Let-7c/RUNX1 Axis Promotes Cervical Cancer: A Bioinformatic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Expression Analysis
2.2. ROC Curve Analysis
2.3. Overall Survival Analysis
2.4. Analysis of Target Identification
2.5. Pathway and Biological Process (BP) Analysis
2.6. CpG Island Prediction on RUNX1 Promoter
2.7. Methylation Analysis
2.8. Transcription Factor Identification
3. Results
3.1. miR-Let-7c Expression Decreases in CC
3.2. Identification of Pathways and BPs Associated with Let-7c Targets in CC
3.3. RUNX1 Expression Increases in CC
3.4. Methylation Levels Increase in RUNX1 Promoter in CC
3.5. The AP-2α Transcription Factor Binds to RUNX1 Promoter in HeLa-S3 CC Cell Line
3.6. Identification of Pathways Regulated Through RUNX1 in CC
3.7. Analysis of Expression of 4 Potential Target Genes of RUNX1 in CC
3.8. Prognostic Value of Four Potential Target Genes of RUNX1 in CC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
TCGA | The Cancer Genome Atlas |
GEO | Gene Expression Omnibus |
HPA | Human Protein Atlas |
IGV | Integrative Genomics Viewer |
CISTROME | The set of cis-acting targets of a trans-acting factor on a genome-wide scale |
CC | Cervical cancer |
ENCODE | Encyclopedia of DNA Elements |
ExPASy | Expert Protein Analysis System |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
BP | Biological processes |
MSigDB | Molecular Signatures Database |
CDH7 | Cadherin 7 |
circRNAs | Circular RNAs |
miRNAs | MicroRNAs |
lncRNAs | Long non-coding RNAs |
ID1 | Inhibitor of DNA binding 1 |
COL1A1 | Collagen Type I Alpha 1 Chain |
Myc | MYC Proto-Oncogene, BHLH Transcription Factor |
MAPK | Mitogen-Activated Protein Kinase |
HR-HPV | High-Risk Human Papillomavirus |
TGFB2 | Transforming Growth Factor Beta 2 |
AP-2α | Transcription Factor AP-2 Alpha |
WNT | “Wingless” (a gene in fruit flies) and “Int-1” (a gene in mice) |
BDNF | Brain-Derived Neurotrophic Factor |
PD-L1 | Programmed Death Ligand 1 |
OS | Overall Survival |
RFS | Relapse-Free Survival |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
CI | Confidence Interval |
GEPIA | Gene Expression Profile Interactive Analysis |
DEGs | Differentially Expressed Genes |
FC | Fold Change |
GO | Gene Ontology |
ENCORI | Encyclopedia of RNA Interactomes |
RNA-seq | RNA sequencing |
ChIP-seq | Chromatin ImmunoPrecipitation-sequencing |
RUNX1 | Runt-related transcription factor 1 |
GLOBOCAN | Global Cancer Observatory |
OncoDB | Oncology Data Base |
SFRP4 | Secreted Frizzled Related Protein 4 |
FBN1 | Fibrillin 1 |
FOXO34 | Forkhead Box O34 |
CDC42BPG | CDC42 Binding Protein Kinase Gamma) |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Okunade, K.S. Human papillomavirus and cervical cancer. J. Obs. Gynaecol. 2020, 40, 602–608. [Google Scholar] [CrossRef]
- Parashar, D.; Singh, A.; Gupta, S.; Sharma, A.; Sharma, M.K.; Roy, K.K.; Chauhan, S.C.; Kashyap, V.K. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes 2022, 13, 1254. [Google Scholar] [CrossRef]
- Chakrabortty, A.; Patton, D.J.; Smith, B.F.; Agarwal, P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes 2023, 14, 1375. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zou, L.; Xu, J.; Zhou, X.; Zhang, Y. Let-7c-5p Targeting CHD7 Hinders Cervical Cancer Migration and Invasion by Regulating Cell Adhesion. Biochem. Genet. 2024, 1–16. [Google Scholar] [CrossRef]
- Na, Y.; Huang, G.; Wu, J. The Role of RUNX1 in NF1-Related Tumors and Blood Disorders. Mol. Cells 2020, 43, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Z.; Zhang, Y.; Wang, X.; Dai, S.; Liu, K.; Xia, D.; Wang, J.; Bi, L. RUNX1 is a promising prognostic biomarker and related to immune infiltrates of cancer-associated fibroblasts in human cancers. BMC Cancer 2022, 22, 523. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, H.; He, C.; Qin, K.; Lai, Q.; Fang, Y.; Chen, Q.; Li, W.; Wang, Y.; Wang, X.; et al. RUNX1 promotes angiogenesis in colorectal cancer by regulating the crosstalk between tumor cells and tumor associated macrophages. Biomark. Res. 2024, 12, 29. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, S.; Yuan, Y.; Li, J.; Li, Y.; Lv, Y.; Du, T.; Guan, J.; Jiang, X.; Tian, L.; et al. RUNX1 promotes proliferation and migration in non-small cell lung cancer cell lines via the mTOR pathway. FASEB J. 2023, 37, e23195. [Google Scholar] [CrossRef]
- Wilting, S.M.; Snijders, P.J.; Verlaat, W.; Jaspers, A.; van de Wiel, M.A.; van Wieringen, W.N.; Meijer, G.A.; Kenter, G.G.; Yi, Y.; le Sage, C.; et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013, 32, 106–116. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Y.; Zhu, M.; Liu, S.; Wang, X. miRNA Expression Profiles of HPV-Infected Patients with Cervical Cancer in the Uyghur Population in China. PLoS ONE 2016, 11, e0164701. [Google Scholar] [CrossRef]
- Sharma, S.; Mandal, P.; Sadhukhan, T.; Roy Chowdhury, R.; Ranjan Mondal, N.; Chakravarty, B.; Chatterjee, T.; Roy, S.; Sengupta, S. Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis. Sci. Rep. 2015, 5, 11724. [Google Scholar] [CrossRef] [PubMed]
- den Boon, J.A.; Pyeon, D.; Wang, S.S.; Horswill, M.; Schiffman, M.; Sherman, M.; Zuna, R.E.; Wang, Z.; Hewitt, S.M.; Pearson, R.; et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc. Natl. Acad. Sci. USA 2015, 112, E3255–E3264. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Sarver, A.L.; Sarver, A.E.; Yuan, C.; Subramanian, S. OMCD: OncomiR Cancer Database. BMC Cancer 2018, 18, 1223. [Google Scholar] [CrossRef]
- Tang, G.; Cho, M.; Wang, X. OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022, 50, D1334–D1339. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Nagy, A.; Munkacsy, G.; Gyorffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep. 2021, 11, 6047. [Google Scholar] [CrossRef]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stockel, D.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020, 48, D142–D147. [Google Scholar] [CrossRef]
- Zheng, R.; Wan, C.; Mei, S.; Qin, Q.; Wu, Q.; Sun, H.; Chen, C.H.; Brown, M.; Zhang, X.; Meyer, C.A.; et al. Cistrome Data Browser: Expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019, 47, D729–D735. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Meylan, P.; Dreos, R.; Ambrosini, G.; Groux, R.; Bucher, P. EPD in 2020: Enhanced data visualization and extension to ncRNA promoters. Nucleic Acids Res. 2020, 48, D65–D69. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Li, L.C.; Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Jones, A.; Fiegl, H.; Sargent, A.; Zhuang, J.J.; Kitchener, H.C.; Widschwendter, M. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 2012, 4, 24. [Google Scholar] [CrossRef]
- Xing, J.; Zhai, R.; Wang, C.; Liu, H.; Zeng, J.; Zhou, D.; Zhang, M.; Wang, L.; Wu, Q.; Gu, Y.; et al. DiseaseMeth version 3.0: A major expansion and update of the human disease methylation database. Nucleic Acids Res. 2022, 50, D1208–D1215. [Google Scholar] [CrossRef]
- Grabe, N. AliBaba2: Context specific identification of transcription factor binding sites. Silico Biol. 2002, 2, S1–S15. [Google Scholar]
- Messeguer, X.; Escudero, R.; Farré, D.; Núñez, O.; Martínez, J.; Albà, M.M. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002, 18, 333–334. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdottir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, G.; Qian, J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 2016, 17, 551–565. [Google Scholar] [CrossRef]
- Wu, Y.; Kröller, L.; Miao, B.; Boekhoff, H.; Bauer, A.S.; Büchler, M.W.; Hackert, T.; Giese, N.A.; Taipale, J.; Hoheisel, J.D. Promoter Hypermethylation Promotes the Binding of Transcription Factor NFATc1, Triggering Oncogenic Gene Activation in Pancreatic Cancer. Cancers 2021, 13, 4569. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Luo, X.; Wang, J.; Wan, J.; Xia, S.; Zhu, H.; Qian, J.; Wang, Y. MeDReaders: A database for transcription factors that bind to methylated DNA. Nucleic Acids Res. 2018, 46, D146–D151. [Google Scholar] [CrossRef]
- Pan, Z.; Zheng, W.; Zhang, J.; Gao, R.; Li, D.; Guo, X.; Han, H.; Li, F.; Qu, S.; Shao, R. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma. BMC Cancer 2014, 14, 417. [Google Scholar] [CrossRef]
- Long, H.; Li, Y.; Wang, H.; Guo, B.; Song, S.; Zhe, X.; Li, H.; Li, D.; Shao, R.; Pan, Z. C/EBPβ expression decreases in cervical cancer and leads to tumorigenesis. BMC Cancer 2023, 23, 79. [Google Scholar] [CrossRef]
- Sangha, N.; Wu, R.; Kuick, R.; Powers, S.; Mu, D.; Fiander, D.; Yuen, K.; Katabuchi, H.; Tashiro, H.; Fearon, E.R.; et al. Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia 2008, 10, 1362–1372. [Google Scholar] [CrossRef]
- Beger, M.; Butz, K.; Denk, C.; Hoppe-Seyler, F.; Williams, T.; Hurst, H.C. Expression pattern of AP-2 transcription factors in cervical cancer cells and analysis of their influence on human papillomavirus oncogene transcription. J. Mol. Med. 2001, 79, 314–320. [Google Scholar] [CrossRef]
- Yang, J.; Gao, Y.; Yao, S.; Wan, S.; Cai, H. TFAP2A promotes cervical cancer via a positive feedback pathway with PD-L1. Oncol. Rep. 2023, 49, 114. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Pramodh, S.; Hussain, A.; Elsori, D.; Lakhanpal, S.; Kumar, R.; Alsaweed, M.; Iqbal, D.; Pandey, P.; Al Othaim, A.; et al. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front. Cell Dev. Biol. 2024, 12, 1397945. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, H.; Xie, L.; Wang, X.; He, H.; Lin, Y.; Hu, L. Correlation of inhibitor of differentiation 1 expression to tumor progression, poor differentiation and aggressive behaviors in cervical carcinoma. Gynecol. Oncol. 2009, 114, 89–93. [Google Scholar] [CrossRef]
- Abba, M.C.; Laguens, R.M.; Dulout, F.N.; Golijow, C.D. The c-myc activation in cervical carcinomas and HPV 16 infections. Mutat. Res. 2004, 557, 151–158. [Google Scholar] [CrossRef]
- Liu, S.; Liao, G.; Li, G. Regulatory effects of COL1A1 on apoptosis induced by radiation in cervical cancer cells. Cancer Cell Int. 2017, 17, 73. [Google Scholar] [CrossRef]
- Hasan, A.; Khan, N.A.; Uddin, S.; Khan, A.Q.; Steinhoff, M. Deregulated transcription factors in the emerging cancer hallmarks. Semin. Cancer Biol. 2024, 98, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Cai, L.; Zhang, X.Q.; Lei, Z.; Yi, C.S.; Liu, X.D.; Yang, J.G. Dysregulated RUNX1 Predicts Poor Prognosis by Mediating Epithelialmesenchymal Transition in Cervical Cancer. Curr. Med. Sci. 2022, 42, 1285–1296. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, N.; Tang, S.; Deng, L.; Wang, Y.; Cai, X. RUNX1 promotes proliferation of cervical cancer through TGFB2-MAPK pathway. Sci. Rep. 2025, 15, 497. [Google Scholar] [CrossRef]
- Rauluseviciute, I.; Drablos, F.; Rye, M.B. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Med. Genom. 2020, 13, 6. [Google Scholar] [CrossRef]
- Smith, J.; Sen, S.; Weeks, R.J.; Eccles, M.R.; Chatterjee, A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 2020, 6, 392–406. [Google Scholar] [CrossRef]
- Manzo-Merino, J.; Contreras-Paredes, A.; Vazquez-Ulloa, E.; Rocha-Zavaleta, L.; Fuentes-Gonzalez, A.M.; Lizano, M. The role of signaling pathways in cervical cancer and molecular therapeutic targets. Arch. Med. Res. 2014, 45, 525–539. [Google Scholar] [CrossRef]
- McMellen, A.; Woodruff, E.R.; Corr, B.R.; Bitler, B.G.; Moroney, M.R. Wnt Signaling in Gynecologic Malignancies. Int. J. Mol. Sci. 2020, 21, 4272. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ye, H.Q.; Ren, Q.C. Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol. Rep. 2018, 40, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.N.; Lin, J.H.; Liu, P.P. EBF1 Promotes the Sensitivity of Cervical Cancer Cells to Cisplatin via Activating FBN1 Transcription. Mol. Biol. 2023, 57, 503–504. [Google Scholar] [CrossRef]
- Guo, L.; Chen, H.; Chen, J.; Gao, C.; Fu, X.; Zhou, S.; Wu, W.; Li, T.; Lin, J.; Yang, T.; et al. PBX1-promoted SFRP4 transcription inhibits cell proliferation and epithelial-mesenchymal transition in endometrial carcinoma. Tissue Cell 2023, 82, 102083. [Google Scholar] [CrossRef]
Dataset | Database | Study | Platform | Total Samples (CC/Controls) | Assay | PMID |
---|---|---|---|---|---|---|
TCGA | OncoMir | miRNAs | NA | 313 (310/3) | RNA-seq | 30522456 |
GSE30656 | GEO | miRNAs | GPL6955 | 29 (19/10) | Microarray | 22330141/11752295 |
GSE86100 | GEO | miRNAs | GPL19730 | 12 (6/6) | Microarray | 27764149/11752295 |
TCGA | OncoDB | mRNAs | NA | 326 (304/22) | RNA-seq | 34718715 |
TCGA | GEPIA | mRNAs | NA | 3 19(306/13) | RNA-seq | 28407145 |
GSE67522 | GEO | mRNAs | GPL10558 | 42 (20/22) | Microarray | 26152361/11752295 |
GSE63514 | GEO | mRNAs | GPL580 | 52 (28/24) | Microarray | 26056290/11752295 |
TCGA | DiseaseMeth | Methylation | GPL13534 | 313 (310/3) | Microarray | 34792145 |
GSE30760 | GEO | Methylation | GPL8490 | 215 (63/152) | Microarray | 22453031/11752295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacapala-Gómez, A.E.; Hernández-Galicia, G.; Torres-Rojas, F.I.; Baños-Hernández, C.J.; Ortiz-Ortiz, J.; Jiménez-Wences, H.; Campos-Viguri, G.E.; Antonio-Véjar, V.; Alarcón-Millán, J.; Salmerón-Bárcenas, E.G. Let-7c/RUNX1 Axis Promotes Cervical Cancer: A Bioinformatic Analysis. Curr. Issues Mol. Biol. 2025, 47, 757. https://doi.org/10.3390/cimb47090757
Zacapala-Gómez AE, Hernández-Galicia G, Torres-Rojas FI, Baños-Hernández CJ, Ortiz-Ortiz J, Jiménez-Wences H, Campos-Viguri GE, Antonio-Véjar V, Alarcón-Millán J, Salmerón-Bárcenas EG. Let-7c/RUNX1 Axis Promotes Cervical Cancer: A Bioinformatic Analysis. Current Issues in Molecular Biology. 2025; 47(9):757. https://doi.org/10.3390/cimb47090757
Chicago/Turabian StyleZacapala-Gómez, Ana Elvira, Gabriela Hernández-Galicia, Francisco Israel Torres-Rojas, Christian Johana Baños-Hernández, Julio Ortiz-Ortiz, Hilda Jiménez-Wences, Gabriela Elizabeth Campos-Viguri, Verónica Antonio-Véjar, Judit Alarcón-Millán, and Eric Genaro Salmerón-Bárcenas. 2025. "Let-7c/RUNX1 Axis Promotes Cervical Cancer: A Bioinformatic Analysis" Current Issues in Molecular Biology 47, no. 9: 757. https://doi.org/10.3390/cimb47090757
APA StyleZacapala-Gómez, A. E., Hernández-Galicia, G., Torres-Rojas, F. I., Baños-Hernández, C. J., Ortiz-Ortiz, J., Jiménez-Wences, H., Campos-Viguri, G. E., Antonio-Véjar, V., Alarcón-Millán, J., & Salmerón-Bárcenas, E. G. (2025). Let-7c/RUNX1 Axis Promotes Cervical Cancer: A Bioinformatic Analysis. Current Issues in Molecular Biology, 47(9), 757. https://doi.org/10.3390/cimb47090757