Genomic Landscape of Thymic Carcinoma: A Large-Scale Analysis of Somatic Mutations, Demographic Disparities, and Metastatic Drivers from the AACR Project GENIE® Cohort
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Demographic of Thymic Carcinoma
3.2. Most Common Somatic Mutations and Copy Number Alterations
3.3. Genetic Differences by Sex and Race
3.4. Co-Occurrence of Mutations
3.5. Primary vs. Metastatic Mutations
4. Discussion
4.1. Subgroups and Mutational Landscape
4.2. Altered Pathways in Thymic Carcinoma
4.3. Stratification by Sex, Race, and Tumor Site
4.4. Co-Occurrence Patterns
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AACR | American Association for Cancer Research |
| ADAMTS20 | ADAMTS Metallopeptidase Domain 20 |
| AKT | AKT Serine/Threonine Kinase (Protein Kinase B) |
| ALOX12B | Arachidonate 12-Lipoxygenase, 12R-Type |
| ASXL2 | ASXL Transcriptional Regulator 2 |
| ATM | ATM Serine/Threonine Kinase |
| AXIN1 | Axin 1 |
| BAP1 | BAP1, UCHL1 Antagonist |
| BRCA1 | BRCA1 DNA Repair Associated |
| CASP8 | Caspase 8 |
| CCND1 | Cyclin D1 |
| CDC73 | Cell Division Cycle 73 |
| CD5 | CD5 Molecule |
| CDK12 | Cyclin-Dependent Kinase 12 |
| CDKN1B | Cyclin-Dependent Kinase Inhibitor 1B |
| CDKN2A | Cyclin-Dependent Kinase Inhibitor 2A |
| CDKN2B | Cyclin-Dependent Kinase Inhibitor 2B |
| CIC | CIC Transcriptional Repressor |
| CNA | Copy number alteration |
| CREBBP | CREB-Binding Protein |
| CRTC3 | CREB-Regulated Transcription Coactivator 3 |
| CT | Computed tomography |
| CYLD | CYLD Lysine 63 Deubiquitinase |
| ELF3 | E74 Like ETS Transcription Factor 3 |
| EME1 | EME1, Endonuclease Symmetrical Structure 1 |
| EP400 | EP400, Histone Acetyltransferase |
| FAT1 | FAT Atypical Cadherin 1 |
| FBXW7 | F-Box And WD Repeat Domain Containing 7 |
| FLT1 | Fms-Related Receptor Tyrosine Kinase 1 |
| GENIE | Genomics Evidence Neoplasia Information Exchange |
| GTF2I | General Transcription Factor IIi |
| HLA-A | Major Histocompatibility Complex, Class I, A |
| INHA | Inhibin Subunit Alpha |
| IRB | Institutional review board |
| IRS1 | Insulin Receptor Substrate 1 |
| IRS2 | Insulin Receptor Substrate 2 |
| KDM5C | Lysine Demethylase 5C |
| KIAA1549 | KIAA1549 |
| KIT | KIT Proto-Oncogene, Receptor Tyrosine Kinase (also CD117) |
| KMT2D | Lysine Methyltransferase 2D |
| KRAS | KRAS Proto-Oncogene, GTPase |
| L2HGDH | L-2-Hydroxyglutarate Dehydrogenase |
| LMO3 | LIM Domain Only 3 |
| MAF | Mutation annotation format |
| MAP3K13 | Mitogen-Activated Protein Kinase Kinase Kinase 13 |
| MAP3K5 | Mitogen-Activated Protein Kinase Kinase Kinase 5 |
| MCL1 | MCL1, BCL2 Family Apoptosis Regulator |
| MDM2 | MDM2 Proto-Oncogene |
| MLH1 | MutL Homolog 1 |
| MRI | Magnetic resonance imaging |
| MSH6 | MutS Homolog 6 |
| MTAP | Methylthioadenosine Phosphorylase |
| MTOR | Mechanistic Target Of Rapamycin |
| MTRR | 5-Methyltetrahydrofolate-Homocysteine Methyltransferase Reductase |
| MUTYH | MutY Homolog |
| MYOD1 | Myogenic Differentiation 1 |
| NEGR1 | Neuronal Growth Regulator 1 |
| NOTCH1 | Notch 1 |
| PCM1 | Pericentriolar Material 1 |
| PGR | Progesterone Receptor |
| PI3K | Phosphoinositide 3-kinase |
| POT1 | POT1, S. Pombe Homolog, Telomere Elongation Checkpoint |
| PRDM14 | PR/SET Domain 14 |
| PTPRT | Protein Tyrosine Phosphatase Receptor Type T |
| RNF43 | Ring Finger Protein 43 |
| RNASEL | Ribonuclease L |
| RPS6KA4 | Ribosomal Protein S6 Kinase A4 |
| RUNX1 | RUNX Family Transcription Factor 1 |
| SD | Standard deviation |
| SETD2 | SET Domain Containing 2 |
| SOS1 | SOS Ras/Rac Guanine Nucleotide Exchange Factor 1 |
| SPEN | Spen-Like, A-T Rich Interactive Domain |
| STAT5B | Signal Transducer and Activator of Transcription 5B |
| TC | Thymic carcinoma |
| TEK | TEK Receptor Tyrosine Kinase |
| TET | Thymic epithelial tumor |
| TET2 | Tet Methylcytosine Dioxygenase 2 |
| TLR4 | Toll-Like Receptor 4 |
| TMB | Tumor mutational burden |
| TP53 | Tumor Protein p53 |
| TP63 | Tumor Protein p63 |
| TRRAP | Transformation/Transcription Domain-Associated Protein |
| TSC2 | TSC Complex Subunit 2 |
| USP8 | Ubiquitin Specific Peptidase 8 |
| VAF | Variant allele frequency |
| WES | Whole-exome sequencing |
| WHO | World Health Organization |
| ZFHX3 | Zinc Finger Homeobox 3 |
| ZNF703 | Zinc Finger Protein 703 |
References
- Roden, A.C.; Ahmad, U.; Cardillo, G.; Girard, N.; Jain, D.; Marom, E.M.; Marx, A.; Moreira, A.L.; Nicholson, A.G.; Rajan, A.; et al. Thymic carcinomas—A concise multidisciplinary update on recent developments from the Thymic Carcinoma Working Group of the International Thymic Malignancy Interest Group. J. Thorac. Oncol. 2022, 17, 637–650. [Google Scholar] [CrossRef]
- Alqaidy, D.; Moran, C.A. Thymic Carcinoma: A Review. Front. Oncol. 2022, 12, 808019. [Google Scholar] [CrossRef]
- National Cancer Institute. Thymoma and Thymic Carcinoma Treatment (PDQ®)–Health Professional Version. Available online: https://www.cancer.gov/types/thymoma/hp/thymoma-treatment-pdq#section_1.41 (accessed on 7 July 2025).
- Badve, S.S.; Dougherty, R.; Balatico, M.; Kesler, K.A.; Loehrer, P.; Gökmen-Polar, Y. Thymic Carcinomas and Second Malignancies: A Single-Center Review. Cancers 2021, 13, 2472. [Google Scholar] [CrossRef]
- American Cancer Society. Key Statistics for Thymus Cancer. Available online: https://www.cancer.org/cancer/thymus-cancer/about/key-statistics.html (accessed on 7 July 2025).
- Hsu, C.H.; Chan, J.K.; Yin, C.H.; Lee, C.C.; Chern, C.U.; Liao, C.I. Trends in the incidence of thymoma, thymic carcinoma, and thymic neuroendocrine tumor in the United States. PLoS ONE 2019, 14, e0227197. [Google Scholar] [CrossRef]
- University of Rochester Medical Center. Thymus Cancer Risk Factors. Available online: https://www.urmc.rochester.edu/encyclopedia/content?contenttypeid=34&contentid=18782-1 (accessed on 19 July 2025).
- Kurihara, N.; Saito, H.; Nanjo, H.; Konno, H.; Atari, M.; Saito, Y.; Fujishima, S.; Kameyama, K.; Minamiya, Y. Thymic carcinoma with myasthenia gravis: Two case reports. Int. J. Surg. Case Rep. 2016, 27, 110–112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pan, C.C.; Chen, P.C.; Chiang, H. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. J. Pathol. 2004, 202, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Hishima, T.; Fukayama, M.; Fujisawa, M.; Hayashi, Y.; Arai, K.; Funata, N.; Koike, M. CD5 expression in thymic carcinoma. Am. J. Pathol. 1994, 145, 268–275. [Google Scholar]
- Rajan, A.; Giaccone, G. Treatment of advanced thymoma and thymic carcinoma. Curr. Treat. Options Oncol. 2008, 9, 277–287. [Google Scholar] [CrossRef]
- Weissferdt, A.; Moran, C.A. Thymic carcinoma, part 1: A clinicopathologic and immunohistochemical study of 65 cases. Am. J. Clin. Pathol. 2012, 138, 103–114. [Google Scholar] [CrossRef]
- Takata, S. Genomic insights into molecular profiling of thymic carcinoma: A narrative review. Mediastinum 2024, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A. Epidemiology of thymoma and associated malignancies. J. Thorac. Oncol. 2010, 5, S260–S265. [Google Scholar] [CrossRef]
- Gambino, V.; De Michele, G.; Venezia, O.; Migliaccio, P.; Dall’Olio, V.; Bernard, L.; Minardi, S.P.; Della Fazia, M.A.; Bartoli, D.; Servillo, G.; et al. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging. Aging Cell 2013, 12, 435–445. [Google Scholar] [CrossRef]
- Brummelkamp, T.R.; Nijman, S.M.; Dirac, A.M.; Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 2003, 424, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Giaccone, G.; Kim, C.; Thompson, J.; McGuire, C.; Kallakury, B.; Chahine, J.J.; Manning, M.; Mogg, R.; Blumenschein, W.M.; Tan, M.T.; et al. Pembrolizumab in patients with thymic carcinoma: A single-arm, single-centre, phase 2 study. Lancet Oncol. 2018, 19, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Aesif, S.W.; Aubry, M.C.; Yi, E.S.; Kloft-Nelson, S.M.; Jenkins, S.M.; Spears, G.M.; Greipp, P.T.; Sukov, W.R.; Roden, A.C. Loss of p16INK4A Expression and Homozygous CDKN2A Deletion Are Associated with Worse Outcome and Younger Age in Thymic Carcinomas. J. Thorac. Oncol. 2017, 12, 860–871. [Google Scholar] [CrossRef]
- Wang, Y.; Thomas, A.; Lau, C.; Rajan, A.; Zhu, Y.; Killian, J.K.; Petrini, I.; Pham, T.; Morrow, B.; Zhong, X.; et al. Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci. Rep. 2014, 4, 7336. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Mossmann, D.; Park, S.; Hall, M.N. mTOR signaling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018, 18, 744–757. [Google Scholar] [CrossRef]
- Dey, N.; De, P.; Leyland-Jones, B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol. Ther. 2017, 175, 91–116. [Google Scholar] [CrossRef]
- Zucali, P.A.; De Pas, T.; Palmieri, G.; Favaretto, A.; Chella, A.; Tiseo, M.; Caruso, M.; Simonelli, M.; Perrino, M.; De Vincenzo, F.; et al. Phase II study of everolimus in patients with thymoma and thymic carcinoma previously treated with cisplatin-based chemotherapy. J. Clin. Oncol. 2018, 36, 342–349. [Google Scholar] [CrossRef]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258. [Google Scholar] [CrossRef] [PubMed]


| Demographics | Category | n (%) |
|---|---|---|
| Sex | Male | 76 (56.7%) |
| Female | 55 (41.0%) | |
| Unknown | 3 (2.2%) | |
| Age Category | Adult | 130 (97.0%) |
| Pediatric | 3 (2.2%) | |
| Unknown | 1 (0.7%) | |
| Ethnicity | Non-Hispanic | 89 (66.4%) |
| Unknown/Not Collected | 40 (29.8%) | |
| Hispanic | 5 (3.7%) | |
| Race | White | 76 (56.7%) |
| Asian | 20 (14.9%) | |
| Black | 6 (4.5%) | |
| Pacific Islander | 2 (1.5%) | |
| Other | 9 (6.7%) | |
| Unknown | 21 (15.7%) | |
| Sample Type 1 | Primary | 58 (41.1%) |
| Metastasis | 68 (48.2%) | |
| Not Collected/Unspecified | 15 (10.6%) |
| Gene (Chi-Squared) | Pacific Islander (n, %) | Non-Pacific Islander (n, %) | p-Value | q-Value |
|---|---|---|---|---|
| HLA-A | 1 (100.0%) | 0 (0.0%) | <1 × 10−10 | 5.85 × 10−10 |
| TP63 | 1 (100.0%) | 0 (0.0%) | <1 × 10−10 | 1.28 × 10−9 |
| IRS1 | 1 (100.0%) | 0 (0.0%) | <1 × 10−10 | 1.28 × 10−9 |
| RPS6KA4 | 1 (100.0%) | 0 (0.0%) | <1 × 10−10 | 1.28 × 10−9 |
| STAT5B | 1 (100.0%) | 0 (0.0%) | <1 × 10−10 | 1.28 × 10−9 |
| MUTYH | 1 (50.0%) | 0 (0.0%) | <1 × 10−10 | 1.75 × 10−9 |
| INHA | 1 (100.0%) | 0 (0.0%) | 1.15 × 10−10 | 5.53 × 10−9 |
| PGR | 1 (100.0%) | 0 (0.0%) | 1.15 × 10−10 | 5.53 × 10−9 |
| CASP8 | 1 (100.0%) | 0 (0.0%) | 5.83 × 10−9 | 2.53 × 10−7 |
| PRDM14 | 1 (100.0%) | 0 (0.0%) | 1.17 × 10−7 | 4.21 × 10−6 |
| TLR4 | 1 (100.0%) | 0 (0.0%) | 1.17 × 10−7 | 4.21 × 10−6 |
| CIC | 1 (100.0%) | 0 (0.0%) | 4.45 × 10−7 | 1.48 × 10−5 |
| SOS1 | 1 (100.0%) | 0 (0.0%) | 3.49 × 10−6 | 1.08 × 10−4 |
| NEGR1 | 1 (50.0%) | 0 (0.0%) | 1.31 × 10−5 | 3.56 × 10−4 |
| RUNX1 | 1 (50.0%) | 0 (0.0%) | 1.40 × 10−5 | 3.58 × 10−4 |
| MDM2 | 1 (50.0%) | 0 (0.0%) | 3.69 × 10−5 | 8.90 × 10−4 |
| CRTC3 | 1 (50.0%) | 0 (0.0%) | 4.91 × 10−5 | 1.02 × 10−3 |
| AXIN1 | 1 (50.0%) | 0 (0.0%) | 5.81 × 10−5 | 1.16 × 10−3 |
| FLT1 | 1 (50.0%) | 0 (0.0%) | 1.13 × 10−4 | 2.12 × 10−3 |
| MTRR | 1 (50.0%) | 0 (0.0%) | 1.17 × 10−4 | 2.12 × 10−3 |
| KDM5C | 1 (1.75%) | 0 (0.0%) | 1.32 × 10−4 | 2.29 × 10−3 |
| EME1 | 1 (50.0%) | 0 (0.0%) | 1.80 × 10−4 | 2.80 × 10−3 |
| BRCA1 | 1 (100.0%) | 0 (0.0%) | 1.99 × 10−4 | 2.88 × 10−3 |
| CDK12 | 1 (100.0%) | 0 (0.0%) | 2.05 × 10−4 | 2.88 × 10−3 |
| PTPRT | 1 (100.0%) | 0 (0.0%) | 2.66 × 10−4 | 3.61 × 10−3 |
| USP8 | 1 (100.0%) | 0 (0.0%) | 2.97 × 10−4 | 3.90 × 10−3 |
| MAP3K13 | 1 (100.0%) | 0 (0.0%) | 3.33 × 10−4 | 4.26 × 10−3 |
| RNF43 | 1 (25.0%) | 0 (0.0%) | 4.71 × 10−4 | 5.83 × 10−3 |
| MLH1 | 1 (100.0%) | 0 (0.0%) | 1.19 × 10−3 | 0.0140 |
| ZNF703 | 1 (50.0%) | 0 (0.0%) | 1.49 × 10−3 | 0.0167 |
| POT1 | 1 (33.3%) | 0 (0.0%) | 2.34 × 10−3 | 0.0174 |
| IRS2 | 1 (14.3%) | 0 (0.0%) | 2.34 × 10−3 | 0.0242 |
| MSH6 | 1 (50.0%) | 0 (0.0%) | 4.30 × 10−3 | 0.0435 |
| MAP3K5 | 1 (50.0%) | 0 (0.0%) | 5.12 × 10−3 | 0.0473 |
| ZFHX3 | 1 (100.0%) | 0 (0.0%) | 5.52 × 10−3 | 0.0499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chudziak, A.V.; Morris, T.J.; Maliy, D.; Saglimbeni, G.S.; Surendra, A.; Hsia, B.; Li, H.; Tauseef, A. Genomic Landscape of Thymic Carcinoma: A Large-Scale Analysis of Somatic Mutations, Demographic Disparities, and Metastatic Drivers from the AACR Project GENIE® Cohort. Curr. Issues Mol. Biol. 2026, 48, 90. https://doi.org/10.3390/cimb48010090
Chudziak AV, Morris TJ, Maliy D, Saglimbeni GS, Surendra A, Hsia B, Li H, Tauseef A. Genomic Landscape of Thymic Carcinoma: A Large-Scale Analysis of Somatic Mutations, Demographic Disparities, and Metastatic Drivers from the AACR Project GENIE® Cohort. Current Issues in Molecular Biology. 2026; 48(1):90. https://doi.org/10.3390/cimb48010090
Chicago/Turabian StyleChudziak, Aden V., Tyson J. Morris, David Maliy, Grace S. Saglimbeni, Akaash Surendra, Beau Hsia, Huijun Li, and Abubakar Tauseef. 2026. "Genomic Landscape of Thymic Carcinoma: A Large-Scale Analysis of Somatic Mutations, Demographic Disparities, and Metastatic Drivers from the AACR Project GENIE® Cohort" Current Issues in Molecular Biology 48, no. 1: 90. https://doi.org/10.3390/cimb48010090
APA StyleChudziak, A. V., Morris, T. J., Maliy, D., Saglimbeni, G. S., Surendra, A., Hsia, B., Li, H., & Tauseef, A. (2026). Genomic Landscape of Thymic Carcinoma: A Large-Scale Analysis of Somatic Mutations, Demographic Disparities, and Metastatic Drivers from the AACR Project GENIE® Cohort. Current Issues in Molecular Biology, 48(1), 90. https://doi.org/10.3390/cimb48010090

