Interferon Regulatory Factors in Alcohol-Associated Liver Disease: Cell-Type Programs, Danger Signaling, and Therapeutic Opportunities
Abstract
1. Introduction
2. Alcohol-Driven DAMPs and PAMPs in IRF Ignition
2.1. DAMP-Driven Activation of IRF Pathways
2.2. PAMP-Driven Activation of IRF Pathways
2.3. IRF-Linked Inflammatory Cell Death and Feed-Forward Amplification
3. IRF Signaling Architecture and Control by Post-Translational Modifications
4. IRF Signaling Across Hepatic Cell Populations in Alcohol-Associated Liver Disease
4.1. Hepatocytes
4.2. Kupffer Cells and Monocyte-Derived Macrophages
4.3. Dendritic Cells
4.4. T Cells
4.5. Hepatic Stellate Cells
4.6. Neutrophils
5. IRF-Targeted Modulators in Alcohol-Associated Liver Disease
5.1. STING–TBK1–IRF3 Axis Inhibition
5.2. TLR4–IRF5 Inhibition via Humanized Anti-TLR4 Antibody
5.3. Pharmacologic Suppression of IRF4-Driven DC2/Th17 Responses
5.4. IL-22 as an IRF-Modulating Cytoprotective Cytokine
5.5. BTK Inhibition to Restrict Granulopoiesis and NETosis (IRF5/IRF3 Axis)
5.6. NETosis Inhibitors: PAD4 Blockade and DNase I
5.7. Senolytics Reducing Chronic IRF1/IRF3 Inflammation
5.8. Clinical Potential and Priority Research Directions
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADH | alcohol dehydrogenase |
| AH | alcohol-associated hepatitis |
| ALD | alcohol-associated liver disease |
| cGAS | cyclic GMP–AMP synthase |
| CYP2E1 | cytochrome P450 2E1 |
| DAMP | damage-associated molecular pattern |
| DC | dendritic cell |
| dsRNA | double-stranded RNA |
| RIG-I | retinoic acid-inducible gene I |
| HSCs | hepatic stellate cells |
| IFNs | interferons |
| IKKε | inhibitor of nuclear factor kappa-B kinase ε |
| ISG | interferon-stimulated gene |
| KCs | Kupffer cells |
| MAVS | mitochondrial antiviral signaling protein |
| MDA5 | melanoma differentiation-associated protein 5 |
| MyD88 | myeloid differentiation primary response 88 |
| mtDNA | mitochondrial DNA |
| PAMP | pathogen-associated molecular pattern |
| PRR | pattern-recognition receptor |
| PTM | post-translational modification |
| ROS | reactive oxygen species |
| ssDNA | single-stranded DNA |
| ssRNA | single-stranded RNA |
| STING | stimulator of interferon genes |
| TBK1 | TANK-binding kinase 1 |
| TRIF | TIR-domain-containing adapter-inducing interferon-β |
References
- Mackowiak, B.; Fu, Y.; Maccioni, L.; Gao, B. Alcohol-associated liver disease. J. Clin. Investig. 2024, 134, e176345. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, T.; Kusumanchi, P.; Han, S.; Yang, Z.; Liangpunsakul, S. Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease. Biomedicines 2020, 8, 50. [Google Scholar] [CrossRef]
- Hoek, J.B.; Cahill, A.; Pastorino, J.G. Alcohol and mitochondria: A dysfunctional relationship. Gastroenterology 2002, 122, 2049–2063. [Google Scholar] [CrossRef]
- Zakhari, S. Overview: How is alcohol metabolized by the body? Alcohol Res. Health 2006, 29, 245–254. [Google Scholar]
- Ambade, A.; Mandrekar, P. Oxidative stress and inflammation: Essential partners in alcoholic liver disease. Int. J. Hepatol. 2012, 2012, 853175. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Liangpunsakul, S.; Iwakiri, Y.; Szabo, G.; Wang, H. Immunological mechanisms and emerging therapeutic targets in alcohol-associated liver disease. Cell. Mol. Immunol. 2025, 22, 1190–1204. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Ahmad, M.F.; Nagy, L.E.; Tsukamoto, H. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 2019, 70, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Mihm, S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int. J. Mol. Sci. 2018, 19, 3104. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Zhang, N.; Xian, Y.; Tang, Y.; Ye, J.; Reza, F.; He, G.; Wen, X.; Jiang, X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct. Target. Ther. 2024, 9, 282. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Xu, J.; Zhu, L.; Li, C.; Sun, X.; Li, X.; Guo, J.; Li, J.; Wang, S.; et al. GRP/GRPR enhances alcohol-associated liver injury through the IRF1-mediated Caspase-1 inflammasome and NOX2-dependent ROS pathway. Hepatology 2024, 79, 392–408. [Google Scholar] [CrossRef]
- Taki, S.; Sato, T.; Ogasawara, K.; Fukuda, T.; Sato, M.; Hida, S.; Suzuki, G.; Mitsuyama, M.; Shin, E.H.; Kojima, S.; et al. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 1997, 6, 673–679. [Google Scholar] [CrossRef]
- Takaoka, A.; Yanai, H.; Kondo, S.; Duncan, G.; Negishi, H.; Mizutani, T.; Kano, S.; Honda, K.; Ohba, Y.; Mak, T.W.; et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005, 434, 243–249. [Google Scholar] [CrossRef]
- Krausgruber, T.; Blazek, K.; Smallie, T.; Alzabin, S.; Lockstone, H.; Sahgal, N.; Hussell, T.; Feldmann, M.; Udalova, I.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 2011, 12, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Holtschke, T.; Lohler, J.; Kanno, Y.; Fehr, T.; Giese, N.; Rosenbauer, F.; Lou, J.; Knobeloch, K.P.; Gabriele, L.; Waring, J.F.; et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996, 87, 307–317. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Smith, S.; Foldi, J.; Zhao, B.; Chung, A.Y.; Outtz, H.; Kitajewski, J.; Shi, C.; Weber, S.; et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 2012, 13, 642–650. [Google Scholar] [CrossRef]
- Chowdhury, A.; Witte, S.; Aich, A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front. Cell Dev. Biol. 2022, 10, 796066. [Google Scholar] [CrossRef]
- Petrasek, J.; Iracheta-Vellve, A.; Csak, T.; Satishchandran, A.; Kodys, K.; Kurt-Jones, E.A.; Fitzgerald, K.A.; Szabo, G. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl. Acad. Sci. USA 2013, 110, 16544–16549. [Google Scholar] [CrossRef]
- Beliaeva, T.N.; Bulychev, A.G.; Lasskaia, O.E.; Semenova, E.G. Effect of sanguiritrine on the functional activity of fibroblast lysosomes. Vopr. Meditsinskoi Khimii 1990, 36, 16–18. [Google Scholar]
- Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Garcia, C.; Poulsen, K.L.; Bellos, D.; Wang, H.; McMullen, M.R.; Li, X.; Chattopadhyay, S.; Sen, G.; Nagy, L.E. The non-transcriptional activity of IRF3 modulates hepatic immune cell populations in acute-on-chronic ethanol administration in mice. J. Hepatol. 2019, 70, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Huang, G.; Wang, Z.; Wang, L.; Gao, Q. IRF7: Role and regulation in immunity and autoimmunity. Front. Immunol. 2023, 14, 1236923. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Yanai, H.; Negishi, H.; Asagiri, M.; Sato, M.; Mizutani, T.; Shimada, N.; Ohba, Y.; Takaoka, A.; Yoshida, N.; et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434, 772–777. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, M.M.; Kottyan, L.C.; Singh, H.; Pasare, C. Suppression of Inflammasome Activation by IRF8 and IRF4 in cDCs Is Critical for T Cell Priming. Cell Rep. 2020, 31, 107604. [Google Scholar] [CrossRef]
- Nakano, R.; Tran, L.M.; Geller, D.A.; Macedo, C.; Metes, D.M.; Thomson, A.W. Dendritic Cell-Mediated Regulation of Liver Ischemia-Reperfusion Injury and Liver Transplant Rejection. Front. Immunol. 2021, 12, 705465. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Han, C.J.; Zhang, J.Z.; He, W.Z.; Zhao, G.J.; Cheng, X.; Zhang, L.; Deng, K.Q.; Liu, Y.; Fan, H.F.; et al. Hepatic Interferon Regulatory Factor 6 Alleviates Liver Steatosis and Metabolic Disorder by Transcriptionally Suppressing Peroxisome Proliferator-Activated Receptor gamma in Mice. Hepatology 2019, 69, 2471–2488. [Google Scholar] [CrossRef]
- Wang, X.A.; Zhang, R.; Jiang, D.; Deng, W.; Zhang, S.; Deng, S.; Zhong, J.; Wang, T.; Zhu, L.H.; Yang, L.; et al. Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice. Hepatology 2013, 58, 603–616. [Google Scholar] [CrossRef]
- Hritz, I.; Mandrekar, P.; Velayudham, A.; Catalano, D.; Dolganiuc, A.; Kodys, K.; Kurt-Jones, E.; Szabo, G. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 2008, 48, 1224–1231. [Google Scholar] [CrossRef]
- Petrasek, J.; Dolganiuc, A.; Csak, T.; Nath, B.; Hritz, I.; Kodys, K.; Catalano, D.; Kurt-Jones, E.; Mandrekar, P.; Szabo, G. Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology 2011, 53, 649–660. [Google Scholar] [CrossRef]
- Luther, J.; Khan, S.; Gala, M.K.; Kedrin, D.; Sridharan, G.; Goodman, R.P.; Garber, J.J.; Masia, R.; Diagacomo, E.; Adams, D.; et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc. Natl. Acad. Sci. USA 2020, 117, 11667–11673, Correction in Proc. Natl. Acad. Sci. USA 2020, 117, 16704. [Google Scholar] [CrossRef]
- Liang, S.; Zhong, Z.; Kim, S.Y.; Uchiyama, R.; Roh, Y.S.; Matsushita, H.; Gottlieb, R.A.; Seki, E. Murine macrophage autophagy protects against alcohol-induced liver injury by degrading interferon regulatory factor 1 (IRF1) and removing damaged mitochondria. J. Biol. Chem. 2019, 294, 12359–12369. [Google Scholar] [CrossRef]
- Lovelock, D.F.; Liu, W.; Langston, S.E.; Liu, J.; Van Voorhies, K.; Giffin, K.A.; Vetreno, R.P.; Crews, F.T.; Besheer, J. The Toll-like receptor 7 agonist imiquimod increases ethanol self-administration and induces expression of Toll-like receptor related genes. Addict. Biol. 2022, 27, e13176. [Google Scholar] [CrossRef]
- Crabb, D.W.; Liangpunsakul, S. Acetaldehyde generating enzyme systems: Roles of alcohol dehydrogenase, CYP2E1 and catalase, and speculations on the role of other enzymes and processes. Novartis Found. Symp. 2007, 285, 4–16; discussion 16–22, 198–199. [Google Scholar] [CrossRef]
- Contreras-Zentella, M.L.; Villalobos-Garcia, D.; Hernandez-Munoz, R. Ethanol Metabolism in the Liver, the Induction of Oxidant Stress, and the Antioxidant Defense System. Antioxidants 2022, 11, 1258. [Google Scholar] [CrossRef]
- Ayala, A.; Munoz, M.F.; Arguelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Zakhari, S.; Neuman, M.; Seitz, H.K. The role of cytochrome P4502E1 in ethanol mediated diseases: A narrative update. Alcohol Alcohol. 2025, 60, agaf014. [Google Scholar] [CrossRef]
- West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015, 520, 553–557. [Google Scholar] [CrossRef]
- Sutti, S.; Jindal, A.; Locatelli, I.; Vacchiano, M.; Gigliotti, L.; Bozzola, C.; Albano, E. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 2014, 59, 886–897. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Z.H. Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease. Comb. Chem. High Throughput Screen. 2023, 26, 1929–1944. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.R.; Jeong, W.I. Recent advances of sterile inflammation and inter-organ cross-talk in alcoholic liver disease. Exp. Mol. Med. 2020, 52, 772–780. [Google Scholar] [CrossRef]
- Mak, K.M.; Shekhar, A.C. Lipopolysaccharide, arbiter of the gut-liver axis, modulates hepatic cell pathophysiology in alcoholism. Anat. Rec. 2025, 308, 975–1004. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhong, W.; Sun, X.; Zhou, Z. TLR9 Signaling Protects Alcohol-Induced Hepatic Oxidative Stress but Worsens Liver Inflammation in Mice. Front. Pharmacol. 2021, 12, 709002. [Google Scholar] [CrossRef]
- Byun, J.S.; Suh, Y.G.; Yi, H.S.; Lee, Y.S.; Jeong, W.I. Activation of toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J. Hepatol. 2013, 58, 342–349. [Google Scholar] [CrossRef]
- Szabo, G. Gut-Liver Axis Beyond the Microbiome: How the Fungal Mycobiome Contributes to Alcoholic Liver Disease. Hepatology 2018, 68, 2426–2428. [Google Scholar] [CrossRef]
- Thoudam, T.; Gao, H.; Jiang, Y.; Huda, N.; Yang, Z.; Ma, J.; Liangpunsakul, S. Mitochondrial quality control in alcohol-associated liver disease. Hepatol. Commun. 2024, 8, e0534. [Google Scholar] [CrossRef] [PubMed]
- Kukat, C.; Davies, K.M.; Wurm, C.A.; Spahr, H.; Bonekamp, N.A.; Kuhl, I.; Joos, F.; Polosa, P.L.; Park, C.B.; Posse, V.; et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl. Acad. Sci. USA 2015, 112, 11288–11293. [Google Scholar] [CrossRef]
- Newman, L.E.; Shadel, G.S. Mitochondrial DNA Release in Innate Immune Signaling. Annu. Rev. Biochem. 2023, 92, 299–332. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xu, M.J.; Koritzinsky, E.H.; Zhou, Z.; Wang, W.; Cao, H.; Yuen, P.S.; Ross, R.A.; Star, R.A.; Liangpunsakul, S.; et al. Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight 2017, 2, e92634. [Google Scholar] [CrossRef] [PubMed]
- McArthur, K.; Whitehead, L.W.; Heddleston, J.M.; Li, L.; Padman, B.S.; Oorschot, V.; Geoghegan, N.D.; Chappaz, S.; Davidson, S.; San Chin, H.; et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018, 359, eaao6047. [Google Scholar] [CrossRef]
- Riley, J.S.; Quarato, G.; Cloix, C.; Lopez, J.; O’Prey, J.; Pearson, M.; Chapman, J.; Sesaki, H.; Carlin, L.M.; Passos, J.F.; et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 2018, 37, e99238. [Google Scholar] [CrossRef]
- Rongvaux, A.; Jackson, R.; Harman, C.C.; Li, T.; West, A.P.; de Zoete, M.R.; Wu, Y.; Yordy, B.; Lakhani, S.A.; Kuan, C.Y.; et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014, 159, 1563–1577. [Google Scholar] [CrossRef]
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar] [CrossRef]
- Acchioni, M.; Acchioni, C.; Hiscott, J.; Sgarbanti, M. Origin and function of anti-interferon type I viral proteins. Virology 2025, 605, 110456, Erratum in Virology 2025, 606, 110479. [Google Scholar] [CrossRef]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release mechanisms of major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Seo, W.; Gao, Y.; He, Y.; Sun, J.; Xu, H.; Feng, D.; Park, S.H.; Cho, Y.E.; Guillot, A.; Ren, T.; et al. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J. Hepatol. 2019, 71, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Hirsova, P.; Ibrahim, S.H.; Verma, V.K.; Morton, L.A.; Shah, V.H.; LaRusso, N.F.; Gores, G.J.; Malhi, H. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016, 64, 2219–2233. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, I.; Santoro, N.; Chen, Y.; Hoque, R.; Ouyang, X.; Caprio, S.; Shlomchik, M.J.; Coffman, R.L.; Candia, A.; Mehal, W.Z. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Investig. 2016, 126, 859–864. [Google Scholar] [CrossRef]
- Hirsova, P.; Ibrahim, S.H.; Krishnan, A.; Verma, V.K.; Bronk, S.F.; Werneburg, N.W.; Charlton, M.R.; Shah, V.H.; Malhi, H.; Gores, G.J. Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes. Gastroenterology 2016, 150, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Schattenberg, J.M.; Lee, M.S. Extracellular Vesicles as Messengers Between Hepatocytes and Macrophages in Nonalcoholic Steatohepatitis. Gastroenterology 2016, 150, 815–818. [Google Scholar] [CrossRef]
- Verma, V.K.; Li, H.; Wang, R.; Hirsova, P.; Mushref, M.; Liu, Y.; Cao, S.; Contreras, P.C.; Malhi, H.; Kamath, P.S.; et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J. Hepatol. 2016, 64, 651–660. [Google Scholar] [CrossRef]
- Saha, B.; Momen-Heravi, F.; Kodys, K.; Szabo, G. MicroRNA Cargo of Extracellular Vesicles from Alcohol-exposed Monocytes Signals Naive Monocytes to Differentiate into M2 Macrophages. J. Biol. Chem. 2016, 291, 149–159. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; Hirsova, P.; Tomita, K.; Bronk, S.F.; Werneburg, N.W.; Harrison, S.A.; Goodfellow, V.S.; Malhi, H.; Gores, G.J. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 2016, 63, 731–744, Correction in Hepatology 2016, 64, 702. [Google Scholar] [CrossRef]
- Eguchi, A.; Lazaro, R.G.; Wang, J.; Kim, J.; Povero, D.; Willliams, B.; Ho, S.B.; Starkel, P.; Schnabl, B.; Ohno-Machado, L.; et al. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology 2017, 65, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shim, Y.R.; Seo, W.; Kim, M.H.; Choi, W.M.; Kim, H.H.; Kim, Y.E.; Yang, K.; Ryu, T.; Jeong, J.M.; et al. Mitochondrial Double-Stranded RNA in Exosome Promotes Interleukin-17 Production Through Toll-Like Receptor 3 in Alcohol-associated Liver Injury. Hepatology 2020, 72, 609–625. [Google Scholar] [CrossRef]
- Piccinini, A.M.; Midwood, K.S. DAMPening inflammation by modulating TLR signalling. Mediat. Inflamm. 2010, 2010, 672395. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Jiang, W.; Zhou, R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024, 57, 752–771. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; McWhirter, S.M.; Faia, K.L.; Rowe, D.C.; Latz, E.; Golenbock, D.T.; Coyle, A.J.; Liao, S.M.; Maniatis, T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003, 4, 491–496. [Google Scholar] [CrossRef]
- Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y.T.; Grishin, N.V.; et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015, 347, aaa2630. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Takeuchi, S.; Kubota, K.; Kobayashi, Y.; Kozakai, S.; Ukai, I.; Shichiku, A.; Okubo, M.; Numasaki, M.; Kanemitsu, Y.; et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J. Biol. Chem. 2018, 293, 10186–10201. [Google Scholar] [CrossRef]
- Hacker, H.; Redecke, V.; Blagoev, B.; Kratchmarova, I.; Hsu, L.C.; Wang, G.G.; Kamps, M.P.; Raz, E.; Wagner, H.; Hacker, G.; et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006, 439, 204–207. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, Z.; Chu, H.; Wang, W.; Jin, Y.; Yang, L. TRIF-dependent signaling and its role in liver diseases. Front. Cell Dev. Biol. 2024, 12, 1370042. [Google Scholar] [CrossRef]
- Savitsky, D.; Tamura, T.; Yanai, H.; Taniguchi, T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol. Immunother. 2010, 59, 489–510. [Google Scholar] [CrossRef]
- Yu, X.; Rehman, A.U.; Dang, L.; Zhang, X.; Liu, J.; Xiong, X.; Chen, G.; Jian, Z. Interferon regulatory factor 5: A potential target for therapeutic intervention in inflammatory diseases. Front. Immunol. 2025, 16, 1535823. [Google Scholar] [CrossRef]
- Zhong, W.; Zhou, Z. Alterations of the gut microbiome and metabolome in alcoholic liver disease. World J. Gastrointest. Pathophysiol. 2014, 5, 514–522. [Google Scholar] [CrossRef]
- Yang, Y.; Schnabl, B. Gut Bacteria in Alcohol-Associated Liver Disease. Clin. Liver Dis. 2024, 28, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.I.; Kurnasov, O.; Natarajan, V.; Hong, M.; Gudkov, A.V.; Osterman, A.L.; Wilson, I.A. Structural basis of TLR5-flagellin recognition and signaling. Science 2012, 335, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.M.; Inamine, T.; Hochrath, K.; Chen, P.; Wang, L.; Llorente, C.; Bluemel, S.; Hartmann, P.; Xu, J.; Koyama, Y.; et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Investig. 2017, 127, 2829–2841. [Google Scholar] [CrossRef]
- Brahadeeswaran, S.; Dasgupta, T.; Manickam, V.; Saraswathi, V.; Tamizhselvi, R. NLRP3: A new therapeutic target in alcoholic liver disease. Front. Immunol. 2023, 14, 1215333. [Google Scholar] [CrossRef]
- Kawaratani, H.; Tsujimoto, T.; Douhara, A.; Takaya, H.; Moriya, K.; Namisaki, T.; Noguchi, R.; Yoshiji, H.; Fujimoto, M.; Fukui, H. The effect of inflammatory cytokines in alcoholic liver disease. Mediat. Inflamm. 2013, 2013, 495156. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, A.; Tamura, T.; Taniguchi, T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci. 2008, 99, 467–478. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, W.; King, C.D.; Kumar, S.P.; Vogel, P.; Tweedell, R.E.; Kanneganti, T.D. The critical role of the ZBP1-NINJ1 axis and IRF1/IRF9 in ethanol-induced cell death, PANoptosis, and alcohol-associated liver disease. bioRxiv 2025. [Google Scholar] [CrossRef]
- Ma, X.; Niu, M.; Ni, H.M.; Ding, W.X. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer. Hepatology 2024, 80, 363–379. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, S.; Lee, M.; Kim, Y. Mitochondrial nucleic acids in innate immunity and beyond. Exp. Mol. Med. 2023, 55, 2508–2518. [Google Scholar] [CrossRef]
- Sen, D.; Bisht, S.; Gupta, S. Unravelling inflammation-driven mechanisms in hepatocellular carcinoma: Therapeutic targets and potential interventions. Egypt. Liver J. 2025, 15, 46. [Google Scholar] [CrossRef]
- Petrasek, J.; Mandrekar, P.; Szabo, G. Toll-like receptors in the pathogenesis of alcoholic liver disease. Gastroenterol. Res. Pract. 2010, 2010, 710381. [Google Scholar] [CrossRef]
- Watanabe, T.; Kudo, M. Roles of Deubiquitinases OTUD3 and OTUD5 in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2025, 26, 9924. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Chen, X.; Liang, H.; Zhang, J.; Zen, K.; Zhang, C.Y. microRNAs are ligands of Toll-like receptors. RNA 2013, 19, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, C.A. Regulating IRFs in IFN Driven Disease. Front. Immunol. 2019, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.S.; Zhang, X.Y.; Ma, X.Y.; Wei, Y.Y.; Wang, L.L.; Du, Z.B.; Xia, X.G.; Che, L.; Guo, D.B.; Zheng, H.Y.; et al. Hepatocyte-Derived Extracellular Vesicles Deliver miR-328-3p to Trigger PP2A-B56delta-Mediated p-NLRP3(S295)-Dependent Metaflammation in Macrophages upon Microcystin-LR Exposure. Adv. Sci. 2025, e07039, online ahead of print. [Google Scholar] [CrossRef]
- Boonkaew, B.; Satthawiwat, N.; Pachane, B.C.; Brett, L.M.; Tangkijvanich, P.; Ariyachet, C. Palmitic acid reduces LDLR-dependent uptake of macrophage-derived extracellular vesicles by hepatoma cells. Non-Coding RNA Res. 2025, 13, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, J.; Hu, Y.; Li, S.; Cai, Z.; Li, C.; Qin, W.; Zhang, G. Protective Effects of GalNac-Modified Red Blood Cell-Derived Extracellular Vesicles Against Liver Diseases. Int. J. Nanomed. 2025, 20, 8993–9017. [Google Scholar] [CrossRef]
- Mincheva, G.; Moreno-Manzano, V.; Felipo, V.; Llansola, M. Extracellular vesicles from mesenchymal stem cells improve neuroinflammation and neurotransmission in hippocampus and cognitive impairment in rats with mild liver damage and minimal hepatic encephalopathy. Stem Cell Res. Ther. 2024, 15, 472. [Google Scholar] [CrossRef]
- Malhi, H. Emerging role of extracellular vesicles in liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G739–G749. [Google Scholar] [CrossRef] [PubMed]
- Georges, H.M.; Fischer, A.C.; Casanova, P.; Abrahams, V.M. miR-146a-3p packaged in small extracellular vesicles triggers fetal membrane inflammation in response to viral dsRNA through activation of Toll-like Receptor 7 and 8. bioRxiv 2025. [Google Scholar] [CrossRef]
- Torralba, D.; Baixauli, F.; Villarroya-Beltri, C.; Fernandez-Delgado, I.; Latorre-Pellicer, A.; Acin-Perez, R.; Martin-Cofreces, N.B.; Jaso-Tamame, A.L.; Iborra, S.; Jorge, I.; et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 2018, 9, 2658. [Google Scholar] [CrossRef]
- Liu, J.; Yang, P.; Zuo, G.; He, S.; Tan, W.; Zhang, X.; Su, C.; Zhao, L.; Wei, L.; Chen, Y.; et al. Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis. 2018, 17, 153. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Khan, M.Z.; He, L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2017, 113, 639–651. [Google Scholar] [CrossRef]
- Berthier, A.; Johanns, M.; Zummo, F.P.; Lefebvre, P.; Staels, B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166097. [Google Scholar] [CrossRef]
- Korbecki, J.; Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef]
- Qiu, J.; Fu, L.; Xue, Y.; Yang, Y.; Qiao, F.; Zhu, W.; Gao, Y.; Fang, M.; Liu, Y.; Gao, Z.; et al. Gallic acid mitigates high-fat and high-carbohydrate diet-induced steatohepatitis by modulating the IRF6/PPARgamma signaling pathway. Front. Pharmacol. 2025, 16, 1563561. [Google Scholar] [CrossRef]
- Trevisani, M.; Siemens, J.; Materazzi, S.; Bautista, D.M.; Nassini, R.; Campi, B.; Imamachi, N.; Andre, E.; Patacchini, R.; Cottrell, G.S.; et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. USA 2007, 104, 13519–13524. [Google Scholar] [CrossRef]
- Gautam, J.; Banskota, S.; Shah, S.; Jee, J.G.; Kwon, E.; Wang, Y.; Kim, D.Y.; Chang, H.W.; Kim, J.A. 4-Hydroxynonenal-induced GPR109A (HCA(2) receptor) activation elicits bipolar responses, G(alphai) -mediated anti-inflammatory effects and G(betagamma) -mediated cell death. Br. J. Pharmacol. 2018, 175, 2581–2598. [Google Scholar] [CrossRef]
- Rahman, M.; Steuer, J.; Gillgren, P.; Vegvari, A.; Liu, A.; Frostegard, J. Malondialdehyde Conjugated With Albumin Induces Pro-Inflammatory Activation of T Cells Isolated From Human Atherosclerotic Plaques Both Directly and Via Dendritic Cell-Mediated Mechanism. JACC Basic Transl. Sci. 2019, 4, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Yang, H.; Shao, D.; Zhao, X.; Zhang, G. Intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of Toll-like receptor 4 signaling. Free Radic. Biol. Med. 2019, 131, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.L.; Troncoso, M.F.; Espelt, M.V. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J. Cell. Physiol. 2022, 237, 389–400. [Google Scholar] [CrossRef]
- Wright, S.D.; Ramos, R.A.; Tobias, P.S.; Ulevitch, R.J.; Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990, 249, 1431–1433. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; Rowe, D.C.; Barnes, B.J.; Caffrey, D.R.; Visintin, A.; Latz, E.; Monks, B.; Pitha, P.M.; Golenbock, D.T. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 2003, 198, 1043–1055, Correction in J. Exp. Med. 2003, 198, 1450. [Google Scholar] [CrossRef]
- Dong, H.; Feng, Y.; Yang, Y.; Hu, Y.; Jia, Y.; Yang, S.; Zhao, N.; Zhao, R. A Novel Function of Mitochondrial Phosphoenolpyruvate Carboxykinase as a Regulator of Inflammatory Response in Kupffer Cells. Front. Cell Dev. Biol. 2021, 9, 726931. [Google Scholar] [CrossRef]
- De Langhe, N.; Van Dorpe, S.; Guilbert, N.; Vander Cruyssen, A.; Roux, Q.; Deville, S.; Dedeyne, S.; Tummers, P.; Denys, H.; Vandekerckhove, L.; et al. Mapping bacterial extracellular vesicle research: Insights, best practices and knowledge gaps. Nat. Commun. 2024, 15, 9410. [Google Scholar] [CrossRef]
- Hosseini-Giv, N.; Basas, A.; Hicks, C.; El-Omar, E.; El-Assaad, F.; Hosseini-Beheshti, E. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front. Cell. Infect. Microbiol. 2022, 12, 962216. [Google Scholar] [CrossRef] [PubMed]
- Bierwagen, J.; Wiegand, M.; Laakmann, K.; Danov, O.; Limburg, H.; Herbel, S.M.; Heimerl, T.; Dorna, J.; Jonigk, D.; Preußer, C.; et al. Bacterial vesicles block viral replication in macrophages via TLR4-TRIF-axis. Cell Commun. Signal. 2023, 21, 65. [Google Scholar] [CrossRef]
- Papail, J.; Daniel, N.; Prado, L.; Vassaux, D.; Péron, S.; Even, C.; Lebret, V.; Luz, B.S.R.D.; Le Gouar, Y.; Jardin, J.; et al. Staphylococcus aureus derived extracellular vesicles trigger multiple inflammatory pathways in host cells and deliver their RNA cargo following their internalization and lysis within late endosomes. bioRxiv 2025. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, S.; Srivastav, A.K.; Upadhyay, T.K.; Husain, A.; Khubaib, M.; Kang, S.; Park, M.N.; Kim, B.; Sharma, R. “beta-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway”. Int. J. Biol. Macromol. 2024, 282, 136520. [Google Scholar] [CrossRef] [PubMed]
- Piffer, A.C.; Camilli, G.; Bohm, M.; Lavenir, R.; Quintin, J. β-glucan imprinting remodels macrophage function in response to environmental cues. bioRxiv 2021. [Google Scholar] [CrossRef]
- Cheng, Q.J.; Farrell, K.; Fenn, J.; Ma, Z.; Makanani, S.K.; Siemsen, J. Dectin-1 ligands produce distinct training phenotypes in human monocytes through differential activation of signaling networks. Sci. Rep. 2024, 14, 1454. [Google Scholar] [CrossRef] [PubMed]
- Schwandner, R.; Dziarski, R.; Wesche, H.; Rothe, M.; Kirschning, C.J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 1999, 274, 17406–17409. [Google Scholar] [CrossRef] [PubMed]
- Liljeroos, M.; Vuolteenaho, R.; Rounioja, S.; Henriques-Normark, B.; Hallman, M.; Ojaniemi, M. Bacterial ligand of TLR2 signals Stat activation via induction of IRF1/2 and interferon-alpha production. Cell. Signal. 2008, 20, 1873–1881. [Google Scholar] [CrossRef]
- Kang, W.; Park, A.; Huh, J.W.; You, G.; Jung, D.J.; Song, M.; Lee, H.K.; Kim, Y.M. Flagellin-Stimulated Production of Interferon-beta Promotes Anti-Flagellin IgG2c and IgA Responses. Mol. Cells 2020, 43, 251–263. [Google Scholar] [CrossRef]
- Antonczyk, A.; Krist, B.; Sajek, M.; Michalska, A.; Piaszyk-Borychowska, A.; Plens-Galaska, M.; Wesoly, J.; Bluyssen, H.A.R. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front. Immunol. 2019, 10, 1176. [Google Scholar] [CrossRef]
- Thompson, C.D.; Matta, B.; Barnes, B.J. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front. Immunol. 2018, 9, 2622. [Google Scholar] [CrossRef]
- Sharma, S.; tenOever, B.R.; Grandvaux, N.; Zhou, G.P.; Lin, R.; Hiscott, J. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003, 300, 1148–1151. [Google Scholar] [CrossRef]
- Ramsauer, K.; Sadzak, I.; Porras, A.; Pilz, A.; Nebreda, A.R.; Decker, T.; Kovarik, P. p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proc. Natl. Acad. Sci. USA 2002, 99, 12859–12864. [Google Scholar] [CrossRef]
- Jiang, M.; Osterlund, P.; Fagerlund, R.; Rios, D.N.; Hoffmann, A.; Poranen, M.M.; Bamford, D.H.; Julkunen, I. MAP kinase p38alpha regulates type III interferon (IFN-lambda1) gene expression in human monocyte-derived dendritic cells in response to RNA stimulation. J. Leukoc. Biol. 2015, 97, 307–320. [Google Scholar] [CrossRef]
- Nakagawa, K.; Yokosawa, H. Degradation of transcription factor IRF-1 by the ubiquitin-proteasome pathway. The C-terminal region governs the protein stability. Eur. J. Biochem. 2000, 267, 1680–1686. [Google Scholar] [CrossRef]
- Tulli, L.; Cattaneo, F.; Vinot, J.; Baldari, C.T.; D’Oro, U. Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells. Front. Immunol. 2018, 9, 330. [Google Scholar] [CrossRef]
- Balkhi, M.Y.; Fitzgerald, K.A.; Pitha, P.M. Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol. Cell. Biol. 2008, 28, 7296–7308. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, H.; Koh, J.; Ko, J.S.; Yoon, B.R.; Jeon, Y.K.; Cho, Y.M.; Kim, T.H.; Suh, Y.S.; Lee, H.J.; et al. Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity. Cell Rep. 2017, 20, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Sato, S.; Ishii, K.J.; Coban, C.; Hemmi, H.; Yamamoto, M.; Terai, K.; Matsuda, M.; Inoue, J.; Uematsu, S.; et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 2004, 5, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Huye, L.E.; Ning, S.; Kelliher, M.; Pagano, J.S. Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol. Cell. Biol. 2007, 27, 2910–2918. [Google Scholar] [CrossRef]
- Garvin, A.J.; Khalaf, A.H.A.; Rettino, A.; Xicluna, J.; Butler, L.; Morris, J.R.; Heery, D.M.; Clarke, N.M. GSK3beta-SCFFBXW7alpha mediated phosphorylation and ubiquitination of IRF1 are required for its transcription-dependent turnover. Nucleic Acids Res. 2019, 47, 4476–4494. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Wang, R.P.; Gao, D.; Zhang, Y.; Diao, F.C.; Chen, D.Y.; Zhai, Z.H.; Shu, H.B. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res. 2008, 18, 1096–1104. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, S.; Xin, T.; Wang, X.; Yu, H.; Chen, S.; Jiang, Y.; Gao, X.; Jiang, Y.; Guo, X.; et al. African Swine Fever Virus MGF360-14L Negatively Regulates Type I Interferon Signaling by Targeting IRF3. Front. Cell. Infect. Microbiol. 2021, 11, 818969. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, S.; Yang, B.; Wang, Y.; Zhou, H.; Lian, Q.; Sun, B. TRIM35 negatively regulates TLR7- and TLR9-mediated type I interferon production by targeting IRF7. FEBS Lett. 2015, 589, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Li, H.; Kong, H.J.; Chen, Y.; Zhao, J.; Xiong, S.; Huang, B.; Gu, H.; Mayer, L.; Ozato, K.; et al. Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J. Biol. Chem. 2005, 280, 23531–23539. [Google Scholar] [CrossRef]
- Nakagawa, K.; Yokosawa, H. PIAS3 induces SUMO-1 modification and transcriptional repression of IRF-1. FEBS Lett. 2002, 530, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Han, K.J.; Jiang, L.; Shu, H.B. Regulation of IRF2 transcriptional activity by its sumoylation. Biochem. Biophys. Res. Commun. 2008, 372, 772–778. [Google Scholar] [CrossRef]
- Kubota, T.; Matsuoka, M.; Chang, T.H.; Tailor, P.; Sasaki, T.; Tashiro, M.; Kato, A.; Ozato, K. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J. Biol. Chem. 2008, 283, 25660–25670. [Google Scholar] [CrossRef]
- Liang, Q.; Deng, H.; Li, X.; Wu, X.; Tang, Q.; Chang, T.H.; Peng, H.; Rauscher, F.J., 3rd; Ozato, K.; Zhu, F. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J. Immunol. 2011, 187, 4754–4763. [Google Scholar] [CrossRef]
- Masumi, A.; Ozato, K. Coactivator p300 acetylates the interferon regulatory factor-2 in U937 cells following phorbol ester treatment. J. Biol. Chem. 2001, 276, 20973–20980. [Google Scholar] [CrossRef]
- Qin, Z.; Fang, X.; Sun, W.; Ma, Z.; Dai, T.; Wang, S.; Zong, Z.; Huang, H.; Ru, H.; Lu, H.; et al. Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nat. Immunol. 2022, 23, 1193–1207. [Google Scholar] [CrossRef]
- Ding, R.B.; Bao, J.; Deng, C.X. Emerging roles of SIRT1 in fatty liver diseases. Int. J. Biol. Sci. 2017, 13, 852–867. [Google Scholar] [CrossRef]
- You, M.; Jogasuria, A.; Taylor, C.; Wu, J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg. Nutr. 2015, 4, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, T.; Li, Y.M.; Yin, S.; Xu, M.J.; Feng, D.; Zhou, Z.; Zang, M.; Mukhopadhyay, P.; Varga, Z.V.; Pacher, P.; et al. Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression. J. Hepatol. 2017, 66, 601–609. [Google Scholar] [CrossRef]
- Bouras, T.; Fu, M.; Sauve, A.A.; Wang, F.; Quong, A.A.; Perkins, N.D.; Hay, R.T.; Gu, W.; Pestell, R.G. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 2005, 280, 10264–10276. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Cao, F.; Zhuge, H.; Lai, S.; Cao, W.; Wei, H.; Guo, R.; Qiu, J.; Song, Q.; Pei, L.; et al. Hepatic NMNAT1 is required to defend against alcohol-associated fatty liver disease. Sci. Adv. 2025, 11, eadt6195. [Google Scholar] [CrossRef] [PubMed]
- Harikumar, K.B.; Yester, J.W.; Surace, M.J.; Oyeniran, C.; Price, M.M.; Huang, W.C.; Hait, N.C.; Allegood, J.C.; Yamada, A.; Kong, X.; et al. K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nat. Immunol. 2014, 15, 231–238. [Google Scholar] [CrossRef]
- Heinz, L.X.; Lee, J.; Kapoor, U.; Kartnig, F.; Sedlyarov, V.; Papakostas, K.; Cesar-Razquin, A.; Essletzbichler, P.; Goldmann, U.; Stefanovic, A.; et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. Nature 2020, 581, 316–322. [Google Scholar] [CrossRef]
- Yamane, D.; Feng, H.; Rivera-Serrano, E.E.; Selitsky, S.R.; Hirai-Yuki, A.; Das, A.; McKnight, K.L.; Misumi, I.; Hensley, L.; Lovell, W.; et al. Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat. Microbiol. 2019, 4, 1096–1104. [Google Scholar] [CrossRef]
- Wang, P.X.; Zhang, R.; Huang, L.; Zhu, L.H.; Jiang, D.S.; Chen, H.Z.; Zhang, Y.; Tian, S.; Zhang, X.F.; Zhang, X.D.; et al. Interferon regulatory factor 9 is a key mediator of hepatic ischemia/reperfusion injury. J. Hepatol. 2015, 62, 111–120. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, J.; Liu, Y.; Qin, H.; Xiao, X. Symptom aggravation after withdrawal of metal chelating agent therapy in patients with Wilson’s disease. Brain Behav. 2023, 13, e3170. [Google Scholar] [CrossRef]
- Wang, X.A.; Zhang, R.; She, Z.G.; Zhang, X.F.; Jiang, D.S.; Wang, T.; Gao, L.; Deng, W.; Zhang, S.M.; Zhu, L.H.; et al. Interferon regulatory factor 3 constrains IKKbeta/NF-kappaB signaling to alleviate hepatic steatosis and insulin resistance. Hepatology 2014, 59, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Narayanan, S.; Park, S.J.; Seong, S.Y.; Hahn, Y.S. Transcriptional regulation of IFN-lambda genes in hepatitis C virus-infected hepatocytes via IRF-3.IRF-7.NF-kappaB complex. J. Biol. Chem. 2014, 289, 5310–5319. [Google Scholar] [CrossRef] [PubMed]
- Couzinet, A.; Tamura, K.; Chen, H.M.; Nishimura, K.; Wang, Z.; Morishita, Y.; Takeda, K.; Yagita, H.; Yanai, H.; Taniguchi, T.; et al. A cell-type-specific requirement for IFN regulatory factor 5 (IRF5) in Fas-induced apoptosis. Proc. Natl. Acad. Sci. USA 2008, 105, 2556–2561. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Yu, F.; Xie, S.; Wang, T.; Zhang, R.; Xu, G.; Wang, L.; Huang, Y.; Hu, C. IRF8 aggravates nonalcoholic fatty liver disease via BMAL1/PPARgamma axis. Genes Dis. 2025, 12, 101333. [Google Scholar] [CrossRef]
- Jaruga, B.; Hong, F.; Kim, W.H.; Gao, B. IFN-gamma/STAT1 acts as a proinflammatory signal in T cell-mediated hepatitis via induction of multiple chemokines and adhesion molecules: A critical role of IRF-1. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G1044–G1052. [Google Scholar] [CrossRef]
- Campbell, C.L.; Phillips, A.T.; Rico, A.; McGuire, A.; Aboellail, T.A.; Quackenbush, S.; Olson, K.E.; Schountz, T. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters. Viruses 2018, 10, 232. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Yamamoto, Y.; Takamoto, M.; Tagawa, Y.I.; Soejima, Y.; Sanjo, H.; Taki, S. Differential regulation of type I and II interferon signals by the transcription factor interferon regulatory factor-2 for the generation and function of macrophage populations in the liver. Int. Immunol. 2025, 37, 539–549. [Google Scholar] [CrossRef]
- Cuesta, N.; Salkowski, C.A.; Thomas, K.E.; Vogel, S.N. Regulation of lipopolysaccharide sensitivity by IFN regulatory factor-2. J. Immunol. 2003, 170, 5739–5747. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, N.; Nhu, Q.M.; Zudaire, E.; Polumuri, S.; Cuttitta, F.; Vogel, S.N. IFN regulatory factor-2 regulates macrophage apoptosis through a STAT1/3- and caspase-1-dependent mechanism. J. Immunol. 2007, 178, 3602–3611. [Google Scholar] [CrossRef]
- Ma, X.; Chen, A.; Melo, L.; Clemente-Sanchez, A.; Chao, X.; Ahmadi, A.R.; Peiffer, B.; Sun, Z.; Sesaki, H.; Li, T.; et al. Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology 2023, 77, 159–175. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, C.; Luo, D.; Liang, Y.; Jiang, A.; Jiang, Z.; Luo, H.; Yuan, G.; Huang, C.; Liu, S.; et al. Coptisine Improves Liver Inflammation in Sepsis by Regulating STAT1/IRF1/GPX4 Signaling-Mediated Kupffer Cells Ferroptosis. Phytother. Res. 2025, 39, 4308–4326. [Google Scholar] [CrossRef]
- Spruss, A.; Kanuri, G.; Wagnerberger, S.; Haub, S.; Bischoff, S.C.; Bergheim, I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009, 50, 1094–1104. [Google Scholar] [CrossRef]
- Szabo, G.; Mandrekar, P.; Petrasek, J.; Catalano, D. The unfolding web of innate immune dysregulation in alcoholic liver injury. Alcohol. Clin. Exp. Res. 2011, 35, 782–786. [Google Scholar] [CrossRef]
- Szabo, G.; Petrasek, J.; Bala, S. Innate immunity and alcoholic liver disease. Dig. Dis. 2012, 30, 55–60. [Google Scholar] [CrossRef]
- Zannetti, C.; Roblot, G.; Charrier, E.; Ainouze, M.; Tout, I.; Briat, F.; Isorce, N.; Faure-Dupuy, S.; Michelet, M.; Marotel, M.; et al. Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens. J. Immunol. 2016, 197, 356–367. [Google Scholar] [CrossRef]
- Hagemeyer, N.; Kierdorf, K.; Frenzel, K.; Xue, J.; Ringelhan, M.; Abdullah, Z.; Godin, I.; Wieghofer, P.; Costa Jordao, M.J.; Ulas, T.; et al. Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J. 2016, 35, 1730–1744. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Zhang, Z.; Ma, S.; Li, Y.; Du, S.; Chu, Y.; Li, Y.; Tang, X.; Yang, Y.; Chen, Z.; et al. Hepatic interferon regulatory factor 8 expression mediates liver ischemia/reperfusion injury in mice. Biochem. Pharmacol. 2021, 192, 114728. [Google Scholar] [CrossRef]
- Soysa, R.; Bean, J.C.; Wu, X.; Lampert, S.; Yuen, S.; Crispe, I.N. Early-Derived Murine Macrophages Temporarily Renounce Tissue Identity during Acute Systemic Inflammation. J. Immunol. 2021, 207, 569–576. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, J.; Zhang, Q.; Ma, X.; Xu, Y.; Zhao, Y.; Zhang, L.; Lu, Z.; Zhao, Y. Defining newly formed and tissue-resident bone marrow-derived macrophages in adult mice based on lysozyme expression. Cell. Mol. Immunol. 2022, 19, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Xie, L.; Zhang, H.; Fan, X.; Tian, J.; Liu, W.; Xiao, Y.; Fan, X. Dendritic Cells: Origin, Classification, Development, Biological Functions, and Therapeutic Potential. MedComm 2025, 6, e70455. [Google Scholar] [CrossRef] [PubMed]
- Bajana, S.; Turner, S.; Paul, J.; Ainsua-Enrich, E.; Kovats, S. IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells. J. Immunol. 2016, 196, 1666–1677. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.L.; Laurenti, E.; Taghon, T. Circulating IRF8-expressing CD123(+)CD127(+) lymphoid progenitors: Key players in human hematopoiesis. Trends Immunol. 2023, 44, 678–692. [Google Scholar] [CrossRef]
- Lanca, T.; Ungerback, J.; Da Silva, C.; Joeris, T.; Ahmadi, F.; Vandamme, J.; Svensson-Frej, M.; Mowat, A.M.; Kotarsky, K.; Sigvardsson, M.; et al. IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity 2022, 55, 1431–1447.e11. [Google Scholar] [CrossRef] [PubMed]
- Waller, K.; Scott, C.L. Who on IRF are you? IRF8 deficiency redirects cDC1 lineage commitment. Trends Immunol. 2022, 43, 687–689. [Google Scholar] [CrossRef]
- Zhu, S.; Niu, C.; Chen, J. Transcriptional divergence between cDC1s and cDC2s: An AP1-IRF composite element-dependent program. Cell. Mol. Immunol. 2021, 18, 1618–1619. [Google Scholar] [CrossRef]
- Wimmers, F.; Donato, M.; Kuo, A.; Ashuach, T.; Gupta, S.; Li, C.; Dvorak, M.; Foecke, M.H.; Chang, S.E.; Hagan, T.; et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 2021, 184, 3915–3935.e21. [Google Scholar] [CrossRef] [PubMed]
- De Sa Fernandes, C.; Novoszel, P.; Gastaldi, T.; Krauss, D.; Lang, M.; Rica, R.; Kutschat, A.P.; Holcmann, M.; Ellmeier, W.; Seruggia, D.; et al. The histone deacetylase HDAC1 controls dendritic cell development and anti-tumor immunity. Cell Rep. 2024, 43, 114308. [Google Scholar] [CrossRef]
- Guak, H.; Weiland, M.; Ark, A.V.; Zhai, L.; Lau, K.; Corrado, M.; Davidson, P.; Asiedu, E.; Mabvakure, B.; Compton, S.; et al. Transcriptional programming mediated by the histone demethylase KDM5C regulates dendritic cell population heterogeneity and function. Cell Rep. 2024, 43, 114506. [Google Scholar] [CrossRef]
- Bencze, D.; Fekete, T.; Pfliegler, W.; Szoor, A.; Csoma, E.; Szanto, A.; Tarr, T.; Bacsi, A.; Kemeny, L.; Vereb, Z.; et al. Interactions between the NLRP3-Dependent IL-1beta and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int. J. Mol. Sci. 2022, 23, 12154. [Google Scholar] [CrossRef]
- Rasool, M.; Srikanth, M.; Rithvik, A. 3,3′-Diindolylmethane inhibits Th17 cell differentiation via impairing IRF-7-mediated plasmacytoid dendritic cell activation in imiquimod-induced psoriasis mice. Vitr. Cell. Dev. Biol. Anim. 2024, 60, 678–688. [Google Scholar] [CrossRef]
- Chow, K.T.; Wilkins, C.; Narita, M.; Green, R.; Knoll, M.; Loo, Y.M.; Gale, M., Jr. Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells. J. Immunol. 2018, 201, 3036–3050. [Google Scholar] [CrossRef]
- Castellaneta, A.; Yoshida, O.; Kimura, S.; Yokota, S.; Geller, D.A.; Murase, N.; Thomson, A.W. Plasmacytoid dendritic cell-derived IFN-alpha promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Hepatology 2014, 60, 267–277. [Google Scholar] [CrossRef]
- Yokota, S.; Yoshida, O.; Dou, L.; Spadaro, A.V.; Isse, K.; Ross, M.A.; Stolz, D.B.; Kimura, S.; Du, Q.; Demetris, A.J.; et al. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Ralpha production. J. Immunol. 2015, 194, 6045–6056. [Google Scholar] [CrossRef]
- Petrasek, J.; Dolganiuc, A.; Csak, T.; Kurt-Jones, E.A.; Szabo, G. Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology 2011, 140, 697–708.e4. [Google Scholar] [CrossRef]
- Castellaneta, A.; Sumpter, T.L.; Chen, L.; Tokita, D.; Thomson, A.W. NOD2 ligation subverts IFN-alpha production by liver plasmacytoid dendritic cells and inhibits their T cell allostimulatory activity via B7-H1 up-regulation. J. Immunol. 2009, 183, 6922–6932. [Google Scholar] [CrossRef]
- Joly, S.; Rhea, L.; Volk, P.; Moreland, J.G.; Dunnwald, M. Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock. PLoS ONE 2016, 11, e0152385, Correction in PLoS ONE 2017, 12, e0171459. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huber, M.; Suprunenko, T.; Ashhurst, T.; Marbach, F.; Raifer, H.; Wolff, S.; Strecker, T.; Viengkhou, B.; Jung, S.R.; Obermann, H.L.; et al. IRF9 Prevents CD8(+) T Cell Exhaustion in an Extrinsic Manner during Acute Lymphocytic Choriomeningitis Virus Infection. J. Virol. 2017, 91, e01219-17. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, K.W.; Liu, T.; Kim, S.; Murphy, T.L.; Murphy, K.M. Cell-extrinsic effects of Irf2 on cDC2 development. bioRxiv 2023. [Google Scholar] [CrossRef]
- Klune, J.R.; Bartels, C.; Luo, J.; Yokota, S.; Du, Q.; Geller, D.A. IL-23 mediates murine liver transplantation ischemia-reperfusion injury via IFN-gamma/IRF-1 pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G991–G1002. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.G.; Liu, Z.Y.; Wu, Q.; Yang, P.A.; Sun, S.H.; Chen, J.; Hsu, H.C.; Mountz, J.D. Defective clearance of adenovirus in IRF-1 mice associated with defects in NK and T cells but not macrophages. Scand. J. Immunol. 2004, 60, 89–99. [Google Scholar] [CrossRef]
- Notake, T.; Horisawa, S.; Sanjo, H.; Miyagawa, S.; Hida, S.; Taki, S. Differential requirements for IRF-2 in generation of CD1d-independent T cells bearing NK cell receptors. J. Immunol. 2012, 188, 4838–4845. [Google Scholar] [CrossRef]
- Yan, Y.; Zheng, L.; Du, Q.; Yan, B.; Geller, D.A. Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol. Immunother. 2020, 69, 1891–1903. [Google Scholar] [CrossRef]
- Lau, D.T.; Fish, P.M.; Sinha, M.; Owen, D.M.; Lemon, S.M.; Gale, M., Jr. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology 2008, 47, 799–809. [Google Scholar] [CrossRef]
- Pang, N.; Zhang, F.; Li, S.; Zhu, Y.; Zhang, C.; An, M.; Wang, H.; Mamuti, W.; Ding, J.; Fan, H. TGF-beta/Smad signaling pathway positively up-regulates the differentiation of Interleukin-9-producing CD4(+) T cells in human Echinococcus granulosus infection. J. Infect. 2018, 76, 406–416. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, P.; Deng, G.; Mo, L.; Hong, C.; Jiang, Z.; Zhu, Y.; Zhao, Y.; Qi, Y.; Hu, T.; et al. IRF4 regulates myeloid-derived suppressor cells expansion and function in Schistosoma japonicum-infected mice. Parasites Vectors 2024, 17, 492. [Google Scholar] [CrossRef]
- Chen, W.; Wang, P.; Xie, Y.; Xie, D.; Wang, H.; Bu, N.; Lin, J.; Wu, M.; Xia, H.; Cheng, C.; et al. Histone lactylation-augmented IRF4 is implicated in arsenite-induced liver fibrosis via modulating Th17 cell differentiation. Chem.-Biol. Interact. 2025, 414, 111507. [Google Scholar] [CrossRef]
- Paun, A.; Bankoti, R.; Joshi, T.; Pitha, P.M.; Stager, S. Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog. 2011, 7, e1001246. [Google Scholar] [CrossRef]
- Beattie, L.; Phillips, R.; Brown, N.; Owens, B.M.; Chauhan, N.; Dalton, J.E.; Kaye, P.M. Interferon regulatory factor 7 contributes to the control of Leishmania donovani in the mouse liver. Infect. Immun. 2011, 79, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, R.X.; Xu, H.G. STING and liver disease. J. Gastroenterol. 2021, 56, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.E.; Shim, K.Y.; Lee, J.I.; Choi, S.I.; Baik, S.K.; Eom, Y.W. 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-gamma by increasing the expression of IFN-gammaRbeta, IRF-1 and FAS. Int. J. Mol. Med. 2017, 40, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Kumar, S.; Sharma, A.; Mohanty, S.K.; Donnelly, B.; Tiao, G.M.; Gandhi, C.R. Mechanisms of concanavalin A-induced cytokine synthesis by hepatic stellate cells: Distinct roles of interferon regulatory factor-1 in liver injury. J. Biol. Chem. 2018, 293, 18466–18476. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Rosenthal, S.; Zhang, L.J.; McCubbin, R.; Meshgin, N.; Shang, L.; Koyama, Y.; Ma, H.Y.; Sharma, S.; et al. Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology 2020, 158, 1728–1744.e14. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Wang, X.; Li, J.; Xu, X.; Guo, L.; Ho, W.Z. TLR3 Activation of Hepatic Stellate Cell Line Suppresses HBV Replication in HepG2 Cells. Front. Immunol. 2018, 9, 2921. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L.; Wang, X.; Li, J.; Song, L.; Ho, W. Retinoic acid inducible gene-I (RIG-I) signaling of hepatic stellate cells inhibits hepatitis C virus replication in hepatocytes. Innate Immun. 2013, 19, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Wang, X.; Ye, L.; Zhou, Y.; Ho, W. Induction of interferon-lambda contributes to Toll-like receptor-3-activated hepatic stellate cell-mediated hepatitis C virus inhibition in hepatocytes. J. Viral Hepat. 2013, 20, 385–394. [Google Scholar] [CrossRef]
- Ni, M.M.; Xu, T.; Wang, Y.R.; He, Y.H.; Zhou, Q.; Huang, C.; Meng, X.M.; Li, J. Inhibition of IRF3 expression reduces TGF-beta1-induced proliferation of hepatic stellate cells. J. Physiol. Biochem. 2016, 72, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qian, S.; Li, W.; Dong, S.; Ya, R.; He, Y.; Huang, H.; Chen, Y.; Ma, N.; Hao, Y.; et al. Hepatic IkappaBzeta promotes alcohol-associated liver disease and acute hepatitis by enhancing CXCL1-Mediated neutrophil infiltration. Free Radic. Biol. Med. 2025, 237, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Peiffer, B.; Feng, D.; Parra, M.A.; Wang, Y.; Fu, Y.; Shah, V.H.; Cameron, A.M.; Sun, Z.; Gao, B. IL-8+ neutrophils drive inexorable inflammation in severe alcohol-associated hepatitis. J. Clin. Investig. 2024, 134, e178616. [Google Scholar] [CrossRef]
- Xu, H.; Wu, Z.; Qin, J.; Li, X.; Xu, F.; Wang, W.; Zhang, H.; Yin, H.; Zhu, S.; Zhang, W.; et al. Stressed hepatocyte sustains alcohol-associated hepatitis progression by producing leukocyte cell-derived chemotaxin 2. Gut 2025, 74, 1321–1334. [Google Scholar] [CrossRef]
- Cho, Y.; Bukong, T.N.; Tornai, D.; Babuta, M.; Vlachos, I.S.; Kanata, E.; Catalano, D.; Szabo, G. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. J. Hepatol. 2023, 78, 28–44. [Google Scholar] [CrossRef]
- Ogino, N.; Leite, M.F.; Guerra, M.T.; Kruglov, E.; Asashima, H.; Hafler, D.A.; Ito, T.; Pereira, J.P.; Peiffer, B.J.; Sun, Z.; et al. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J. Clin. Investig. 2024, 134, e171691. [Google Scholar] [CrossRef]
- Feng, D.; Hwang, S.; Guillot, A.; Wang, Y.; Guan, Y.; Chen, C.; Maccioni, L.; Gao, B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101352. [Google Scholar] [CrossRef] [PubMed]
- Polmann, L.; Grimm, J.C.; Roth, J.; Barczyk-Kahlert, K. Interferon regulatory factor 8 induces intrinsic functional changes in mature neutrophils. J. Leukoc. Biol. 2025, 117, qiaf078. [Google Scholar] [CrossRef]
- Chen, Y.M.; Tang, K.T.; Liu, H.J.; Huang, S.T.; Liao, T.L. tRF-His-GTG-1 enhances NETs formation and interferon-alpha production in lupus by extracellular vesicle. Cell Commun. Signal. 2024, 22, 354. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Zhou, J.; Gu, J.; Wu, H.; Jiang, Y.; Gao, S.; Liao, Y.; Shen, R.; Miao, C.; et al. NAT10 regulates neutrophil pyroptosis in sepsis via acetylating ULK1 RNA and activating STING pathway. Commun. Biol. 2022, 5, 916, Correction in Commun. Biol. 2022, 5, 1091. [Google Scholar] [CrossRef]
- Khan, M.A.S.; Song, B.J.; Wang, X.; Iqbal, S.; Szabo, G.; Chang, S.L. Neutrophil extracellular traps (NETs) and NETosis in alcohol-associated diseases: A systematic review. Alcohol Clin. Exp. Res. 2025, 49, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Peng, H.; Dong, Z.; Liangpunsakul, S.; Zuo, L.; Wang, H. Platelets in Alcohol-Associated Liver Disease: Interaction With Neutrophils. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Xie, F.; Si, S.; Xiong, X.; Xu, J.; Yao, C.; Li, C.; Zhu, J.; Li, P.; Cai, B.; et al. A humanized anti-Toll like receptor 4 antibody Fab fragment inhibits pro-inflammatory responses induced by lipopolysaccharide through TLR4 in vitro and in vivo. J. Infect. Dev. Ctries. 2025, 19, 913–923. [Google Scholar] [CrossRef]
- Schlitzer, A.; McGovern, N.; Teo, P.; Zelante, T.; Atarashi, K.; Low, D.; Ho, A.W.; See, P.; Shin, A.; Wasan, P.S.; et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013, 38, 970–983. [Google Scholar] [CrossRef]
- Camard, L.; Stephen, T.; Yahia-Cherbal, H.; Guillemot, V.; Mella, S.; Baillet, V.; Lopez-Maestre, H.; Capocefalo, D.; Cantini, L.; Leloup, C.; et al. IL-23 tunes inflammatory functions of human mucosal-associated invariant T cells. iScience 2025, 28, 111898. [Google Scholar] [CrossRef]
- Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017, 77, 521–546, Erratum in Drugs 2017, 77, 1261. [Google Scholar] [CrossRef] [PubMed]
- Villarino, A.V.; Kanno, Y.; O’Shea, J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 2017, 18, 374–384. [Google Scholar] [CrossRef]
- Amanda, S.; Tan, T.K.; Iida, S.; Sanda, T. Lineage- and Stage-Specific Oncogenicity of IRF4. Exp. Hematol. 2022, 114, 9–17. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, Z.C.; Wu, Y.Y.; Pi, Y.N.; Lou, S.H.; Liu, T.B.; Lou, G.; Yang, C. Bromodomain and extraterminal (BET) proteins: Biological functions, diseases, and targeted therapy. Signal Transduct. Target. Ther. 2023, 8, 420. [Google Scholar] [CrossRef]
- Chen, R.; Du, J.; Zhu, H.; Ling, Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep. 2021, 3, 100324. [Google Scholar] [CrossRef] [PubMed]
- Nagesh, P.T.; Cho, Y.; Zhuang, Y.; Babuta, M.; Ortega-Ribera, M.; Joshi, R.; Brezani, V.; Patel, A.; Datta, A.A.; Brezani, V.; et al. In vivo Bruton’s tyrosine kinase inhibition attenuates alcohol-associated liver disease by regulating CD84-mediated granulopoiesis. Sci. Transl. Med. 2024, 16, eadg1915. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Xue, Y.; Song, Z.; Jin-Smith, B.; Barkin, J.; Ottallah, M.; Mannan, M.; Zhirkova, A.; Zhou, D.; Pi, L. Targeted clearance of senescent cells alleviates alcohol-associated liver disease by restoring cellular function and immune balance. GeroScience, 2025; online ahead of print. [Google Scholar] [CrossRef]

| Origin | Representative DAMP/PAMP | Principal Receptor or Sensor | Likely IRF Modules Involved |
|---|---|---|---|
| DAMPs | Mitochondrial DNA | TLR9, NLRP3, cGAS-STING [81] | IRF3/IRF7 [29,51] |
| Mitochondrial dsRNA | TLR3, MDA5 and RIG-I, PKR [82] | IRF3/IRF7 [63,82] | |
| HMGB1 | TLR4, RAGE [83] | IRF3 [83] | |
| Nuclear DNA | TLR9 [84] | IRF3/IRF7 [85] | |
| MicroRNA | RISC [86], TLRs [87] | IRFs [88] | |
| Extracellular vesicles | NLRP3 [89], LDLR [90], ASGPR [91], NR2 [92], TLRs [93,94] | IRF3/IRF7 [65,95] | |
| Lipids (FFA, TG) | CD36 [96], GPR120/40 [97,98], PPAR [99], TLRs [100] | IRF3/IRF7/IRF6 [100,101] | |
| 4-HNE/MDA | TRPA1 [102], GPR109A [103] TLR2/4 [104,105] | not yet clear | |
| Extracellular ATP/adenosine | P receptors [106] | not yet clear | |
| PAMPs | LPS | CD14 [107], TLR2/4 [108,109] | IRF3/IRF7 [108] |
| Bacterial DNA | TLR9 [73] | IRF3/IRF7 | |
| Microbe-derivede xtracellular vesicles | TLR2/4/8 [110,111] | IRF3/IRF7 [112,113] | |
| β-glucan | CLEC7A/Dectin-1 [76,114] | IRF3/IRF5 [115,116] | |
| Lipoteichoic acid | CD14, TLR2 [117] | IRF2 [118] | |
| flagellin | TLR5 [75] | IRF3/IRF7 [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dong, H.; Guo, W.; Zhou, Z. Interferon Regulatory Factors in Alcohol-Associated Liver Disease: Cell-Type Programs, Danger Signaling, and Therapeutic Opportunities. Curr. Issues Mol. Biol. 2026, 48, 92. https://doi.org/10.3390/cimb48010092
Dong H, Guo W, Zhou Z. Interferon Regulatory Factors in Alcohol-Associated Liver Disease: Cell-Type Programs, Danger Signaling, and Therapeutic Opportunities. Current Issues in Molecular Biology. 2026; 48(1):92. https://doi.org/10.3390/cimb48010092
Chicago/Turabian StyleDong, Haibo, Wei Guo, and Zhanxiang Zhou. 2026. "Interferon Regulatory Factors in Alcohol-Associated Liver Disease: Cell-Type Programs, Danger Signaling, and Therapeutic Opportunities" Current Issues in Molecular Biology 48, no. 1: 92. https://doi.org/10.3390/cimb48010092
APA StyleDong, H., Guo, W., & Zhou, Z. (2026). Interferon Regulatory Factors in Alcohol-Associated Liver Disease: Cell-Type Programs, Danger Signaling, and Therapeutic Opportunities. Current Issues in Molecular Biology, 48(1), 92. https://doi.org/10.3390/cimb48010092

