Insulin-like Growth Factor 1 (IGF-1) in Hair Regeneration: Mechanistic Pathways and Therapeutic Potential
Abstract
1. Introduction
2. Role of IGF-1 in Hair Follicle Growth
- Anagen (growing) phase: Lasting 2–8 years on the scalp or 2 to 3 months on the eyebrows, anagen is characterized by active matrix–cell proliferation and melanogenesis while the hair bulb is tightly connected to the skin tissue [8,9]. Hair shaft elongation occurs during this stage, influenced by DP signals that regulate matrix–cell numbers [9]. Hair follicles in different body parts produce hairs of varying lengths, which is proportional to the duration of the anagen phase [9].
- Catagen (transition) phase: A brief apoptotic process where keratinocytes and melanocytes undergo programmed cell death (apoptosis). At the end of this phase, the DP retracts toward the bulge, a critical interaction point for initiating the next cycle [8,9]. Failure of the dermal papilla to reach the bulge during this phase may halt the hair cycle, causing hair shedding, which has been observed in both humans and mice [9].
3. IGF-1 Structure and Signaling in Hair Follicle Regulation
Structure Overview of IGF-1
4. Key IGF-1 Signaling Pathways in Hair Follicle Regulation
4.1. PI3K/AKT Signaling Pathway
4.2. MAPK/ERK Signaling Pathway
4.3. Other Signaling Pathways
5. IGF-1 and Hair Follicle Function
6. Regulation of IGF-1
7. IGF-1 Signal Transduction Mechanisms in Hair Follicles
8. In Vivo and In Vitro IGF-1 Hair Growth Studies
9. Safety and Side Effects
10. Future Research Directions
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGA | Androgenetic alopecia |
EGF | Epidermal Growth Factor |
EGFR | EGF Receptor |
IGF-1 | Insulin-like Growth Factor 1 |
IGFBPs | IGF-Binding Proteins |
IGF-1R | IGF-1 Receptor |
IRS1/IRS2 | Insulin Receptor Substrates 1/2 |
KGF | Keratinocyte Growth Factor |
PDGF | Platelet-Derived Growth Factor |
PDGFR | PDGF Receptor |
PIP2 | Phosphatidylinositol 4,5-Bisphosphate |
PIP3 | Phosphatidylinositol 3,4,5-Trisphosphate |
TGF-β1 | Transforming Growth Factor-β1 |
VEGF | Vascular Endothelial Growth Factor |
References
- Marks, D.H.; Penzi, L.R.; Ibler, E.; Manatis-Lornell, A.; Hagigeorges, D.; Yasuda, M.; Drake, L.A.; Senna, M.M. The Medical and Psychosocial Associations of Alopecia: Recognizing Hair Loss as More Than a Cosmetic Concern. Am. J. Clin. Dermatol. 2019, 20, 195–200. [Google Scholar] [CrossRef]
- Sebetic, K.; Sjerobabski Masnec, I.; Cavka, V.; Biljan, D.; Krolo, I. UV damage of the hair. Coll. Antropol. 2008, 32 (Suppl. 2), 163–165. [Google Scholar] [PubMed]
- Li, J.; Yang, Z.; Li, Z.; Gu, L.; Wang, Y.; Sung, C. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-beta1 in C57BL/6 mice in vivo. Growth Horm. IGF Res. 2014, 24, 89–94. [Google Scholar] [CrossRef]
- Nindl, B.C.; Pierce, J.R. Insulin-like growth factor I as a biomarker of health, fitness, and training status. Med. Sci. Sports Exerc. 2010, 42, 39–49. [Google Scholar] [CrossRef]
- Ren, J.; Samson, W.K.; Sowers, J.R. Insulin-like growth factor I as a cardiac hormone: Physiological and pathophysiological implications in heart disease. J. Mol. Cell. Cardiol. 1999, 31, 2049–2061. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Cotsarelis, G. Review of hair follicle dermal cells. J. Dermatol. Sci. 2010, 57, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; An, S.; Lee, J.; Lee, J.H.; Lee, J.N.; Kim, Y.S.; Ahn, K.J.; An, I.S.; Bae, S. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells. Biosci. Biotechnol. Biochem. 2017, 81, 2323–2329. [Google Scholar] [CrossRef]
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef]
- Paus, R.; Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 1999, 341, 491–497. [Google Scholar] [CrossRef]
- Su, H.Y.; Hickford, J.G.; Bickerstaffe, R.; Palmer, B.R. Insulin-like growth factor 1 and hair growth. Dermatol. Online J. 1999, 5, 1. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Pi, L.Q.; Hwang, S.T.; Lee, W.S. Effect of IGF-I on Hair Growth Is Related to the Anti-Apoptotic Effect of IGF-I and Up-Regulation of PDGF-A and PDGF-B. Ann. Dermatol. 2012, 24, 26–31. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, K.T.; Jo, S.J.; Cho, A.R.; Jeon, S.I.; Choi, H.D.; Kim, K.H.; Park, G.S.; Pack, J.K.; Kwon, O.S.; et al. Induction of hair growth by insulin-like growth factor-1 in 1,763 MHz radiofrequency-irradiated hair follicle cells. PLoS ONE 2011, 6, e28474. [Google Scholar] [CrossRef]
- Panchaprateep, R.; Asawanonda, P. Insulin-like growth factor-1: Roles in androgenetic alopecia. Exp. Dermatol. 2014, 23, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Filus, A.; Zdrojewicz, Z. Insulin-like growth factor-1 (IGF-1)—Structure and the role in the human body. Pediatr. Endocrinol. Diabetes Metab. 2015, 20, 161–169. [Google Scholar] [CrossRef] [PubMed]
- McInnes, C.; Sykes, B.D. Growth factor receptors: Structure, mechanism, and drug discovery. Biopolymers 1997, 43, 339–366. [Google Scholar] [CrossRef]
- Mothe, I.; Delahaye, L.; Filloux, C.; Pons, S.; White, M.F.; Van Obberghen, E. Interaction of wild type and dominant-negative p55PIK regulatory subunit of phosphatidylinositol 3-kinase with insulin-like growth factor-1 signaling proteins. Mol. Endocrinol. 1997, 11, 1911–1923. [Google Scholar] [CrossRef] [PubMed]
- Sitar, T.; Popowicz, G.M.; Siwanowicz, I.; Huber, R.; Holak, T.A. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl. Acad. Sci. USA 2006, 103, 13028–13033. [Google Scholar] [CrossRef]
- Zhu, C.; Qi, X.; Chen, Y.; Sun, B.; Dai, Y.; Gu, Y. PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in IGF-1-induced VEGF-C upregulation in breast cancer. J. Cancer Res. Clin. Oncol. 2011, 137, 1587–1594. [Google Scholar] [CrossRef]
- Yakar, S.; Adamo, M.L. Insulin-like growth factor 1 physiology: Lessons from mouse models. Endocrinol. Metab. Clin. N. Am. 2012, 41, 231–247. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Werner, H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 4882. [Google Scholar] [CrossRef]
- Zhao, J.; Harada, N.; Okajima, K. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae. Growth Horm. IGF Res. 2011, 21, 260–267. [Google Scholar] [CrossRef]
- Li, K.; Sun, Y.; Liu, S.; Zhou, Y.; Qu, Q.; Wang, G.; Wang, J.; Chen, R.; Fan, Z.; Liu, B.; et al. The AR/miR-221/IGF-1 pathway mediates the pathogenesis of androgenetic alopecia. Int. J. Biol. Sci. 2023, 19, 3307–3323. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yamamoto, N.; Nakagawa, T.; Ito, J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol. Cell. Neurosci. 2013, 56, 29–38. [Google Scholar] [CrossRef]
- Yamahara, K.; Yamamoto, N.; Nakagawa, T.; Ito, J. Insulin-like growth factor 1: A novel treatment for the protection or regeneration of cochlear hair cells. Hear. Res. 2015, 330, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.S.; Minh Nguyen, T.T.; Yi, E.J.; Zheng, S.; Bellere, A.D.; Zheng, Q.; Jin, X.; Kim, M.; Park, S.; Oh, S.; et al. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis. Heliyon 2024, 10, e29539. [Google Scholar] [CrossRef] [PubMed]
- Hembree, J.R.; Harmon, C.S.; Nevins, T.D.; Eckert, R.L. Regulation of human dermal papilla cell production of insulin-like growth factor binding protein-3 by retinoic acid, glucocorticoids, and insulin-like growth factor-1. J. Cell. Physiol. 1996, 167, 556–561. [Google Scholar] [CrossRef]
- Song, D.; Pan, S.; Jin, W.; Wu, R.; Zhao, T.; Jiang, J.; Zhu, M. Minoxidil delivered via a stem cell membrane delivery controlled release system promotes hair growth in C57BL/6J mice. Front. Bioeng. Biotechnol. 2023, 11, 1331754. [Google Scholar] [CrossRef]
- Roudabush, F.L.; Pierce, K.L.; Maudsley, S.; Khan, K.D.; Luttrell, L.M. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J. Biol. Chem. 2000, 275, 22583–22589. [Google Scholar] [CrossRef]
- Zhao, B.H.; Li, J.L.; Chen, Q.R.; Yang, N.S.; Bao, Z.Y.; Hu, S.S.; Chen, Y.; Wu, X.S. A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit. Genes 2021, 12, 24. [Google Scholar] [CrossRef]
- Qureshi, F.G.; Tchorzewski, M.T.; Duncan, M.D.; Harmon, J.W. EGF and IGF-I synergistically stimulate proliferation of human esophageal epithelial cells. J. Surg. Res. 1997, 69, 354–358. [Google Scholar] [CrossRef]
- Beckert, S.; Farrahi, F.; Perveen Ghani, Q.; Aslam, R.; Scheuenstuhl, H.; Coerper, S.; Konigsrainer, A.; Hunt, T.K.; Hussain, M.Z. IGF-I-induced VEGF expression in HUVEC involves phosphorylation and inhibition of poly(ADP-ribose)polymerase. Biochem. Biophys. Res. Commun. 2006, 341, 67–72. [Google Scholar] [CrossRef]
- Lu, W.; Xu, W.; Li, J.; Chen, Y.; Pan, Y.; Wu, B. Effects of vascular endothelial growth factor and insulin growth factor-1 on proliferation, migration, osteogenesis and vascularization of human carious dental pulp stem cells. Mol. Med. Rep. 2019, 20, 3924–3932. [Google Scholar] [CrossRef]
- Hwang, S.B.; Park, H.J.; Lee, B.H. Collagen Hydrolysate from the Scales of Mozambique Tilapia (Oreochromis mossambicus) Improve Hair and Skin Health by Alleviating Oxidative Stress and Inflammation and Promoting Hair Growth and Extracellular Matrix Factors. Mar. Drugs 2023, 21, 475. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Jin, G.R.; Jung, J.H.; Hwang, S.B.; Lee, S.H.; Lee, B.H. Hair Growth Promotion Effect of Nelumbinis Semen Extract with High Antioxidant Activity. Evid. Based Complement. Altern. Med. 2021, 2021, 6661373. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Park, J.U.; Lee, S.H.; Park, J.Y.; Lee, W.; Choi, K.M.; Kim, S.Y.; Park, M.H. Hair Growth Effect and the Mechanisms of Rosa rugosa Extract in DHT-Induced Alopecia Mice Model. Int. J. Mol. Sci. 2024, 25, 1362. [Google Scholar] [CrossRef]
- Demir, B.; Cicek, D.; Orhan, C.; Er, B.; Erten, F.; Tuzcu, M.; Ozercan, I.H.; Sahin, N.; Komorowski, J.; Ojalvo, S.P.; et al. Effects of a Combination of Arginine Silicate Inositol Complex and a Novel Form of Biotin on Hair and Nail Growth in a Rodent Model. Biol. Trace Elem. Res. 2023, 201, 751–765. [Google Scholar] [CrossRef]
- Choi, N.; Kim, K.C.; Jeong, P.Y.; Kim, B. Effects of the Complex of Panicum miliaceum Extract and Triticum aestivum Extract on Hair Condition. Nutrients 2023, 15, 4411. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Elsayyad, N.M.E.; Salama, A.; Noshi, S.H. Utilization of response surface design for development and optimization of rosuvastatin calcium-loaded nano-squarticles for hair growth stimulating VEGF and IGF production: In-vitro and in-vivo evaluation. Drug Dev. Ind. Pharm. 2023, 49, 580–589. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.M.; Jang, Y.N.; Park, A.Y.; Kim, S.Y.; Kim, B.J.; Lee, J.O. Irisin promotes hair growth and hair cycle transition by activating the GSK-3beta/beta-catenin pathway. Exp. Dermatol. 2024, 33, e15155. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Lee, M.J.; Lee, W.Y.; Pyo, J.; Shin, M.S.; Hwang, G.S.; Shin, D.; Kim, C.E.; Park, E.S.; Kang, K.S. Hair Growth Stimulation Effect of Centipeda minima Extract: Identification of Active Compounds and Anagen-Activating Signaling Pathways. Biomolecules 2021, 11, 976. [Google Scholar] [CrossRef]
- Xia, W.; Wang, C.; Guo, B.; Tang, Z.; Ye, X.; Dang, Y. Gpr54 deletion accelerates hair cycle and hair regeneration. EMBO Rep. 2024, 26, 200–217. [Google Scholar] [CrossRef]
- Escribano-Nunez, A.; Cornelis, F.M.F.; De Roover, A.; Sermon, A.; Cailotto, F.; Lories, R.J.; Monteagudo, S. IGF1 drives Wnt-induced joint damage and is a potential therapeutic target for osteoarthritis. Nat. Commun. 2024, 15, 9170. [Google Scholar] [CrossRef] [PubMed]
- Siegle, L.; Schwab, J.D.; Kuhlwein, S.D.; Lausser, L.; Tumpel, S.; Pfister, A.S.; Kuhl, M.; Kestler, H.A. A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS ONE 2018, 13, e0195126. [Google Scholar] [CrossRef]
- Roh, S.S.; Kim, C.D.; Lee, M.H.; Hwang, S.L.; Rang, M.J.; Yoon, Y.K. The hair growth promoting effect of Sophora flavescens extract and its molecular regulation. J. Dermatol. Sci. 2002, 30, 43–49. [Google Scholar] [CrossRef]
- Choi, J.S.; Jeon, M.H.; Moon, W.S.; Moon, J.N.; Cheon, E.J.; Kim, J.W.; Jung, S.K.; Ji, Y.H.; Son, S.W.; Kim, M.R. In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid. Biol. Pharm. Bull. 2014, 37, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Miao, Y.; Ji, H.; Wang, S.; Liang, G.; Zhang, Z.; Hong, W. 6-Gingerol inhibits hair cycle via induction of MMP2 and MMP9 expression. An. Acad. Bras. Ciênc. 2017, 89, 2707–2717. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Ye, D.; Zeng, W.; Ma, S.; Wang, Z.; Kuang, Y.; Yang, L. Promotion of hair growth by a conditioned medium from human umbilical cord mesenchymal stem cells cultivated in a 3D scaffold of gelatin sponge. Eur. J. Med. Res. 2024, 29, 270. [Google Scholar] [CrossRef]
- Hwang, K.A.; Hwang, Y.L.; Lee, M.H.; Kim, N.R.; Roh, S.S.; Lee, Y.; Kim, C.D.; Lee, J.H.; Choi, K.C. Adenosine stimulates growth of dermal papilla and lengthens the anagen phase by increasing the cysteine level via fibroblast growth factors 2 and 7 in an organ culture of mouse vibrissae hair follicles. Int. J. Mol. Med. 2012, 29, 195–201. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, Y.; Hyun, M.Y.; Choi, S.Y.; Jeong, K.H.; Park, Y.M.; Kang, H.; Park, K.Y.; Armstrong, C.A.; Johnson, A.; et al. Mycophenolate antagonizes IFN-gamma-induced catagen-like changes via beta-catenin activation in human dermal papilla cells and hair follicles. Int. J. Mol. Sci. 2014, 15, 16800–16815. [Google Scholar] [CrossRef]
- Guo, L.; Degenstein, L.; Fuchs, E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 1996, 10, 165–175. [Google Scholar] [CrossRef]
- Danilenko, D.M.; Ring, B.D.; Yanagihara, D.; Benson, W.; Wiemann, B.; Starnes, C.O.; Pierce, G.F. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol. 1995, 147, 145–154. [Google Scholar]
- Kim, E.J.; Choi, J.Y.; Park, B.C.; Lee, B.H. Platycarya strobilacea S. et Z. Extract Has a High Antioxidant Capacity and Exhibits Hair Growth-promoting Effects in Male C57BL/6 Mice. Prev. Nutr. Food Sci. 2014, 19, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yue, W.; Li, Q. Research progress on the relationship between insulin-like growth factor-I and lung cancer. Zhongguo Fei Ai Za Zhi 2010, 13, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Garza, L.A.; Liu, Y.; Yang, Z.; Alagesan, B.; Lawson, J.A.; Norberg, S.M.; Loy, D.E.; Zhao, T.; Blatt, H.B.; Stanton, D.C.; et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci. Transl. Med. 2012, 4, 126ra134. [Google Scholar] [CrossRef]
- Bui, T.; Straus, D.S. Effects of cyclopentenone prostaglandins and related compounds on insulin-like growth factor-I and Waf1 gene expression. Biochim. Biophys. Acta 1998, 1397, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.W.; Herczeg-Lisztes, E.; Funk, W.; Zillikens, D.; Biro, T.; Paus, R. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-beta2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro. Br. J. Dermatol. 2014, 171, 1031–1043. [Google Scholar] [CrossRef]
- Castela, M.; Linay, F.; Roy, E.; Moguelet, P.; Xu, J.; Holzenberger, M.; Khosrotehrani, K.; Aractingi, S. Igf1r signalling acts on the anagen-to-catagen transition in the hair cycle. Exp. Dermatol. 2017, 26, 785–791. [Google Scholar] [CrossRef]
- Bol, D.K.; Kiguchi, K.; Gimenez-Conti, I.; Rupp, T.; DiGiovanni, J. Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 1997, 14, 1725–1734. [Google Scholar] [CrossRef]
- Castro, R.F.; Azzalis, L.A.; Feder, D.; Perazzo, F.F.; Pereira, E.C.; Junqueira, V.B.; Rocha, K.C.; Machado, C.D.; Paschoal, F.C.; Gnann, L.A.; et al. Safety and efficacy analysis of liposomal insulin-like growth factor-1 in a fluid gel formulation for hair-loss treatment in a hamster model. Clin. Exp. Dermatol. 2012, 37, 909–912. [Google Scholar] [CrossRef]
- Trueb, R.M. Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia. Ski. Appendage Disord. 2018, 4, 90–95. [Google Scholar] [CrossRef]
- Philpott, M.P.; Sanders, D.A.; Kealey, T. Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J. Investig. Dermatol. 1994, 102, 857–861. [Google Scholar] [CrossRef]
- Jiang, Q.; Lou, K.; Hou, L.; Lu, Y.; Sun, L.; Tan, S.C.; Low, T.Y.; Kord-Varkaneh, H.; Pang, S. The effect of resistance training on serum insulin-like growth factor 1(IGF-1): A systematic review and meta-analysis. Complement. Ther. Med. 2020, 50, 102360. [Google Scholar] [CrossRef]
- Allen, N.E.; Appleby, P.N.; Davey, G.K.; Kaaks, R.; Rinaldi, S.; Key, T.J. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1441–1448. [Google Scholar]
- Harada, N.; Okajima, K.; Arai, M.; Kurihara, H.; Nakagata, N. Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia. Growth Horm. IGF Res. 2007, 17, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.G. IGF-I therapy in growth disorders. Eur. J. Endocrinol. 2007, 157 (Suppl. 1), S57–S60. [Google Scholar] [CrossRef]
- Nagaraj, K.; Sarfstein, R.; Laron, Z.; Werner, H. Long-Term IGF1 Stimulation Leads to Cellular Senescence via Functional Interaction with the Thioredoxin-Interacting Protein, TXNIP. Cells 2022, 11, 3260. [Google Scholar] [CrossRef] [PubMed]
- Bang, P.; Woelfle, J.; Perrot, V.; Sert, C.; Polak, M. Effectiveness and safety of rhIGF1 therapy in patients with or without Laron syndrome. Eur. J. Endocrinol. 2021, 184, 267–276. [Google Scholar] [CrossRef]
- Nakagawa, T.; Sakamoto, T.; Hiraumi, H.; Kikkawa, Y.S.; Yamamoto, N.; Hamaguchi, K.; Ono, K.; Yamamoto, M.; Tabata, Y.; Teramukai, S.; et al. Topical insulin-like growth factor 1 treatment using gelatin hydrogels for glucocorticoid-resistant sudden sensorineural hearing loss: A prospective clinical trial. BMC Med. 2010, 8, 76. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kumakawa, K.; Usami, S.; Hato, N.; Tabuchi, K.; Takahashi, M.; Fujiwara, K.; Sasaki, A.; Komune, S.; Sakamoto, T.; et al. A randomized controlled clinical trial of topical insulin-like growth factor-1 therapy for sudden deafness refractory to systemic corticosteroid treatment. BMC Med. 2014, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Strohl, W.R. Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters. BioDrugs 2015, 29, 215–239. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yang, Q.; Zhang, H.; Bai, C.; Liu, X.; Gao, Y. Ginger-Derived Extracellular Vesicles: A Natural Solution for Alopecia. Curr. Drug Deliv. 2024; in press. [Google Scholar] [CrossRef]
- Inan Yuksel, E.; Cicek, D.; Demir, B.; Sahin, K.; Tuzcu, M.; Orhan, C.; Ozercan, I.H.; Sahin, F.; Kocak, P.; Yildirim, M. Garlic Exosomes Promote Hair Growth Through the Wnt/beta-catenin Pathway and Growth Factors. Cureus 2023, 15, e42142. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, Z.; Lutz, H.; Huang, K.; Su, T.; Cores, J.; Dinh, P.C.; Cheng, K. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating beta-catenin signaling. Sci. Adv. 2020, 6, eaba1685. [Google Scholar] [CrossRef] [PubMed]
- Salhab, O.; Khayat, L.; Alaaeddine, N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: Narrative review. J. Biomed. Sci. 2022, 29, 77. [Google Scholar] [CrossRef]
- Wall, D.; Meah, N.; Fagan, N.; York, K.; Sinclair, R. Advances in hair growth. Fac. Rev. 2022, 11, 1. [Google Scholar] [CrossRef]
Model | Function | Reference |
---|---|---|
C57BL/6 mice | Local injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. | [3] |
K15-Igf1r(KO) mice | K15-Igf1r(KO) HFs entered anagen phase earlier than controls and showed a delay in the anagen/catagen switch. The expression of Bmp-4 mRNA was inhibited in HFs from K15-Igf1r(KO). | [58] |
Adult HK1.IGF-1 mice | HK1.IGF-1 transgenic mice developed papillomas faster and in markedly greater numbers compared to non-transgenic littermates. | [59] |
Hamsters | Efficacy was determined by dermatoscopy analysis of hair density and microscopy analysis of hair diameter, with hair found to be thicker and with more rapid growth in the 3% group than in either the 1% group or the control group. | [60] |
Angora Rabbit | The IGF-1 and EGF combination promoted the transition of the hair cycle from telogen to anagen and stimulated the growth of hair shafts. This IGF-1 and EGF combination maintained the structure of the HF and enhanced the cell proliferation of outer root sheaths and the dermal papilla within rabbit skin. | [30] |
Human | miR-221 inhibited hair growth and the proliferation of dermal papilla (DPCs) and sheath cells (DSCs) in androgenetic alopecia (AGA) patients, correlating positively with AR expression and negatively with IGF-1 expression. | [23] |
Human | Dermal papilla cells from balding scalp follicles secrete significantly less IGF-1 compared to those from non-balding scalp follicles. | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, W.-J.; Qiu, W.-Y.; Percec, I.; Chang, T.-M. Insulin-like Growth Factor 1 (IGF-1) in Hair Regeneration: Mechanistic Pathways and Therapeutic Potential. Curr. Issues Mol. Biol. 2025, 47, 773. https://doi.org/10.3390/cimb47090773
Hsieh W-J, Qiu W-Y, Percec I, Chang T-M. Insulin-like Growth Factor 1 (IGF-1) in Hair Regeneration: Mechanistic Pathways and Therapeutic Potential. Current Issues in Molecular Biology. 2025; 47(9):773. https://doi.org/10.3390/cimb47090773
Chicago/Turabian StyleHsieh, Wang-Ju, Wei-Yin Qiu, Ivona Percec, and Tsong-Min Chang. 2025. "Insulin-like Growth Factor 1 (IGF-1) in Hair Regeneration: Mechanistic Pathways and Therapeutic Potential" Current Issues in Molecular Biology 47, no. 9: 773. https://doi.org/10.3390/cimb47090773
APA StyleHsieh, W.-J., Qiu, W.-Y., Percec, I., & Chang, T.-M. (2025). Insulin-like Growth Factor 1 (IGF-1) in Hair Regeneration: Mechanistic Pathways and Therapeutic Potential. Current Issues in Molecular Biology, 47(9), 773. https://doi.org/10.3390/cimb47090773