Integrated BSA-Seq and WGCNA Analyses Reveal Candidate Genes Associated with Winter Bud Dormancy Maintenance in Fruit Mulberry (Morus spp.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.1.1. Materials for BSA Sequencing
2.1.2. Materials for Expression Pattern Analysis
2.1.3. Materials for VIGS Assay
2.2. DNA Library Construction and Sequencing
2.3. BSA Analysis
2.4. WGCNA
2.5. Gene Cloning and Vector Construction
2.6. Bioinformatics Analysis of Target Genes
2.7. VIGS-Mediated Gene Silencing
2.7.1. Selection of VIGS Silencing Fragments and Vector Construction
2.7.2. Screening of VIGS-Silenced Plants
2.7.3. Phenotypic and Relative Expression Analysis of VIGS-Silenced Plants
2.8. Data Statistics and Analysis
3. Results
3.1. Budburst Trait and Population Construction of Fruit Mulberry
3.2. Identification of Candidate Intervals Regulating Winter Bud Dormancy in Mulberry
3.3. GO and KEGG Enrichment Analyses of Mutant Genes in the Candidate Region
3.4. Selection of G14 and G15 Specific Modules
3.5. Selection of Candidate Genes
3.6. GO and KEGG Enrichment Analyses of MaSVP Co-Expressed Genes
3.7. Expression Analysis of MaSVP and Other Dormancy-Associated Genes in the F1 Population
3.8. Cloning, Bioinformatics Analysis, and Functional Validation of MaSVP Gene in Fruit Mulberry
4. Discussion
4.1. The Maintenance of Winter Bud Dormancy Is Critical for Breeding Fruit Mulberry Cultivars with Diverse Maturity Traits
4.2. The Critical Regulatory Roles of QTL Interval LB and MaSVP in Maintaining Winter Bud Dormancy of Fruit Mulberry
4.3. Regulatory Mechanism of MaSVP in Maintaining Winter Bud Dormancy
4.4. Summary and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BSA-Seq | Bulked Segregant Analysis Sequencing |
| WGCNA | Weighted Gene Co-Expression Network Analysis |
| QTL | Quantitative Trait Loci |
| LB | Late Burst |
| VIGS | Virus-Induced Gene Silencing |
| SNPs | Single Nucleotide Polymorphisms |
| InDels | Insertions and Deletions |
| Chr | Chromosome |
| GO | Gene Ontology |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Mehraj, S.; Kamili, A.S.; Ganie, N.A.; Mir, S.; Sharma, R.K. CLIMATE CHANGE TRIGGERS EARLY SPROUTING IN MULBERRY (Morus sp.). Int. J. Adv. Res. 2020, 10, 197–201. [Google Scholar]
- Jiao, F.; Luo, R.; Dai, X.; Liu, H.; Yu, G.; Han, S.; Lu, X.; Su, C.; Chen, Q.; Song, Q.; et al. Chromosome-Level Reference Genome and Population Genomic Analysis Provide Insights into the Evolution and Improvement of Domesticated Mulberry (Morus alba). Mol. Plant 2020, 13, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhou, S.; Zhang, T.; Du, Q.; Tu, M.; Wu, Z.; Zeng, X.; Dang, Y.; Liu, Z.; Pan, D. Synergistic enhancement of bio-yogurt properties by Lactiplantibacillus plantarum NUC08 and mulberry fruit extract. Food Chem. 2025, 468, 142447. [Google Scholar] [CrossRef]
- Cai, C.; Yan, F.; Li, J.; Du, B.; Sun, Q.; Han, X. Differences in volatility and organoleptic characteristics of mixed and sequential fermentation of mulberry fruit juices by Weissella confusa and Pichia kudriavzevii using metabolomics analysis. J. Future Foods 2026, 6, 307–318. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Liu, J.X.; Wang, F.F.; Qu, L.P. Mulberry Leaf Extract and Deoxynojirimycin Modulates Glucose and Lipid Levels via the IRS1/PI3K/AKT Signaling Pathway in Cells. J. Food Biochem. 2025, 2025, 7345044. [Google Scholar] [CrossRef]
- Luo, P.; Ai, J.; Wang, Q.; Lou, Y.; Liao, Z.; Giampieri, F.; Battino, M.; Sieniawska, E.; Bai, W.; Tian, L. Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice. Food Chem. 2025, 469, 142555. [Google Scholar] [CrossRef]
- Lv, Z.; Hao, L.; Ma, B.; He, Z.; Luo, Y.; Xin, Y.; He, N. Ciboria carunculoides Suppresses Mulberry Immune Responses Through Regulation of Salicylic Acid Signaling. Front. Plant Sci. 2021, 12, 658590. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, H.; Xiang, Z.; He, N. Identification of Morus notabilis MADS-box genes and elucidation of the roles of MnMADS33 during endodormancy. Sci. Rep. 2018, 8, 5860. [Google Scholar] [CrossRef]
- Lloret, A.; Quesada-Traver, C.; Conejero, A.; Arbona, V.; Gómez-Mena, C.; Petri, C.; Sánchez-Navarro, J.A.; Zuriaga, E.; Leida, C.; Badenes, M.L.; et al. Regulatory circuits involving bud dormancy factor PpeDAM6. Hortic. Res. 2021, 8, 261. [Google Scholar] [CrossRef] [PubMed]
- Rohde, A.; Bhalerao, R.P. Plant dormancy in the perennial context. Trends Plant Sci. 2007, 12, 217–223. [Google Scholar] [CrossRef]
- Lang, G.A.; Early, J.D.; Martin, G.C.; Darnell, R.L. Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. Hortscience 1987, 22, 371–377. [Google Scholar] [CrossRef]
- Horvath, D.P.; Sung, S.; Kim, D.; Chao, W.; Anderson, J. Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol. Biol. 2010, 73, 169–179. [Google Scholar] [CrossRef]
- Cai, F.; Jin, X.; Tian, Y.; Huang, Z.; Wang, X.; Zhang, Y.; Sun, Y.; Shao, C. Molecular regulation of bud dormancy in perennial plants. Plant Growth Regul. 2023, 102, 1–11. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Díaz-Vivancos, P.; Martínez-Sánchez, G.; Alburquerque, N.; García-Bruntón, J. Physiological and biochemical characterization of bud dormancy: Evolution of carbohydrate and antioxidant metabolisms and hormonal profile in a low chill peach variety. Sci. Hortic. 2021, 281, 109957. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, Y.; Zhu, T.; Li, Z.; Sui, S. Small RNA and Degradome Sequencing in Floral Bud Reveal Roles of miRNAs in Dormancy Release of Chimonanthus praecox. Int. J. Mol. Sci. 2023, 24, 4210. [Google Scholar] [CrossRef] [PubMed]
- Hideyuki, T.; Masahiro, N.; Chiharu, Y.; Kimiko, I. Gentian FLOWERING LOCUS T orthologs regulate phase transitions: Floral induction and endodormancy release. Plant Physiol. 2022, 188, 1887–1899. [Google Scholar] [CrossRef]
- Yazhini, V.; Chabikwa, T.G.; Considine, J.A.; Patricia, A.R.; Foyer, C.H.; Santiago, S.; Considine, M.J. The bud dormancy disconnect: Latent buds of grapevine are dormant during summer despite a high metabolic rate. J. Exp. Bot. 2022, 73, 2061–2076. [Google Scholar] [CrossRef]
- Wu, R.; Cooney, J.; Tomes, S.; Rebstock, R.; Karunairetnam, S.; Allan, A.C.; Macknight, R.C.; Varkonyi-Gasic, E. RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiol. 2021, 41, 1510–1523. [Google Scholar] [CrossRef]
- Li, W.F.; Mao, J.; Su, J.; Li, X.W.; Chen, B.H. Exogenous ABA and its inhibitor regulate flower bud induction of apple cv. ‘Nagafu No. 2′ grafted on different rootstocks. Trees 2021, 35, 609–620. [Google Scholar] [CrossRef]
- Andre, D.; Zambrano, J.A.; Zhang, B.; Lee, K.C.; Ruhl, M.; Marcon, A.; Nilsson, O. Populus SVL Acts in Leaves to Modulate the Timing of Growth Cessation and Bud Set. Front. Plant Sci. 2022, 13, 823019. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Hou, Y.; Wang, H.; Wang, P.; Mao, J.; Chen, B. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress 8-amylase expression. Int. J. Biol. Macromol. 2023, 225, 1394–1404. [Google Scholar] [CrossRef]
- Zhang, Y.-z.; Xu, C.; Lu, W.-l.; Wang, X.-z.; Wang, N.; Meng, X.-g.; Fang, Y.-h.; Tan, Q.-p.; Chen, X.-d.; Fu, X.-l.; et al. PpMAPK6 regulates peach bud endodormancy release through interactions with PpDAM6. J. Integr. Agric. 2023, 22, 139–148. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Wu, X.; Moriguchi, T.; Teng, Y. Bud endodormancy in deciduous fruit trees: Advances and prospects. Hortic. Res. 2021, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Tamada, Y.; Yamane, H.; Matsushita, M.; Osako, Y.; Gao-Takai, M.; Luo, Z.; Tao, R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. Plant J. 2022, 111, 1015–1031. [Google Scholar] [CrossRef]
- Li, J.; Pan, W.; Liang, J.; Liu, C.; Li, D.; Yang, Y.; Qu, L.; Gazzarrini, S.; Yi, M.; Wu, J. BASIC PENTACYSTEINE 2 fine-tunes corm dormancy release in Gladiolus. Plant Physiol. 2023, 194, 2489–2505. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, T.; Yamane, H.; Gao-Takai, M.; Tao, R. Upregulation of TCP18s in dormant buds of transgenic apple expressing Japanese apricot PmDAM6. Acta Hortic. 2023, 1372, 8. [Google Scholar] [CrossRef]
- Li, Z.; Reighard, G.L.; Abbott, A.G.; Bielenberg, D.G. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J. Exp. Bot. 2009, 60, 3521–3530. [Google Scholar] [CrossRef]
- Hisayo, Y.; Tomomi, O.; Hiroaki, J.; Yukari, H.; Ryuta, S.; Tao, R. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J. Exp. Bot. 2011, 62, 3481–3488. [Google Scholar] [CrossRef]
- Masuda, K.; Yamane, H.; Ikeda, K.; Tetsumura, T.; Takai, M.; Tao, R. Effects of chilling accumulation on DORMANCY-ASSOCIATED MADS-box gene expressions in ‘Satonishiki’ sweet cherry. Acta Hortic. 2019, 1235, 2406–6168. [Google Scholar] [CrossRef]
- Moser, M.; Asquini, E.; Miolli, G.V.; Weigl, K.; Si-Ammour, A. The MADS-Box Gene MdDAM1 Controls Growth Cessation and Bud Dormancy in Apple. Front. Plant Sci. 2020, 11, 1433865. [Google Scholar] [CrossRef]
- Ponnu, J. Breaking bud: A gentian FLOWERING LOCUS T controls budbreak and dormancy. Plant Physiol. 2022, 189, 457–458. [Google Scholar] [CrossRef]
- Jing, S.; Sun, X.; Yu, L.; Wang, E.; Cheng, Z.; Liu, H.; Jiang, P.; Qin, J.; Begum, S.; Song, B. Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. Plant Physiol. 2022, 189, 1677–1693. [Google Scholar] [CrossRef]
- Anh, T.P.; Bai, S.; Takanori, S.; Akiko, I.; Takaya, M. Dormancy-associated MADS-box (DAM) and Abscisic Acid Pathway Regulate Pear Endodormancy Through A Feedback Mechanism. Plant Cell Physiol. 2017, 58, 1378–1390. [Google Scholar] [CrossRef]
- Wu, R.; Wang, T.; Richardson, A.C.; Allan, A.C.; Macknigh, R.C.; Varkonyi-Gasic, E. Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy. Plant Sci. 2019, 281, 242–250. [Google Scholar] [CrossRef]
- Vergara, R.; Noriega, X.; Perez, F.J. VvDAM-SVPs genes are regulated by FLOWERING LOCUS T (VvFT) and not by ABA/low temperature-induced VvCBFs transcription factors in grapevine buds. Planta 2021, 253, 31. [Google Scholar] [CrossRef]
- Dong, Y.; Khalil-Ur-Rehman, M.; Liu, X.; Wang, X.; Yang, L.; Tao, J.; Zheng, H. Functional characterisation of five SVP genes in grape bud dormancy and flowering. Plant Growth Regul. 2022, 97, 511–522. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, H.; Han, Y.; Li, W.; Wei, W.; He, N. Alternative splicing of the FLOWERING LOCUS C-like gene MaMADS33 is associated with endodormancy in mulberry. For. Res. 2024, 4, e029. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Maurya, J.P.; Azeez, A.; Miskolczi, P.; Tylewicz, S.; Stojkovič, K.; Delhomme, N.; Busov, V.; Bhalerao, R.P. A genetic network mediating the control of bud break in hybrid aspen. Nat. Commun. 2018, 9, 4173. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Miskolczi, P.; Maurya, J.P.; Bhalerao, R.P. A Tree Ortholog of SHORT VEGETATIVE PHASE Floral Repressor Mediates Photoperiodic Control of Bud Dormancy. Curr. Biol. 2019, 29, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wang, T.; Warren, B.; Thomson, S.J.; Allan, A.; Macknight, R.C.; Varkonyi-Gasic, E. Kiwifruit SVP2 controls developmental and drought-stress pathways. Plant Mol. Biol. 2018, 96, 233–244. [Google Scholar] [CrossRef]
- Storchova, H.; Hrdlickova, R.; Chrtek, J.; Fehrer, J. An Improved Method of DNA Isolation from Plants Collected in the Field and Conserved in Saturated NaCl/CTAB Solution. Taxon 2000, 49, 79–84. [Google Scholar] [CrossRef]
- Der-Auwera, G.A.V.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Depristo, M.A. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Kai, W.; Mingyao, L.; Hakon, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.T.; Demarest, B.L.; Bisgrove, B.W.; Gorsi, B.; Yost, H.J. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 2013, 23, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, Z.; Sun, Z.; Qi, F.; Wang, J.; Wang, M.; Dong, W.; Cui, K.; Zhao, M.; Wang, X.; et al. Identification of two major QTLs for pod shell thickness in peanut (Arachis hypogaea L.) using BSA-seq analysis. BMC Genom. 2024, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Dileo, M.V.; Strahan, G.D.; Bakker, M.D.; Hoekenga, O.A. Weighted Correlation Network Analysis (WGCNA) Applied to the Tomato Fruit Metabolome. PLoS ONE 2011, 6, e26683. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one”bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Yan, P.; Tuo, D.; Shen, W.; Deng, H.; Zhou, P.; Gao, X. A Nimble Cloning-compatible vector system for high-throughput gene functional analysis in plants. Plant Commun. 2023, 4, 100471. [Google Scholar] [CrossRef]
- Sun, B.; He, X.; Long, F.; Yu, C.; Fei, Y. The Role of PnTCP2 in the Lobed Leaf Formation of Phoebe neurantha var. lobophylla. Int. J. Mol. Sci. 2022, 23, 13296. [Google Scholar] [CrossRef]
- Louw, E.; Allderman, L.; Steyn, W.; Cook, N. The effect of roots and leaves on bud burst of apple shoots under forcing conditions during dormancy. Acta Hortic. 2023, 1366, 2406–6168. [Google Scholar] [CrossRef]
- Jennings, S.N.; Ferguson, L. The progress of raspberry breeding in Scotland. Acta Hortic. 2024, 1388, 2406–6168. [Google Scholar] [CrossRef]
- Calle, A.; Cai, L.; Iezzoni, A.; Wnsch, A. Construction of a high-density SNP marker linkage map of ‘Vic’ ‘Cristobalina’ in sweet cherry. Acta Hortic. 2019, 1235, 2406–6168. [Google Scholar] [CrossRef]
- Li, J.; Ying, X.; Niu, Q.; He, L.; Teng, Y.; Bai, S. Abscisic Acid (ABA) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy. Int. J. Mol. Sci. 2018, 19, 310. [Google Scholar] [CrossRef] [PubMed]
- Yordanov, Y.S.; Strauss, S.H.; Busov, V.B. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc. Natl. Acad. Sci. USA 2014, 111, 10001–10006. [Google Scholar] [CrossRef]
- Miyakawa, T.; Fujita, Y.; Yamaguchi-Shinozaki, K.; Tanokura, M. Structure and function of abscisic acid receptors. Trends Plant Sci. 2013, 18, 259–266. [Google Scholar] [CrossRef]
- Andres, F.; Porri, A.; Torti, S.; Mateos, J.; Romera-Branchat, M.; Luis Garcia-Martinez, J.; Fornara, F.; Gregis, V.; Kater, M.M.; Coupland, G. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc. Natl. Acad. Sci. USA 2014, 111, E2760–E2769. [Google Scholar] [CrossRef]







| Chr | ED Method | ||
|---|---|---|---|
| Start (bp) | End (bp) | ED Value | |
| Chr13 | 9,990,001 | 11,990,000 | 0.131076337 |
| Chr13 | 9,970,001 | 11,970,000 | 0.130930557 |
| Chr13 | 9,980,001 | 11,980,000 | 0.130924226 |
| Chr13 | 9,960,001 | 11,960,000 | 0.130160023 |
| Chr13 | 9,950,001 | 11,950,000 | 0.129617815 |
| Chr13 | 9,910,001 | 11,910,000 | 0.129129828 |
| Chr13 | 9,890,001 | 11,890,000 | 0.129018041 |
| Chr13 | 10,000,001 | 12,000,000 | 0.128922806 |
| Chr13 | 10,010,001 | 12,010,000 | 0.128922806 |
| Chr13 | 9,900,001 | 11,900,000 | 0.128702361 |
| Gene_ID | Module Color | GS.Time | p.GS.Time | Annotation |
|---|---|---|---|---|
| M.alba-G0006274 | brown | −0.836 | 3.64 × 10−7 | AYK27567.1 short vegetative phase [Morus alba var. alba] |
| M.alba-G0006282 | brown | −0.679 | 0.00026 | XP_024028578.1 14-3-3-like protein GF14 kappa [Morus notabilis] |
| M.alba-G0006337 | brown | −0.775 | 8.55 × 10−6 | XP_010087616.1 uncharacterized protein LOC21404965 [Morus notabilis] |
| M.alba-G0006355 | brown | 0.855 | 1.04 × 10−7 | XP_010087591.1 BTB/POZ domain-containing protein DOT3 [Morus notabilis] |
| M.alba-G0006371 | brown | −0.714 | 8.82 × 10−5 | XP_010102575.1 uncharacterized protein LOC21387464 [Morus notabilis] |
| M.alba-G0006382 | brown | −0.577 | 0.0032 | XP_024017555.1 acyl-coenzyme A oxidase, peroxisomal [Morus notabilis] |
| M.alba_G0006299 | darkred | 0.355 | 0.0889 | XP_010106297.1 E3 ubiquitin-protein ligase RING1 [Morus notabilis] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, B.; Dong, Z.; Zhang, F.; Zhu, Z.; Zhang, C.; Yu, C. Integrated BSA-Seq and WGCNA Analyses Reveal Candidate Genes Associated with Winter Bud Dormancy Maintenance in Fruit Mulberry (Morus spp.). Curr. Issues Mol. Biol. 2026, 48, 38. https://doi.org/10.3390/cimb48010038
Sun B, Dong Z, Zhang F, Zhu Z, Zhang C, Yu C. Integrated BSA-Seq and WGCNA Analyses Reveal Candidate Genes Associated with Winter Bud Dormancy Maintenance in Fruit Mulberry (Morus spp.). Current Issues in Molecular Biology. 2026; 48(1):38. https://doi.org/10.3390/cimb48010038
Chicago/Turabian StyleSun, Bing, Zhaoxia Dong, Feng Zhang, Zhixian Zhu, Cheng Zhang, and Cui Yu. 2026. "Integrated BSA-Seq and WGCNA Analyses Reveal Candidate Genes Associated with Winter Bud Dormancy Maintenance in Fruit Mulberry (Morus spp.)" Current Issues in Molecular Biology 48, no. 1: 38. https://doi.org/10.3390/cimb48010038
APA StyleSun, B., Dong, Z., Zhang, F., Zhu, Z., Zhang, C., & Yu, C. (2026). Integrated BSA-Seq and WGCNA Analyses Reveal Candidate Genes Associated with Winter Bud Dormancy Maintenance in Fruit Mulberry (Morus spp.). Current Issues in Molecular Biology, 48(1), 38. https://doi.org/10.3390/cimb48010038

