, B.D.; Sugimori, M.; LlináS, R. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc. Natl. Acad. Sci. USA 1992, 89, 3330–3333. [Google Scholar]
- Chung, D.; Gaur, S.; Bell, J.R.; Ramachandran, J.; Nadasdi, L. Determination of disulfide bridge pattern in ω-conopeptides. Int. J. Pept. Preotein Res. 1995, 46, 320–325. [Google Scholar]
- Stoehr, S.J.; Dooley, D.J. Characteristics of [125I]ω-conotoxin MVIIA binding to rat neocortical membranes. Neurosci. Lett. 1993, 161, 113–116. [Google Scholar] [CrossRef]
- Kristipati, R.; Nadasdi, L.; Tarczy-Hornoch, K.; Lau, K.; Miljanich, G.P.; Ramachandran, J.; Bell, J.R. Characterization of the binding of omega-conopeptides to different classes of non-L-type neuronal calcium channels. Mol. Cell. Neurosci. 1994, 5, 219–228. [Google Scholar]
- Nielsen, K.J.; Adams, D.; Thomas, L.; Bond, T.; Alewood, P.F.; Craik, D.J.; Lewis, R.J. Structure-activity relationships of ω-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N- and P/Q-type calcium channels. J. Mol. Biol. 1999, 289, 1405–1421. [Google Scholar] [CrossRef]
- Lewis, R.J.; Nielsen, K.J.; Craik, D.J.; Loughnan, M.L.; Adams, D.A.; Sharpe, I.A.; Luchian, T.; Adams, D.J.; Bond, T.; Thomas, L.; et al. Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J. Biol. Chem. 2000, 275, 35335–35344. [Google Scholar] [CrossRef]
- Fox, J.A. Irreversible and reversible blockade of IMR32 calcium channel currents by synthetic MVIIA and iodinated MVIIC ω-conopeptides. Pflügers Arch. 1995, 429, 873–875. [Google Scholar] [CrossRef]
- Sanger, G.J.; Ellis, E.S.; Harries, M.H.; Tilford, N.S.; Wardle, K.A.; Benham, C.D. Rank-order inhibition by ω-conotoxins in human and animal autonomic nerve preparations. Eur. J. Pharmacol. 2000, 388, 89–95. [Google Scholar] [CrossRef]
- Wen, L.; Yang, S.; Qiao, H.; Liu, Z.; Zhou, W.; Zhang, Y.; Huang, P. SO-3, a new omega-superfamily conopeptide derived from Conus striatus, selectively inhibits N-type calcium currents in cultured hippocampal neurons. Br. J. Pharmacol. 2005, 145, 728–739. [Google Scholar] [CrossRef]
- Bleakman, D.; Bowerman, D.; Bath, C.P.; Brust, P.F.; Johnson, E.C.; Deal, C.R.; Miller, R.J.; Ellis, S.B.; Harpold, M.M.; Hans, M. Characteristics of a human N-type calcium channel expressed in HEK293 cells. Neuropharmacology 1995, 34, 753–765. [Google Scholar] [CrossRef]
- Malmberg, A.B.; Yaksh, T.L. Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J. Neurosci. 1994, 14, 4882–4890. [Google Scholar]
- Vanegas, H.; Schaible, H. Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 2000, 85, 9–18. [Google Scholar] [CrossRef]
- Wallace, M.S. Ziconotide: A new nonopioid intrathecal analgesic for the treatment of chronic pain. Expert Rev. Neurother. 2006, 6, 1423–1428. [Google Scholar] [CrossRef]
- Bowersox, S.S.; Luther, R. Pharmacotherapeutic potential of omega-conotoxin MVIIA (SNX-111), an N-type neuronal calcium channel blocker found in the venom of Conus magus. Toxicon 1998, 36, 1651–1658. [Google Scholar] [CrossRef]
- Snutch, T.P. Targeting chronic and neuropathic pain: The N-type calcium channel comes of age. NeuroRx 2005, 2, 662–670. [Google Scholar] [CrossRef]
- Johnson, S.; Johnson, J. Kwajalein Underwater. Available online: http://www.underwaterkwaj.com/shell/cone/Conus-magus.htm (accessed on 29 November 2012).
- Wallace, M.S.; Charapata, S.G.; Fisher, R.; Byas-Smith, M.; Staats, P.S.; Mayo, M.; McGuire, D.; Ellis, D. Intrathecal ziconotide in the treatment of chronic nonmalignant pain: A randomized, double-blind, placebo-controlled clinical trial. Neuromodulation 2006, 9, 75–86. [Google Scholar] [CrossRef]
- Rauck, R.L.; Wallace, M.S.; Leong, M.S.; Minehart, M.; Webster, L.R.; Charapata, S.G.; Abraham, J.E.; Buffington, D.E.; Ellis, D.; Kartzinel, R. A randomized, double-blind, placebo-controlled study of intrathecal ziconotide in adults with severe chronic pain. J. Pain Symptom Manag. 2006, 31, 393–406. [Google Scholar] [CrossRef]
- McGivern, J.G. Ziconotide: A review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat. 2007, 3, 69–85. [Google Scholar] [CrossRef]
- Klotz, U. Ziconotide—a novel neuron-specific calcium channel blocker for the intrathecal treatment of severe chronic pain—a short review. Int. J. Clin. Pharmacol. Ther. 2006, 44, 478–483. [Google Scholar]
- Wermeling, D.; Drass, M.; Ellis, D.; Mayo, D.; McGuire, D.; O’Connell, D.; Hale, V.; Chao, S. Pharmacokinetics and pharmacodynamics of intrathecal ziconotide in chronic pain patients. J. Clin. Pharmacol. 2003, 43, 624–636. [Google Scholar]
- Lynch, S.S.; Cheng, C.M.; Yee, J.L. Intrathecal ziconotide for refractory chronic pain. Ann. Pharmacother. 2006, 40, 1293–1300. [Google Scholar]
- Miljanich, G.P. Approved!!! Prialt (ziconotide intrathecal infusion), a conopeptide for treating severe chronic pain. In Venoms to Drugs 2005; The University of Queensland: Heron Island, Australia, 2005. [Google Scholar]
- Williams, J.A.; Day, M.; Heavner, J.E. Ziconotide: An update and review. Expert Opin. Pharmacother. 2008, 9, 1575–1583. [Google Scholar] [CrossRef]
- Wallace, M.S.; Rauck, R.; Fisher, R.; Charapata, S.G.; Ellis, D.; Dissanayake, S. Intrathecal ziconotide for severe chronic pain: Safety and tolerability results of an open-label, long-term trial. Anesth. Analg. 2008, 106, 628–637. [Google Scholar] [CrossRef]
- Yarotskyy, V.; Elmslie, K.S. ω-conotoxin GVIA alters gating charge movement of N-type (Cav2.2) calcium channels. J. Neurophysiol. 2009, 101, 332–340. [Google Scholar] [CrossRef]
- Gohil, K.; Bell, J.R.; Ramachandran, J.; Miljanich, G.P. Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium channel antagonist, SNX-230 (ω-conopeptide MVIIC). Brain Res. 1994, 653, 258–266. [Google Scholar] [CrossRef]
- Miljanich, G.P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004, 11, 3029–3040. [Google Scholar] [CrossRef]
- Jeon, D.; Kim, C.; Yang, Y.M.; Rhim, H.; Yim, E.; Oh, U.; Shin, H.S. Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice. Genes Brain Behav. 2007, 6, 375–388. [Google Scholar] [CrossRef]
- Pin, J.P.; Bockaert, J. ω-conotoxin GVIA and dihydropyridines discriminate two types of Ca2+ channels involved in GABA release from striatal neurons in culture. Eur. J. Pharmacol. 1990, 188, 81–84. [Google Scholar] [CrossRef]
- Scott, D.A.; Wright, C.E.; Angus, J.A. Actions of intrathecal ω-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur. J. Pharmacol. 2002, 451, 279–286. [Google Scholar] [CrossRef]
- Wermeling, D.P. Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy 2005, 25, 1084–1094. [Google Scholar] [CrossRef]
- Fuertges, F.; Abuchowski, A. The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Control. Release 1990, 11, 139–148. [Google Scholar] [CrossRef]
- Snutch, T.P.; Feng, Z.P.; Belardetti, F.; Vanderah, T.; Zamponi, G.W.; Porreca, F. Novel N-type calcium channel blockers efficacious in animal models of chronic pain. In Proceedings of 226th American Chemical Society National Meeting, New York, NY, USA, 7–11 September 2003.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hannon, H.E.; Atchison, W.D. Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management. Mar. Drugs 2013, 11, 680-699. https://doi.org/10.3390/md11030680
Hannon HE, Atchison WD. Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management. Marine Drugs. 2013; 11(3):680-699. https://doi.org/10.3390/md11030680
Chicago/Turabian StyleHannon, Heidi E., and William D. Atchison. 2013. "Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management" Marine Drugs 11, no. 3: 680-699. https://doi.org/10.3390/md11030680
APA StyleHannon, H. E., & Atchison, W. D. (2013). Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management. Marine Drugs, 11(3), 680-699. https://doi.org/10.3390/md11030680