Neurotrophic Control of Puberty: From Molecular Signaling to Disorders of Pubertal Timing
Abstract
1. Introduction
2. Molecular Biology and Physiology of Neurotrophins
2.1. Overview of the Neurotrophin Family
2.2. Neurotrophin Signaling Pathways
2.3. Expression Patterns During Development
3. Neurotrophins and the Onset of Puberty: Molecular Mechanisms
3.1. BDNF–TrkB Signaling and GnRH Neuron Activation
3.2. Neurotrophins and Kisspeptin System Crosstalk
3.3. Synaptic Remodeling and Neurogenesis
4. Metabolic Integration: Linking Energy Balance to Reproductive Maturation
4.1. BDNF as a Mediator Between Metabolism and Puberty
4.2. Peripheral Neurotrophins and Gonadal Maturation
4.3. Adiposity, Neurotrophins, and Timing of Puberty
5. Neurotrophins in Disorders of Pubertal Timing
5.1. Central Precocious Puberty
5.2. Delayed Puberty and Hypogonadotropic Hypogonadism
6. Therapeutic and Diagnostic Perspectives
6.1. Potential Therapeutic Modulation
6.2. Neurotrophins as Biomarkers of Pubertal Disorders: Potential and Limitations
7. Challenges and Future Directions
- -
- Functional characterization of neurotrophin-related variants, particularly NDNF and semaphorin pathway genes, using appropriate cellular and animal models.
- -
- Longitudinal human cohort studies combining developmental endocrinology with neurotrophin profiling and brain imaging to track how neurotrophic pathways influence pubertal progression.
- -
- Standardization of peripheral BDNF measurement protocols, encompassing blood processing, assay platforms, and normalization strategies—an essential step before any clinical application.
Limitations of Current Evidence
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAV | Adeno-associated virus |
| Akt | Protein kinase B |
| BDNF | Brain-derived neurotrophic factor |
| cAMP | Cyclic adenosine monophosphate |
| CHH | Congenital hypogonadotropic hypogonadism |
| CPP | Central precocious puberty |
| CREB | cAMP response element-binding protein |
| ERK | Extracellular signal–regulated kinase |
| FHA | Functional hypothalamic amenorrhea |
| FTO | Fat mass and obesity–associated |
| GABA | gamma aminobutyric acid |
| GnRH | Gonadotropin-releasing hormone |
| HPG | Hypothalamic–pituitary–gonadal |
| KNDy | Kisspeptin/Neurokinin B/Dynorphin |
| MAPK | Mitogen-activated protein kinase |
| m6A | N6-methyladenosine |
| NDNF | Neuron-derived neurotrophic factor |
| NGF | Nerve growth factor |
| NT-3 | Neurotrophin-3 |
| NT-4/5 | Neurotrophin-4/5 |
| p75NTR | p75 neurotrophin receptor |
| PI3K | Phosphoinositide 3-kinase |
| PLCγ | Phospholipase C gamma |
| STAR | Steroidogenic acute regulatory protein |
| TrkA/B/C | Tropomyosin receptor kinases A, B, and C |
References
- Spaziani, M.; Tarantino, C.; Tahani, N.; Gianfrilli, D.; Sbardella, E.; Lenzi, A.; Radicioni, A.F. Hypothalamo-Pituitary Axis and Puberty. Mol. Cell. Endocrinol. 2021, 520, 111094. [Google Scholar] [CrossRef]
- Bangalore Krishna, K.; Witchel, S.F. Normal Puberty. Endocrinol. Metab. Clin. N. Am. 2024, 53, 183–194. [Google Scholar] [CrossRef]
- Abreu, A.P.; Kaiser, U.B. Pubertal Development and Regulation. Lancet Diabetes Endocrinol. 2016, 4, 254–264. [Google Scholar] [CrossRef]
- Faienza, M.F.; Urbano, F.; Moscogiuri, L.A.; Chiarito, M.; De Santis, S.; Giordano, P. Genetic, Epigenetic and Enviromental Influencing Factors on the Regulation of Precocious and Delayed Puberty. Front. Endocrinol. 2022, 13, 1019468. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, M.J.; Velasco, I.; Tena-Sempere, M. Novel Mechanisms for the Metabolic Control of Puberty: Implications for Pubertal Alterations in Early-Onset Obesity and Malnutrition. J. Endocrinol. 2019, 242, R51–R65. [Google Scholar] [CrossRef]
- Panvino, F.; Paparella, R.; Tarani, F.; Lombardi, C.; Ferraguti, G.; Pisani, F.; Fiore, M.; Pancheva, R.; Ardizzone, I.; Tarani, L. Neurotrophins in Neurodevelopmental Disorders: A Narrative Review of the Literature. Int. J. Mol. Sci. 2025, 26, 8335. [Google Scholar] [CrossRef]
- Naulé, L.; Maione, L.; Kaiser, U.B. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021, 162, bqaa209. [Google Scholar] [CrossRef]
- Avendaño, M.S.; Vazquez, M.J.; Tena-Sempere, M. Disentangling Puberty: Novel Neuroendocrine Pathways and Mechanisms for the Control of Mammalian Puberty. Hum. Reprod. Update 2017, 23, 737–763. [Google Scholar] [CrossRef] [PubMed]
- Micangeli, G.; Paparella, R.; Tarani, F.; Menghi, M.; Ferraguti, G.; Carlomagno, F.; Spaziani, M.; Pucarelli, I.; Greco, A.; Fiore, M.; et al. Clinical Management and Therapy of Precocious Puberty in the Sapienza University Pediatrics Hospital of Rome, Italy. Children 2023, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Skaper, S.D. Neurotrophic Factors: An Overview; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1727, pp. 1–17. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Trk Receptors: Roles in Neuronal Signal Transduction. Annu. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-Regulated Signalling Pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Bothwell, M. NGF, BDNF, NT3, and NT4. Handb. Exp. Pharmacol. 2014, 220, 3–15. [Google Scholar] [CrossRef]
- Bothwell, M. Recent Advances in Understanding Neurotrophin Signaling. F1000Research 2016, 5, F1000 Faculty Rev-1885. [Google Scholar] [CrossRef]
- Fiore, M.; Amendola, T.; Triaca, V.; Tirassa, P.; Alleva, E.; Aloe, L. Agonistic Encounters in Aged Male Mouse Potentiate the Expression of Endogenous Brain NGF and BDNF: Possible Implication for Brain Progenitor Cells’ Activation. Eur. J. Neurosci. 2003, 17, 1455–1464. [Google Scholar] [CrossRef]
- Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.; Rosso, P.; Fico, E.; Messina, M.P.; et al. Nerve Growth Factor in the Psychiatric Brain. Rivista Di Psichiatria 2020, 55, 4–15. [Google Scholar] [CrossRef]
- Conroy, J.N.; Coulson, E.J. High-Affinity TrkA and P75 Neurotrophin Receptor Complexes: A Twisted Affair. J. Biol. Chem. 2022, 298, 101568. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Fiore, M.; Probert, L.; Turrini, P.; Tirassa, P. Overexpression of Tumour Necrosis Factor Alpha in the Brain of Transgenic Mice Differentially Alters Nerve Growth Factor Levels and Choline Acetyltransferase Activity. Cytokine 1999, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Alleva, E.; Probert, L.; Kollias, G.; Angelucci, F.; Aloe, L. Exploratory and Displacement Behavior in Transgenic Mice Expressing High Levels of Brain TNF-α. Physiol. Behav. 1998, 63, 571–576. [Google Scholar] [CrossRef]
- Chaldakov, G.N.; Aloe, L.; Yanev, S.G.; Fiore, M.; Tonchev, A.B.; Vinciguerra, M.; Evtimov, N.T.; Ghenev, P.; Dikranian, K. Trackins (Trk-Targeting Drugs): A Novel Therapy for Different Diseases. Pharmaceuticals 2024, 17, 961. [Google Scholar] [CrossRef]
- Iroegbu, J.D.; Ijomone, O.K.; Femi-Akinlosotu, O.M.; Ijomone, O.M. ERK/MAPK Signalling in the Developing Brain: Perturbations and Consequences. Neurosci. Biobehav. Rev. 2021, 131, 792–805. [Google Scholar] [CrossRef]
- Sánchez-Alegría, K.; Flores-León, M.; Avila-Muñoz, E.; Rodríguez-Corona, N.; Arias, C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int. J. Mol. Sci. 2018, 19, 3725. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-S.; Yang, Y.R.; Lee, C.; Kim, S.; Ryu, S.H.; Suh, P.-G. Roles of Phosphoinositide-Specific Phospholipase Cγ1 in Brain Development. Adv. Biol. Regul. 2016, 60, 167–173. [Google Scholar] [CrossRef]
- Song, W.; Volosin, M.; Cragnolini, A.B.; Hempstead, B.L.; Friedman, W.J. ProNGF Induces PTEN via p75NTR to Suppress Trk-Mediated Survival Signaling in Brain Neurons. J. Neurosci. 2010, 30, 15608–15615. [Google Scholar] [CrossRef]
- Teng, K.K.; Felice, S.; Kim, T.; Hempstead, B.L. Understanding Proneurotrophin Actions: Recent Advances and Challenges. Dev. Neurobiol. 2010, 70, 350–359. [Google Scholar] [CrossRef]
- Tanaka, K.; Kelly, C.E.; Goh, K.Y.; Lim, K.B.; Ibáñez, C.F. Death Domain Signaling by Disulfide-Linked Dimers of the P75 Neurotrophin Receptor Mediates Neuronal Death in the CNS. J. Neurosci. 2016, 36, 5587–5595. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Tarani, L.; Fanfarillo, F.; Allushi, S.; Caronti, B.; Tirassa, P.; Polimeni, A.; Lucarelli, M.; Cavalcanti, L.; et al. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr. Issues Mol. Biol. 2024, 46, 965–989. [Google Scholar] [CrossRef] [PubMed]
- Maisonpierre, P.C.; Belluscio, L.; Friedman, B.; Alderson, R.F.; Wiegand, S.J.; Furth, M.E.; Lindsay, R.M.; Yancopoulos, G.D. NT-3, BDNF, and NGF in the Developing Rat Nervous System: Parallel as Well as Reciprocal Patterns of Expression. Neuron 1990, 5, 501–509. [Google Scholar] [CrossRef]
- Park, H.; Poo, M. Neurotrophin Regulation of Neural Circuit Development and Function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef]
- Zang, S.; Ouyang, Y.; Li, P.; Yin, X. Hypothalamic FTO Upregulates BDNF to Promote GnRH Expression through the PI3K/Akt Pathway, Leading to Precocious Puberty. Front. Endocrinol. 2025, 16, 1665391. [Google Scholar] [CrossRef] [PubMed]
- Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Vitali, M.; Ceccanti, M.; Chaldakov, G.N.; et al. Nerve Growth Factor, Stress and Diseases. Curr. Med. Chem. 2020, 28, 2943–2959. [Google Scholar] [CrossRef]
- Ladouceur, C.D.; Kerestes, R.; Schlund, M.W.; Shirtcliff, E.A.; Lee, Y.; Dahl, R.E. Neural Systems Underlying Reward Cue Processing in Early Adolescence: The Role of Puberty and Pubertal Hormones. Psychoneuroendocrinology 2019, 102, 281–291. [Google Scholar] [CrossRef]
- Morningstar, M.; Burns, J.A. Probing Puberty as a Source of Developmental Change in Neural Response to Emotional Faces in Early Adolescence. Dev. Psychobiol. 2025, 67, e70037. [Google Scholar] [CrossRef]
- Aloe, L.; Iannitelli, A.; Angelucci, F.; Bersani, G.; Fiore, M. Studies in Animal Models and Humans Suggesting a Role of Nerve Growth Factor in Schizophrenia-like Disorders. Behav. Pharmacol. 2000, 11, 235–242. [Google Scholar] [CrossRef]
- Cronin, A.S.; Horan, T.L.; Spergel, D.J.; Brooks, A.N.; Hastings, M.H.; Ebling, F.J.P. Neurotrophic Effects of BDNF on Embryonic Gonadotropin-Releasing Hormone (GnRH) Neurons. Eur. J. Neurosci. 2004, 20, 338–344. [Google Scholar] [CrossRef]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF Function and Intracellular Signaling in Neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.L.; Caldeira, M.V.; Santos, S.D.; Duarte, C.B. Role of the Brain-Derived Neurotrophic Factor at Glutamatergic Synapses. Br. J. Pharmacol. 2008, 153, S310–S324. [Google Scholar] [CrossRef]
- Moore, A.M.; Coolen, L.M.; Porter, D.T.; Goodman, R.L.; Lehman, M.N. KNDy Cells Revisited. Endocrinology 2018, 159, 3219–3234. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, K.; Watanabe, Y.; Nakamura, S.; Goto, T.; Inoue, N.; Uenoyama, Y.; Tsukamura, H. Cellular and Molecular Mechanisms Regulating the KNDy Neuronal Activities to Generate and Modulate GnRH Pulse in Mammals. Front. Neuroendocrinol. 2022, 64, 100968. [Google Scholar] [CrossRef] [PubMed]
- Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front. Endocrinol. 2021, 12, 724632. [Google Scholar] [CrossRef]
- Rønnekleiv, O.K.; Qiu, J.; Kelly, M.J. Hypothalamic Kisspeptin Neurons and the Control of Homeostasis. Endocrinology 2022, 163, bqab253. [Google Scholar] [CrossRef]
- Yeo, S.-H.; Colledge, W.H. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis. Front. Endocrinol. 2018, 9, 188. [Google Scholar] [CrossRef]
- Harter, C.J.L.; Kavanagh, G.S.; Smith, J.T. The Role of Kisspeptin Neurons in Reproduction and Metabolism. J. Endocrinol. 2018, 238, R173–R183. [Google Scholar] [CrossRef] [PubMed]
- Prashar, V.; Arora, T.; Singh, R.; Sharma, A.; Parkash, J. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod. Sci. 2023, 30, 802–822. [Google Scholar] [CrossRef]
- Jimenez-Puyer, M.; Sobrino, V.; Colledge, W.H.; Jones, S.; Tena-Sempere, M. Hypothalamic Control of Puberty: From Neuronal Circuits to Mechanisms for Its Metabolic Regulation. Rev. Endocr. Metab. Disord. 2025. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, S.R.; Lomniczi, A.; Loche, A.; Matagne, V.; Kaidar, G.; Sandau, U.S.; Dissen, G.A. The Transcriptional Control of Female Puberty. Brain Res. 2010, 1364, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, S.R.; Lomniczi, A.; Mastronardi, C.; Heger, S.; Roth, C.; Parent, A.-S.; Matagne, V.; Mungenast, A.E. Minireview: The Neuroendocrine Regulation of Puberty: Is the Time Ripe for a Systems Biology Approach? Endocrinology 2006, 147, 1166–1174. [Google Scholar] [CrossRef]
- Ojeda, S.R.; Dubay, C.; Lomniczi, A.; Kaidar, G.; Matagne, V.; Sandau, U.S.; Dissen, G.A. Gene Networks and the Neuroendocrine Regulation of Puberty. Mol. Cell. Endocrinol. 2010, 324, 3–11. [Google Scholar] [CrossRef]
- Cottrell, E.C.; Campbell, R.E.; Han, S.-K.; Herbison, A.E. Postnatal Remodeling of Dendritic Structure and Spine Density in Gonadotropin-Releasing Hormone Neurons. Endocrinology 2006, 147, 3652–3661. [Google Scholar] [CrossRef]
- Sisk, C.L.; Foster, D.L. The Neural Basis of Puberty and Adolescence. Nat. Neurosci. 2004, 7, 1040–1047. [Google Scholar] [CrossRef]
- McIlwraith, E.K.; Belsham, D.D. Hypothalamic Reproductive Neurons Communicate through Signal Transduction to Control Reproduction. Mol. Cell. Endocrinol. 2020, 518, 110971. [Google Scholar] [CrossRef] [PubMed]
- Argente, J.; Dunkel, L.; Kaiser, U.B.; Latronico, A.C.; Lomniczi, A.; Soriano-Guillén, L.; Tena-Sempere, M. Molecular Basis of Normal and Pathological Puberty: From Basic Mechanisms to Clinical Implications. Lancet Diabetes Endocrinol. 2023, 11, 203–216. [Google Scholar] [CrossRef]
- Rodríguez, A.M.; Asnani-Kishnani, M.; Yau-Qiu, Z.X.; Galmés, S.; Palou, A. Perinatal Leptin Effects on Hypothalamic Brain-Derived Neurotrophic Factor and Energy Balance-Related Gene Regulation. J. Nutr. Biochem. 2025, 144, 109994. [Google Scholar] [CrossRef]
- Chang, H.-M.; Wu, H.-C.; Sun, Z.-G.; Lian, F.; Leung, P.C.K. Neurotrophins and Glial Cell Line-Derived Neurotrophic Factor in the Ovary: Physiological and Pathophysiological Implications. Hum. Reprod. Update 2019, 25, 224–242. [Google Scholar] [CrossRef]
- Streiter, S.; Fisch, B.; Sabbah, B.; Ao, A.; Abir, R. The Importance of Neuronal Growth Factors in the Ovary. Mol. Hum. Reprod. 2016, 22, 3–17. [Google Scholar] [CrossRef]
- Dissen, G.A.; Romero, C.; Paredes, A.; Ojeda, S.R. Neurotrophic Control of Ovarian Development. Microsc. Res. Tech. 2002, 59, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, S.R.; Romero, C.; Tapia, V.; Dissen, G.A. Neurotrophic and Cell-Cell Dependent Control of Early Follicular Development. Mol. Cell. Endocrinol. 2000, 163, 67–71. [Google Scholar] [CrossRef]
- Linher-Melville, K.; Li, J. The Roles of Glial Cell Line-Derived Neurotrophic Factor, Brain-Derived Neurotrophic Factor and Nerve Growth Factor during the Final Stage of Folliculogenesis: A Focus on Oocyte Maturation. Reproduction 2013, 145, R43–R54. [Google Scholar] [CrossRef]
- Zhao, P.; Qiao, J.; Huang, S.; Zhang, Y.; Liu, S.; Yan, L.-Y.; Hsueh, A.J.W.; Duan, E.-K. Gonadotrophin-Induced Paracrine Regulation of Human Oocyte Maturation by BDNF and GDNF Secreted by Granulosa Cells. Hum. Reprod. 2011, 26, 695–702. [Google Scholar] [CrossRef]
- Seifer, D.B.; Feng, B.; Shelden, R.M.; Chen, S.; Dreyfus, C.F. Brain-Derived Neurotrophic Factor: A Novel Human Ovarian Follicular Protein. J. Clin. Endocrinol. Metab. 2002, 87, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Li, M.; Zhou, J.; Ding, X.; Shao, Y.; Jing, J.; Liu, Y.; Yao, B. Brain-Derived Neurotrophic Factor Promotes Human Granulosa-like Tumor Cell Steroidogenesis and Proliferation by Activating the FSH Receptor-Mediated Signaling Pathway. Sci. Rep. 2017, 7, 180. [Google Scholar] [CrossRef]
- Chen, S.; Wang, F.; Liu, Z.; Zhao, Y.; Jiang, Y.; Chen, L.; Li, C.; Zhou, X. Brain-Derived Neurotrophic Factor Promotes Proliferation and Progesterone Synthesis in Bovine Granulosa Cells. J. Cell. Physiol. 2019, 234, 8776–8787. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Fabová, Z.; Loncová, B.; Harrath, A.H.; Alzuri, S.E.; Montiel, M.B.; Fuchsová, B. Brain-Derived Neurotrophic Factor (BDNF), an Autocrine/Paracrine Regulator of Basic Ovarian Functions and Antagonist of Kisspeptin. Theriogenology 2025, 246, 117520. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X. The Potential Roles of Neurotrophins in Male Reproduction. Reproduction 2013, 145, R89–R95. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.L.L.; Townsend, J.; Anderson, R.A. The Human Fetal Testis Is a Site of Expression of Neurotrophins and Their Receptors: Regulation of the Germ Cell and Peritubular Cell Population. J. Clin. Endocrinol. Metab. 2003, 88, 3943–3951. [Google Scholar] [CrossRef]
- Gao, S.; Chen, S.; Chen, L.; Zhao, Y.; Sun, L.; Cao, M.; Huang, Y.; Niu, Q.; Wang, F.; Yuan, C.; et al. Brain-Derived Neurotrophic Factor: A Steroidogenic Regulator of Leydig Cells. J. Cell. Physiol. 2019, 234, 14058–14067. [Google Scholar] [CrossRef]
- Müller, D.; Davidoff, M.S.; Bargheer, O.; Paust, H.-J.; Pusch, W.; Koeva, Y.; Jezek, D.; Holstein, A.F.; Middendorff, R. The Expression of Neurotrophins and Their Receptors in the Prenatal and Adult Human Testis: Evidence for Functions in Leydig Cells. Histochem. Cell Biol. 2006, 126, 199–211. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, L.M.; Frysz, M.; Bell, J.A.; Howe, L.D.; Fraser, A. Puberty Timing and Adiposity Change across Childhood and Adolescence: Disentangling Cause and Consequence. Hum. Reprod. 2020, 35, 2784–2792. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, T.; Ma, Y.; Gao, D.; Chen, L.; Chen, M.; Liu, J.; Dong, B.; Dong, Y.; Ma, J. Adiposity Status, Trajectories, and Earlier Puberty Onset: Results from a Longitudinal Cohort Study. J. Clin. Endocrinol. Metab. 2022, 107, 2462–2472. [Google Scholar] [CrossRef]
- Kaplowitz, P.B. Link between Body Fat and the Timing of Puberty. Pediatrics 2008, 121, S208–S217. [Google Scholar] [CrossRef]
- Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: A Novel Component of Neuroendocrinology. Cell Biol. Int. 2010, 34, 1051–1053. [Google Scholar] [CrossRef]
- Soriano-Guillén, L.; Tena-Sempere, M.; Seraphim, C.E.; Latronico, A.C.; Argente, J. Precocious Sexual Maturation: Unravelling the Mechanisms of Pubertal Onset through Clinical Observations. J. Neuroendocrinol. 2022, 34, e12979. [Google Scholar] [CrossRef]
- Paparella, R.; Bei, A.; Brilli, L.; Maglione, V.; Tarani, F.; Niceta, M.; Pucarelli, I.; Tarani, L. Precocious Puberty and Benign Variants in Female Children: Etiology, Diagnostic Challenges, and Clinical Management. Endocrines 2025, 6, 29. [Google Scholar] [CrossRef]
- Valsamakis, G.; Arapaki, A.; Balafoutas, D.; Charmandari, E.; Vlahos, N.F. Diet-Induced Hypothalamic Inflammation, Phoenixin, and Subsequent Precocious Puberty. Nutrients 2021, 13, 3460. [Google Scholar] [CrossRef] [PubMed]
- Tzounakou, A.-M.; Stathori, G.; Paltoglou, G.; Valsamakis, G.; Mastorakos, G.; Vlahos, N.F.; Charmandari, E. Childhood Obesity, Hypothalamic Inflammation, and the Onset of Puberty: A Narrative Review. Nutrients 2024, 16, 1720. [Google Scholar] [CrossRef] [PubMed]
- Messina, A.; Pulli, K.; Santini, S.; Acierno, J.; Känsäkoski, J.; Cassatella, D.; Xu, C.; Casoni, F.; Malone, S.A.; Ternier, G.; et al. Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism. Am. J. Hum. Genet. 2020, 106, 58–70. [Google Scholar] [CrossRef]
- Oleari, R.; Massa, V.; Cariboni, A.; Lettieri, A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int. J. Mol. Sci. 2021, 22, 9425. [Google Scholar] [CrossRef]
- Lettieri, A.; Oleari, R.; van den Munkhof, M.H.; van Battum, E.Y.; Verhagen, M.G.; Tacconi, C.; Spreafico, M.; Paganoni, A.J.J.; Azzarelli, R.; Andre’, V.; et al. SEMA6A Drives GnRH Neuron-Dependent Puberty Onset by Tuning Median Eminence Vascular Permeability. Nat. Commun. 2023, 14, 8097. [Google Scholar] [CrossRef] [PubMed]
- Van Battum, E.Y.; Brignani, S.; Pasterkamp, R.J. Axon Guidance Proteins in Neurological Disorders. Lancet Neurol. 2015, 14, 532–546. [Google Scholar] [CrossRef]
- Oleari, R.; Lettieri, A.; Paganoni, A.; Zanieri, L.; Cariboni, A. Semaphorin Signaling in GnRH Neurons: From Development to Disease. Neuroendocrinology 2019, 109, 193–199. [Google Scholar] [CrossRef]
- Cariboni, A.; Hickok, J.; Rakic, S.; Andrews, W.; Maggi, R.; Tischkau, S.; Parnavelas, J.G. Neuropilins and Their Ligands Are Important in the Migration of Gonadotropin-Releasing Hormone Neurons. J. Neurosci. 2007, 27, 2387–2395. [Google Scholar] [CrossRef]
- Gordon, C.M.; Ackerman, K.E.; Berga, S.L.; Kaplan, J.R.; Mastorakos, G.; Misra, M.; Murad, M.H.; Santoro, N.F.; Warren, M.P. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 1413–1439. [Google Scholar] [CrossRef]
- Saadedine, M.; Kapoor, E.; Shufelt, C. Functional Hypothalamic Amenorrhea: Recognition and Management of a Challenging Diagnosis. Mayo Clin. Proc. 2023, 98, 1376–1385. [Google Scholar] [CrossRef]
- Morrison, A.E.; Fleming, S.; Levy, M.J. A Review of the Pathophysiology of Functional Hypothalamic Amenorrhoea in Women Subject to Psychological Stress, Disordered Eating, Excessive Exercise or a Combination of These Factors. Clin. Endocrinol. 2021, 95, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Louden, E.D.; Poch, A.; Kim, H.-G.; Ben-Mahmoud, A.; Kim, S.-H.; Layman, L.C. Genetics of Hypogonadotropic Hypogonadism-Human and Mouse Genes, Inheritance, Oligogenicity, and Genetic Counseling. Mol. Cell. Endocrinol. 2021, 534, 111334. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.R. The Genetic Basis of Delayed Puberty. Front. Endocrinol. 2019, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.R. Genes Underlying Delayed Puberty. Mol. Cell. Endocrinol. 2018, 476, 119–128. [Google Scholar] [CrossRef]
- Zouaghi, Y.; Alpern, D.; Gardeux, V.; Russeil, J.; Deplancke, B.; Santoni, F.; Pitteloud, N.; Messina, A. Transcriptomic Profiling of Murine GnRH Neurons Reveals Developmental Trajectories Linked to Human Reproduction and Infertility. Theranostics 2025, 15, 3673–3692. [Google Scholar] [CrossRef]
- Chow, R.; Wessels, J.M.; Foster, W.G. Brain-Derived Neurotrophic Factor (BDNF) Expression and Function in the Mammalian Reproductive Tract. Hum. Reprod. Update 2020, 26, 545–564. [Google Scholar] [CrossRef]
- Zhu, J.; Choa, R.E.-Y.; Guo, M.H.; Plummer, L.; Buck, C.; Palmert, M.R.; Hirschhorn, J.N.; Seminara, S.B.; Chan, Y.-M. A Shared Genetic Basis for Self-Limited Delayed Puberty and Idiopathic Hypogonadotropic Hypogonadism. J. Clin. Endocrinol. Metab. 2015, 100, E646–E654. [Google Scholar] [CrossRef]
- Howard, S.R.; Oleari, R.; Poliandri, A.; Chantzara, V.; Fantin, A.; Ruiz-Babot, G.; Metherell, L.A.; Cabrera, C.P.; Barnes, M.R.; Wehkalampi, K.; et al. HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast with Other GnRH Deficiency Genes. J. Clin. Endocrinol. Metab. 2018, 103, 3420–3429. [Google Scholar] [CrossRef] [PubMed]
- Kotan, L.D.; Yildiz, M.; Turan, I.; Celiloglu, C.; Yuksel, B.; Topaloglu, A.K. A Novel Homozygous Nonsense NDNF Variant in Kallmann Syndrome. Am. J. Med. Genet. Part A 2023, 191, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulos, P.; Casarosa, E.; Bucci, F.; Piccinino, M.; Wenger, J.-M.; Nappi, R.E.; Polyzos, N.; Genazzani, A.R.; Pluchino, N. Diurnal Variation of Plasma Brain-Derived Neurotrophic Factor Levels in Women with Functional Hypothalamic Amenorrhea. Neuroendocrinology 2015, 101, 256–262. [Google Scholar] [CrossRef]
- Podfigurna-Stopa, A.; Casarosa, E.; Luisi, M.; Czyzyk, A.; Meczekalski, B.; Genazzani, A.R. Decreased Plasma Concentrations of Brain-Derived Neurotrophic Factor (BDNF) in Patients with Functional Hypothalamic Amenorrhea. Gynecol. Endocrinol. 2013, 29, 817–820, Erratum in Gynecol. Endocrinol. 2014, 30, 82.. [Google Scholar] [CrossRef]
- Rosas-Vargas, H.; Martínez-Ezquerro, J.D.; Bienvenu, T. Brain-Derived Neurotrophic Factor, Food Intake Regulation, and Obesity. Arch. Med. Res. 2011, 42, 482–494. [Google Scholar] [CrossRef]
- Roth, C.L.; Elfers, C.; Gebhardt, U.; Müller, H.L.; Reinehr, T. Brain-Derived Neurotrophic Factor and Its Relation to Leptin in Obese Children before and after Weight Loss. Metabolism 2013, 62, 226–234. [Google Scholar] [CrossRef]
- Boltaev, U.; Meyer, Y.; Tolibzoda, F.; Jacques, T.; Gassaway, M.; Xu, Q.; Wagner, F.; Zhang, Y.-L.; Palmer, M.; Holson, E.; et al. Multiplex Quantitative Assays Indicate a Need for Reevaluating Reported Small-Molecule TrkB Agonists. Sci. Signal. 2017, 10, eaal1670. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, P.; Szybiński, M.; Kisielewska, K.; Gołębiowski, F.; Krzemiński, P.; Rutkowska-Włodarczyk, I.; Moszczyński-Pętkowski, R.; Gurba-Bryśkiewicz, L.; Delis, M.; Mulewski, K.; et al. Do Small Molecules Activate the TrkB Receptor in the Same Manner as BDNF? Limitations of Published TrkB Low Molecular Agonists and Screening for Novel TrkB Orthosteric Agonists. Pharmaceuticals 2021, 14, 704. [Google Scholar] [CrossRef]
- Liu, X.; Obianyo, O.; Chan, C.B.; Huang, J.; Xue, S.; Yang, J.J.; Zeng, F.; Goodman, M.; Ye, K. Biochemical and Biophysical Investigation of the Brain-Derived Neurotrophic Factor Mimetic 7,8-Dihydroxyflavone in the Binding and Activation of the TrkB Receptor. J. Biol. Chem. 2014, 289, 27571–27584. [Google Scholar] [CrossRef]
- Merkouris, S.; Barde, Y.-A.; Binley, K.E.; Allen, N.D.; Stepanov, A.V.; Wu, N.C.; Grande, G.; Lin, C.-W.; Li, M.; Nan, X.; et al. Fully Human Agonist Antibodies to TrkB Using Autocrine Cell-Based Selection from a Combinatorial Antibody Library. Proc. Natl. Acad. Sci. USA 2018, 115, E7023–E7032. [Google Scholar] [CrossRef]
- Traub, S.; Stahl, H.; Rosenbrock, H.; Simon, E.; Florin, L.; Hospach, L.; Hörer, S.; Heilker, R. Pharmaceutical Characterization of Tropomyosin Receptor Kinase B-Agonistic Antibodies on Human Induced Pluripotent Stem (hiPS) Cell-Derived Neurons. J. Pharmacol. Exp. Ther. 2017, 361, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhao, Y.; Zhang, T.; Yin, C.; Qiao, J.; Guo, W.; Lu, B. TrkB Agonist Antibody Ameliorates Fertility Deficits in Aged and Cyclophosphamide-Induced Premature Ovarian Failure Model Mice. Nat. Commun. 2022, 13, 914. [Google Scholar] [CrossRef]
- Wang, J.-H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-Associated Virus as a Delivery Vector for Gene Therapy of Human Diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Zaman, H.; Khan, A.; Khan, K.; Toheed, S.; Abdullah, M.; Zeeshan, H.M.; Hameed, A.; Umar, M.; Shahid, M.; Malik, K.; et al. Adeno-Associated Virus-Mediated Gene Therapy. Crit. Rev. Eukaryot. Gene Expr. 2023, 33, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liao, M.Z. Clinical Pharmacology Considerations on Recombinant Adeno-Associated Virus-Based Gene Therapy. J. Clin. Pharmacol. 2022, 62, S79–S94. [Google Scholar] [CrossRef]
- Terracina, S.; Ferraguti, G.; Tarani, L.; Fanfarillo, F.; Tirassa, P.; Ralli, M.; Iannella, G.; Polimeni, A.; Lucarelli, M.; Greco, A.; et al. Nerve Growth Factor and Autoimmune Diseases. Curr. Issues Mol. Biol. 2023, 45, 8950–8973. [Google Scholar] [CrossRef]
- Arosio, B.; Guerini, F.R.; Voshaar, R.C.O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front. Behav. Neurosci. 2021, 15, 626906. [Google Scholar] [CrossRef]
- Cavaleri, D.; Moretti, F.; Bartoccetti, A.; Mauro, S.; Crocamo, C.; Carrà, G.; Bartoli, F. The Role of BDNF in Major Depressive Disorder, Related Clinical Features, and Antidepressant Treatment: Insight from Meta-Analyses. Neurosci. Biobehav. Rev. 2023, 149, 105159. [Google Scholar] [CrossRef]
- Zwolińska, W.; Bilska, K.; Tarhonska, K.; Reszka, E.; Skibińska, M.; Pytlińska, N.; Słopień, A.; Dmitrzak-Węglarz, M. Biomarkers of Depression among Adolescent Girls: BDNF and Epigenetics. Int. J. Mol. Sci. 2024, 25, 3281. [Google Scholar] [CrossRef]
- Liu, L.; Hao, M.; Yu, H.; Tian, Y.; Yang, C.; Fan, H.; Zhao, X.; Geng, F.; Mo, D.; Xia, L.; et al. The Associations of Brain-Derived Neurotrophic Factor (BDNF) Levels with Psychopathology and Lipid Metabolism Parameters in Adolescents with Major Depressive Disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2025. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Navarrete, J.-L.; Guzmán-Castillo, A.; Bustos, C.; Rojas, R. Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Salivary Cortisol Levels in College Students with Different Levels of Academic Stress. Study Protocol. PLoS ONE 2023, 18, e0282007. [Google Scholar] [CrossRef]
- Petrella, C.; Nenna, R.; Petrarca, L.; Tarani, F.; Paparella, R.; Mancino, E.; Di Mattia, G.; Conti, M.G.; Matera, L.; Bonci, E.; et al. Serum NGF and BDNF in Long-COVID-19 Adolescents: A Pilot Study. Diagnostics 2022, 12, 1162. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, B.; Swee, D.S.; Quinton, R.; Bonomi, M. Genetics of Congenital Hypogonadotropic Hypogonadism: Peculiarities and Phenotype of an Oligogenic Disease. Hum. Genet. 2021, 140, 77–111. [Google Scholar] [CrossRef] [PubMed]
- Laube, C.; Van Den Bos, W.; Fandakova, Y. The Relationship between Pubertal Hormones and Brain Plasticity: Implications for Cognitive Training in Adolescence. Dev. Cogn. Neurosci. 2020, 42, 100753. [Google Scholar] [CrossRef]
- Zanesco, A.M.; Velloso, L.A. Brain-Derived Neurotrophic Factor (BDNF) and Sex Differences in Metabolic Regulation. J. Neurochem. 2025, 169, e70245. [Google Scholar] [CrossRef] [PubMed]
- Saengkaew, T.; Howard, S.R. Genetics of Pubertal Delay. Clin. Endocrinol. 2022, 97, 473–482. [Google Scholar] [CrossRef]
- Hassani, B.H.M.; Ghasemi, N.; Malekzadeh, K. Neuron-Derived Neurotrophic Factor and Its Biological Functions: A Review Study. Mol. Biol. Rep. 2025, 52, 524. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Micangeli, G.; Lucarelli, M.; Tarani, L.; Ceccanti, M.; Spaziani, M.; D’Orazi, V.; Petrella, C.; Fiore, M. NGF and BDNF in Pediatrics Syndromes. Neurosci. Biobehav. Rev. 2023, 145, 105015. [Google Scholar] [CrossRef]

| Pubertal Disorder | Neurotrophin(s) Implicated | Mechanistic Pathways | Data Evidence | Translational Relevance |
|---|---|---|---|---|
| Central precocious puberty [31,90] | BDNF | ↑ Hypothalamic BDNF; TrkB–PI3K/Akt activation; FTO–m6A demethylation stabilizing BDNF; interaction with kisspeptin/KNDy circuits | Higher serum BDNF vs. controls; correlates with early GnRH pulsatility | Research biomarker; mechanistic insights but not clinically validated |
| Self-limited delayed puberty [53,91,92] | Mild neurotrophic involvement | Subthreshold variants in genes regulating GnRH neuron maturation | Partial overlap with CHH genes in some adolescents | Suggests modulatory rather than causal neurotrophic role |
| CHH/Kallmann syndrome [77,81,93] | NDNF, Semaphorin-related pathways | Impaired GnRH neuron migration; defective axon guidance; neurodevelopmental disruption | NDNF loss-of-function variants documented; anosmia + misrouted GnRH neurons | Strongest genetic link between neurotrophins and pubertal failure |
| Functional hypothalamic amenorrhea [94,95] | BDNF | Stress/energy deficit → reduced hypothalamic plasticity; estradiol–BDNF uncoupling | Markedly low circulating BDNF; blunted diurnal rhythm | Reflects reversible GnRH suppression; overlaps partially with CHH pathways |
| Metabolic pubertal disturbances (obesity/malnutrition) [54,96,97] | BDNF, NGF | BDNF–leptin interactions; diet-induced hypothalamic inflammation; altered excitatory/inhibitory balance | Associations between BDNF, adiposity, body mass index, and pubertal timing | Supports role of neurotrophins as metabolic sensors |
| Gonadal developmental alterations [55,62,90] | BDNF, NGF, NT-3 | Regulation of folliculogenesis, spermatogenesis, steroidogenesis | Expression studies in human gonads; functional evidence in animal models | Highlights peripheral neurotrophin function beyond central nervous system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Paparella, R.; Iafrate, N.; Lucibello, R.; Bei, A.; Bernabei, I.; Fiorentini, C.; Marchetti, L.; Pastore, F.; Maglione, V.; Niceta, M.; et al. Neurotrophic Control of Puberty: From Molecular Signaling to Disorders of Pubertal Timing. Curr. Issues Mol. Biol. 2026, 48, 3. https://doi.org/10.3390/cimb48010003
Paparella R, Iafrate N, Lucibello R, Bei A, Bernabei I, Fiorentini C, Marchetti L, Pastore F, Maglione V, Niceta M, et al. Neurotrophic Control of Puberty: From Molecular Signaling to Disorders of Pubertal Timing. Current Issues in Molecular Biology. 2026; 48(1):3. https://doi.org/10.3390/cimb48010003
Chicago/Turabian StylePaparella, Roberto, Norma Iafrate, Roberta Lucibello, Arianna Bei, Irene Bernabei, Cinzia Fiorentini, Lavinia Marchetti, Francesca Pastore, Vittorio Maglione, Marcello Niceta, and et al. 2026. "Neurotrophic Control of Puberty: From Molecular Signaling to Disorders of Pubertal Timing" Current Issues in Molecular Biology 48, no. 1: 3. https://doi.org/10.3390/cimb48010003
APA StylePaparella, R., Iafrate, N., Lucibello, R., Bei, A., Bernabei, I., Fiorentini, C., Marchetti, L., Pastore, F., Maglione, V., Niceta, M., Fiore, M., Venditti, S., Pucarelli, I., & Tarani, L. (2026). Neurotrophic Control of Puberty: From Molecular Signaling to Disorders of Pubertal Timing. Current Issues in Molecular Biology, 48(1), 3. https://doi.org/10.3390/cimb48010003

