JUNB and JUND in Urological Cancers: A Literature Review
Abstract
1. Introduction
2. Structural and Regulatory Characteristics of the JUN Family of Transcription Factors
2.1. Commonalities and Differences Between the Three JUN Family Proteins
2.2. Structure and Post-Translational Modifications of JUNB
2.3. Structure and Post-Translational Modifications of JUND
3. Prostate Cancer
3.1. JUNB in Prostate Cancer
Cancer | Model | Role | Mechanism | Effect | Ref. |
---|---|---|---|---|---|
PCa | Patient-derived tissues and human PCa cell lines | Tumor suppressor | Upregulation of p16 INK4a | Senescence maintenance | [81] |
PCa | Patient-derived PCa cells and mice | Tumor suppressor | Cooperation with PTEN | Invasion suppression | [82] |
PCa | Human PCa cell lines and mice | Tumor suppressor | Cooperation with FOS | Invasion suppression | [33] |
PCa | Bioinformatics study | Tumor suppressor | Low JUNB levels in metastatic PCa are correlated to a poor prognosis | Metastasis biomarker | [87,88] |
PCa | Human PCa cell lines (DU-145, PC-3, PZ-HPV-7, LNCaP) | Tumor suppressor | Positive regulation on the KAI1 gene | Metastasis suppression | [89,90] |
PCa | Androgen-independent human PCa cell line (PC-3) | Tumor suppressor | Endoglin activates Smad1-responsive genes (JUNB, STAT1, and SOX4) | Metastasis suppression | [94] |
PCa | PCa-derived circulating tumor cells (CTCs) | Tumor suppressor | JUNB is present in 28% of PCa CTCs. CK+/CXCR4+/JUNB- phenotypes are correlated to poor prognosis | Metastasis biomarker | [95] |
PCa | Human PCa cell lines (DU-145, PC-3, LNCaP) and mice xenografts | Tumor suppressor | The expression of JUNB increases as a result of JDP2 | Tumorigenesis inhibition | [96] |
PCa | Patient-derived PCa tissues | Tumor suppressor | JUNB, KMT2A, and XPO6 are downregulated by hsa-miR-22-3p, hsa-miR-663a, and hsa-miR-4674 in mPCa | Metastasis suppression | [97] |
PCa | Patient-derived PCa tissues and human cell lines | Tumor suppressor | miR-95 of exosomal origin targets JUNB | EMT Maintenance | [98] |
PCa | Androgen-independent human PCa cell line (DU-145) | Oncogene | Similarly to c-JUN, it contributes to the expression of FGF1, PTPN5, ADAM19, SERPINE1, CXCR7, MMP9, PLAU, and PTHLH | Migration promotion | [99] |
PCa | Patient-derived PCa tissues, human PCa cell lines (DU-145, PC-3, LNCaP) and mice | Oncogene | CDK5 activates STAT3, which in turn upregulates JUNB, FOS, MYC, and Survivin (BIRC5) | Cell growth | [100] |
PCa | Patient-derived PCa tissues | Oncogene | ADT induces the activation of ZFP36, JUNB, and SOCS3 | TMI remodeling | [101] |
PCa | Androgen-independent human PCa cell lines (DU-145, PC-3M) | Oncogene | GADD45B, CTGF, and JUNB are induced by the Smad3-EPSM | Metastasis promotion | [102] |
CRPC | Patient-derived PCa tissues | Oncogene | TERC, MYBL3, HRAS, PI3KCA, LAMC2, RAF1, MYC, GARP, SAS, FGFR1, PGY1, MYCL1, MYB, FGR, and JUNB are found amplified in CRPC | Disease progression | [103] |
CRPC | Patient-derived PCa tissues | Oncogene | A TFCG enriched in mCRPC contains JUN, JUNB, JUND, FOS, FOSB, and FOSL1 | Disease progression | [104] |
CRPC | Rat ventral prostate epithelial cells | Oncogene | Androgen suppresses JUNB expression, while the loss of hormone dependency fuels its activation | Proliferation promotion | [105] |
3.2. JUND in Prostate Cancer
4. Bladder Cancer
4.1. JUNB in Bladder Cancer
4.2. JUND in Bladder Cancer
5. Renal Cancer
5.1. JUNB in Renal Cancers
Cancer | Model | Role | Mechanism | Effect | Ref. |
---|---|---|---|---|---|
RCC | Patient-derived tissues and human RCC cell lines (R4, R6, and R11) | Tumor suppressor | JUNB exhibits opposing effects compared to c-JUN, and TGF-b1 increased the expression of JUNB | Inhibits tumorigenesis | [167] |
RCC | Rat-derived tumors and rat RCC cell lines (LK9d, ERC-18, ERC27, ERC-31) | Oncogene | JUNB is overexpressed in early-stage rat RCC tumors compared to normal kidney tissue | Disease development | [168] |
ccRCC | Patient-derived tissues and human ccRCC (786-O) and 293T cells | Oncogene | JUNB was downregulated by miR-199a-5p | Metastasis promotion | [169] |
Kidney cancer | Mouse kidney epithelial cell line (MCT) | Oncogene | JUNB suppresses ID2 | EMT promotion | [170] |
ccRCC | Patient-derived tissues and human RCC cell lines (R4, R6, and R11) | Oncogene | JUNB exhibits oncogenic activity via one of its downstream effectors, CCL2 | Promotes proliferation | [171] |
RCC | Human RCC cell lines (786-O and A498) | Oncogene | c-RET and VHL mutations lead to increased JunB | Apoptosis suppression | [172] |
RCC | Patient-derived tissues and human VHL-deficient RCC cell lines (786-O and A498) | Oncogene | JUNB promotes cell invasion and angiogenesis, while its suppression reverses the effect | Invasion promotion | [173] |
Leydig cells | The mouse Leydig-cell tumor cell line (MA-10) | Oncogene | JUNB exhibits increased activity following treatment with hCG | AP1 activation | [174] |
5.2. JUND in Renal Cancer
6. Testicular Cancer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucharz, E.J. Urinary and Reproductive Systems. In The Collagens: Biochemistry and Pathophysiology; Kucharz, E.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-642-76197-3. [Google Scholar]
- Libretti, S.; Aeddula, N.R. Genitourinary. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Wu, X.-R. Biology of Urothelial Tumorigenesis: Insights from Genetically Engineered Mice. Cancer Metastasis Rev. 2009, 28, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhuang, J.; Shen, B. The Role of Microbiota in Tumorigenesis, Progression and Treatment of Bladder Cancer. Microbiome Res. Rep. 2024, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.R.; Gopal, N.; Ball, M.W. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes 2022, 13, 2122. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Bilim, V.; Kuroki, H.; Shirono, Y.; Murata, M.; Hiruma, K.; Tomita, Y. Advanced Bladder Cancer: Changing the Treatment Landscape. J. Pers. Med. 2022, 12, 1745. [Google Scholar] [CrossRef]
- Hushmandi, K.; Farahani, N.; Einollahi, B.; Salimimoghadam, S.; Alimohammadi, M.; Liang, L.; Liu, L.; Sethi, G. Deciphering Molecular Pathways in Urological Cancers: A Gateway to Precision Therapeutics. J. Adv. Res. 2025, in press. [Google Scholar] [CrossRef]
- Mallah, H.; Diabasana, Z.; Soultani, S.; Idoux-Gillet, Y.; Massfelder, T. Prostate Cancer: A Journey Through Its History and Recent Developments. Cancers 2025, 17, 194. [Google Scholar] [CrossRef]
- Gill, E.; Perks, C.M. Mini-Review: Current Bladder Cancer Treatment—The Need for Improvement. Int. J. Mol. Sci. 2024, 25, 1557. [Google Scholar] [CrossRef]
- Manini, C.; López-Fernández, E.; López, J.I.; Angulo, J.C. Advances in Urological Cancer in 2022, from Basic Approaches to Clinical Management. Cancers 2023, 15, 1422. [Google Scholar] [CrossRef]
- Rose, T.L.; Kim, W.Y. Renal Cell Carcinoma. JAMA 2024, 332, 1001–1010. [Google Scholar] [CrossRef]
- Powles, T.; Albiges, L.; Bex, A.; Comperat, E.; Grünwald, V.; Kanesvaran, R.; Kitamura, H.; McKay, R.; Porta, C.; Procopio, G.; et al. Renal Cell Carcinoma: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up☆. Ann. Oncol. 2024, 35, 692–706. [Google Scholar] [CrossRef]
- Ge, Q.; Li, J.; Yang, F.; Tian, X.; Zhang, M.; Hao, Z.; Liang, C.; Meng, J. Molecular Classifications of Prostate Cancer: Basis for Individualized Risk Stratification and Precision Therapy. Ann. Med. 2023, 55, 2279235. [Google Scholar] [CrossRef] [PubMed]
- Posdzich, P.; Darr, C.; Hilser, T.; Wahl, M.; Herrmann, K.; Hadaschik, B.; Grünwald, V. Metastatic Prostate Cancer—A Review of Current Treatment Options and Promising New Approaches. Cancers 2023, 15, 461. [Google Scholar] [CrossRef] [PubMed]
- Kalampounias, G.; Zafeiropoulou, K.; Androutsopoulou, T.; Alexis, S.; Symeonidis, A.; Katsoris, P. The Transcription Axes ERK-Elk1, JNK-cJun, and JAK-STAT Promote Autophagy Activation and Proteasome Inhibitor Resistance in Prostate Cancer Cells. Curr. Issues Mol. Biol. 2025, 47, 352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Z.; Zhang, X.; Yuan, Z.; Zhang, L.; Miao, P. ATF Family Members as Therapeutic Targets in Cancer: From Mechanisms to Pharmacological Interventions. Pharmacol. Res. 2024, 208, 107355. [Google Scholar] [CrossRef]
- Hushmandi, K.; Saadat, S.H.; Raei, M.; Daneshi, S.; Aref, A.R.; Nabavi, N.; Taheriazam, A.; Hashemi, M. Implications of C-Myc in the Pathogenesis and Treatment Efficacy of Urological Cancers. Pathol.—Res. Pract. 2024, 259, 155381. [Google Scholar] [CrossRef]
- Li, M.; Yu, J.; Ju, L.; Wang, Y.; Jin, W.; Zhang, R.; Xiang, W.; Ji, M.; Du, W.; Wang, G.; et al. USP43 Stabilizes C-Myc to Promote Glycolysis and Metastasis in Bladder Cancer. Cell Death Dis. 2024, 15, 44. [Google Scholar] [CrossRef]
- Zafeiropoulou, K.; Kalampounias, G.; Alexis, S.; Anastasopoulos, D.; Symeonidis, A.; Katsoris, P. Autophagy and Oxidative Stress Modulation Mediate Bortezomib Resistance in Prostate Cancer. PLoS ONE 2024, 19, e0289904. [Google Scholar] [CrossRef]
- Franz, A.; Plage, H.; Fendler, A.; Schlomm, T.; Kornienko, K. Precision oncology options in urological cancers. Urologie 2023, 62, 696–704. [Google Scholar] [CrossRef]
- Fragkoulis, C.; Ntoumas, G.; Glykas, I.; Papadopoulos, G.; Stathouros, G.; Kostopoulou, A.; Choreftaki, T.; Ntoumas, K. Expression of Proto-Oncogene c-Myc in Patients with Urinary Bladder Transitional Cell Carcinoma. Curr. Urol. 2021, 15, 231–233. [Google Scholar] [CrossRef]
- Udayappan, U.K.; Casey, P.J. C-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells. Molecules 2017, 22, 612. [Google Scholar] [CrossRef] [PubMed]
- Millena, A.C.; Vo, B.T.; Khan, S.A. JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-Induced Inhibition of Cell Proliferation. J. Biol. Chem. 2016, 291, 17964–17976. [Google Scholar] [CrossRef] [PubMed]
- Kalampounias, G.; Androutsopoulou, T.; Katsoris, P. Mechanistic Insights and Clinical Implications of ELK1 in Solid Tumors: A Narrative Review. Cells 2025, 14, 1257. [Google Scholar] [CrossRef] [PubMed]
- Nadal, R.; Valderrama, B.P.; Bellmunt, J. Progress in Systemic Therapy for Advanced-Stage Urothelial Carcinoma. Nat. Rev. Clin. Oncol. 2024, 21, 8–27. [Google Scholar] [CrossRef]
- Moreira-Silva, F.; Henrique, R.; Jerónimo, C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front. Oncol. 2022, 12, 877379. [Google Scholar] [CrossRef]
- Dong, L.; Zieren, R.C.; Xue, W.; de Reijke, T.M.; Pienta, K.J. Metastatic Prostate Cancer Remains Incurable, Why? Asian J. Urol. 2019, 6, 26–41. [Google Scholar] [CrossRef]
- Parray, A.; Siddique, H.R.; Nanda, S.; Konety, B.R.; Saleem, M. Castration-Resistant Prostate Cancer: Potential Targets and Therapies. Biologics 2012, 6, 267–276. [Google Scholar] [CrossRef][Green Version]
- Bejjani, F.; Evanno, E.; Zibara, K.; Piechaczyk, M.; Jariel-Encontre, I. The AP-1 Transcriptional Complex: Local Switch or Remote Command? Biochim. Biophys. Acta (BBA)—Rev. Cancer 2019, 1872, 11–23. [Google Scholar] [CrossRef]
- Song, D.; Lian, Y.; Zhang, L. The Potential of Activator Protein 1 (AP-1) in Cancer Targeted Therapy. Front. Immunol. 2023, 14, 1224892. [Google Scholar] [CrossRef]
- Shaulian, E. AP-1—The Jun Proteins: Oncogenes or Tumor Suppressors in Disguise? Cell. Signal. 2010, 22, 894–899. [Google Scholar] [CrossRef]
- Riedel, M.; Cai, H.; Stoltze, I.C.; Vendelbo, M.H.; Wagner, E.F.; Bakiri, L.; Thomsen, M.K. Targeting AP-1 Transcription Factors by CRISPR in the Prostate. Oncotarget 2021, 12, 1956–1961. [Google Scholar] [CrossRef] [PubMed]
- Eferl, R.; Wagner, E.F. AP-1: A Double-Edged Sword in Tumorigenesis. Nat. Rev. Cancer 2003, 3, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Cai, X.; Yao, Y.; Fang, G. JunB: A Paradigm for Jun Family in Immune Response and Cancer. Front. Cell. Infect. Microbiol. 2023, 13, 1222265. [Google Scholar] [CrossRef] [PubMed]
- Gurzov, E.N.; Bakiri, L.; Alfaro, J.M.; Wagner, E.F.; Izquierdo, M. Targeting C-Jun and JunB Proteins as Potential Anticancer Cell Therapy. Oncogene 2008, 27, 641–652. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Liu, Y.; He, F.; Xie, P.; Zhang, L. Itch Promotes the Neddylation of JunB and Regulates JunB-Dependent Transcription. Cell. Signal 2016, 28, 1186–1195. [Google Scholar] [CrossRef]
- Garaude, J.; Farrás, R.; Bossis, G.; Charni, S.; Piechaczyk, M.; Hipskind, R.A.; Villalba, M. SUMOylation Regulates the Transcriptional Activity of JunB in T Lymphocytes. J. Immunol. 2008, 180, 5983–5990. [Google Scholar] [CrossRef]
- Zhu, F.; Choi, B.Y.; Ma, W.-Y.; Zhao, Z.; Zhang, Y.; Cho, Y.Y.; Choi, H.S.; Imamoto, A.; Bode, A.M.; Dong, Z. COOH-Terminal Src Kinase–Mediated c-Jun Phosphorylation Promotes c-Jun Degradation and Inhibits Cell Transformation. Cancer Res. 2006, 66, 5729–5736. [Google Scholar] [CrossRef][Green Version]
- Bakiri, L.; Lallemand, D.; Bossy-Wetzel, E.; Yaniv, M. Cell Cycle-Dependent Variations in c-Jun and JunB Phosphorylation: A Role in the Control of Cyclin D1 Expression. EMBO J. 2000, 19, 2056–2068. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. The Functional Contrariety of JNK. Mol. Carcinog. 2007, 46, 591–598. [Google Scholar] [CrossRef]
- Engelberg, D. Stress-Activated Protein Kinases—Tumor Suppressors or Tumor Initiators? Semin. Cancer Biol. 2004, 14, 271–282. [Google Scholar] [CrossRef]
- Farràs, R.; Baldin, V.; Gallach, S.; Acquaviva, C.; Bossis, G.; Jariel-Encontre, I.; Piechaczyk, M. JunB Breakdown in Mid-/Late G2 Is Required for Down-Regulation of Cyclin A2 Levels and Proper Mitosis. Mol. Cell. Biol. 2008, 28, 4173–4187. [Google Scholar] [CrossRef]
- Humar, M.; Loop, T.; Schmidt, R.; Hoetzel, A.; Roesslein, M.; Andriopoulos, N.; Pahl, H.L.; Geiger, K.K.; Pannen, B.H.J. The Mitogen-Activated Protein Kinase P38 Regulates Activator Protein 1 by Direct Phosphorylation of c-Jun. Int. J. Biochem. Cell Biol. 2007, 39, 2278–2288. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Efimova, T.; Eckert, R.L. Green Tea Polyphenol Stimulates a Ras, MEKK1, MEK3, and P38 Cascade to Increase Activator Protein 1 Factor-Dependent Involucrin Gene Expression in Normal Human Keratinocytes *. J. Biol. Chem. 2002, 277, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Courcelles, M.; Frémin, C.; Voisin, L.; Lemieux, S.; Meloche, S.; Thibault, P. Phosphoproteome Dynamics Reveal Novel ERK1/2 MAP Kinase Substrates with Broad Spectrum of Functions. Mol. Syst. Biol. 2013, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Nakajima, T.; Kudo, A.; Kawakami, A. Phosphorylation of Junb Family Proteins by the Jun N-Terminal Kinase Supports Tissue Regeneration in Zebrafish. Dev. Biol. 2010, 340, 468–479. [Google Scholar] [CrossRef]
- Kanamori, Y.; Murakami, M.; Matsui, T.; Funaba, M. JNK Facilitates IL-1β-Induced Hepcidin Transcription via JunB Activation. Cytokine 2018, 111, 295–302. [Google Scholar] [CrossRef]
- Baker, S.J.; Kerppola, T.K.; Luk, D.; Vandenberg, M.T.; Marshak, D.R.; Curran, T.; Abate, C. Jun Is Phosphorylated by Several Protein Kinases at the Same Sites That Are Modified in Serum-Stimulated Fibroblasts. Mol. Cell. Biol. 1992, 12, 4694–4705. [Google Scholar][Green Version]
- Boyle, W.J.; Smeal, T.; Defize, L.H.; Angel, P.; Woodgett, J.R.; Karin, M.; Hunter, T. Activation of Protein Kinase C Decreases Phosphorylation of C-Jun at Sites That Negatively Regulate Its DNA-Binding Activity. Cell 1991, 64, 573–584. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Zhu, F.; Wen, W.; Zykova, T.; Li, X.; Liu, K.; Peng, C.; Ma, W.; Shi, G.; et al. P21-Activated Protein Kinase (PAK2)-Mediated c-Jun Phosphorylation at 5 Threonine Sites Promotes Cell Transformation. Carcinogenesis 2011, 32, 659–666. [Google Scholar] [CrossRef]
- Sevilla, A.; Santos, C.R.; Barcia, R.; Vega, F.M.; Lazo, P.A. C-Jun Phosphorylation by the Human Vaccinia-Related Kinase 1 (VRK1) and Its Cooperation with the N-Terminal Kinase of c-Jun (JNK). Oncogene 2004, 23, 8950–8958. [Google Scholar] [CrossRef]
- Dérijard, B.; Hibi, M.; Wu, I.H.; Barrett, T.; Su, B.; Deng, T.; Karin, M.; Davis, R.J. JNK1: A Protein Kinase Stimulated by UV Light and Ha-Ras That Binds and Phosphorylates the c-Jun Activation Domain. Cell 1994, 76, 1025–1037. [Google Scholar] [CrossRef]
- Reddy, C.E.; Albanito, L.; De Marco, P.; Aiello, D.; Maggiolini, M.; Napoli, A.; Musti, A.M. Multisite Phosphorylation of C-Jun at Threonine 91/93/95 Triggers the Onset of c-Jun pro-Apoptotic Activity in Cerebellar Granule Neurons. Cell Death Dis. 2013, 4, e852. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Wang, J.-M.; Kikkawa, U.; Mukai, H.; Shen, M.-R.; Morita, I.; Chen, B.-K.; Chang, W.-C. Calcineurin-Mediated Dephosphorylation of c-Jun Ser-243 Is Required for c-Jun Protein Stability and Cell Transformation. Oncogene 2008, 27, 2422–2429. [Google Scholar] [CrossRef][Green Version]
- Xie, Y.; Li, H.; Luo, X.; Li, H.; Gao, Q.; Zhang, L.; Teng, Y.; Zhao, Q.; Zuo, Z.; Ren, J. IBS 2.0: An Upgraded Illustrator for the Visualization of Biological Sequences. Nucleic Acids Res. 2022, 50, W420–W426. [Google Scholar] [CrossRef] [PubMed]
- Piechaczyk, M.; Farràs, R. Regulation and Function of JunB in Cell Proliferation. Biochem. Soc. Trans. 2008, 36, 864–867. [Google Scholar] [CrossRef]
- Jin, J.Y.; Ke, H.; Hall, R.P.; Zhang, J.Y. C-Jun Promotes Whereas JunB Inhibits Epidermal Neoplasia. J. Investig. Dermatol. 2011, 131, 1149–1158, Correction in J. Investig. Dermatol. 2011, 131, 1388. [Google Scholar] [CrossRef]
- Szabowski, A.; Maas-Szabowski, N.; Andrecht, S.; Kolbus, A.; Schorpp-Kistner, M.; Fusenig, N.E.; Angel, P. C-Jun and JunB Antagonistically Control Cytokine-Regulated Mesenchymal–Epidermal Interaction in Skin. Cell 2000, 103, 745–755. [Google Scholar] [CrossRef]
- Novoszel, P.; Drobits, B.; Holcmann, M.; Fernandes, C.D.S.; Tschismarov, R.; Derdak, S.; Decker, T.; Wagner, E.F.; Sibilia, M. The AP-1 Transcription Factors c-Jun and JunB Are Essential for CD8α Conventional Dendritic Cell Identity. Cell Death Differ. 2021, 28, 2404–2420. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Savin, A.; Yang, M.; Hsu, Y.-H.R.; Jantuan, E.; Bacani, J.T.C.; Ingham, R.J. The C-Jun and JunB Transcription Factors Facilitate the Transit of Classical Hodgkin Lymphoma Tumour Cells through G1. Sci. Rep. 2018, 8, 16019. [Google Scholar] [CrossRef]
- Atsaves, V.; Zhang, R.; Ruder, D.; Pan, Y.; Leventaki, V.; Rassidakis, G.Z.; Claret, F.X. Constitutive Control of AKT1 Gene Expression by JUNB/CJUN in ALK+ Anaplastic Large-Cell Lymphoma: A Novel Crosstalk Mechanism. Leukemia 2015, 29, 2162–2172. [Google Scholar] [CrossRef]
- Li, G.; Ma, X.; Sui, S.; Chen, Y.; Li, H.; Liu, L.; Zhang, X.; Zhang, L.; Hao, Y.; Yang, Z.; et al. NAT10/ac4C/JunB Facilitates TNBC Malignant Progression and Immunosuppression by Driving Glycolysis Addiction. J. Exp. Clin. Cancer Res. 2024, 43, 278. [Google Scholar] [CrossRef]
- Wang, H.; Birkenbach, M.; Hart, J. Expression of Jun Family Members in Human Colorectal Adenocarcinoma. Carcinogenesis 2000, 21, 1313–1317. [Google Scholar] [CrossRef]
- Deng, T.; Karin, M. JunB Differs from C-Jun in Its DNA-Binding and Dimerization Domains, and Represses c-Jun by Formation of Inactive Heterodimers. Genes Dev. 1993, 7, 479–490. [Google Scholar] [CrossRef]
- Das, K.C.; Muniyappa, H. C-Jun-NH2 Terminal Kinase (JNK)-Mediates AP-1 Activation by Thioredoxin: Phosphorylation of cJun, JunB, and Fra-1. Mol. Cell. Biochem. 2010, 337, 53–63. [Google Scholar] [CrossRef]
- Li, B.; Tournier, C.; Davis, R.J.; Flavell, R.A. Regulation of IL-4 Expression by the Transcription Factor JunB during T Helper Cell Differentiation. EMBO J. 1999, 18, 420–432. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Yuki, R.; Kubota, S.; Aoyama, K.; Kuga, T.; Hashimoto, Y.; Tomonaga, T.; Yamaguchi, N. C-Abl-Mediated Tyrosine Phosphorylation of JunB Is Required for Adriamycin-Induced Expression of P21. Biochem. J. 2015, 471, 67–77. [Google Scholar] [CrossRef]
- Kallunki, T.; Deng, T.; Hibi, M.; Karin, M. C-Jun Can Recruit JNK to Phosphorylate Dimerization Partners via Specific Docking Interactions. Cell 1996, 87, 929–939. [Google Scholar] [CrossRef]
- Sullivan, M.; Olsen, A.S.; Houslay, M.D. Genomic Organisation of the Human Cyclic AMP-Specific Phosphodiesterase PDE4C Gene and Its Chromosomal Localisation to 19p13.1, between RAB3A and JUND. Cell. Signal 1999, 11, 735–742. [Google Scholar] [CrossRef]
- Gupta, S.; Barrett, T.; Whitmarsh, A.J.; Cavanagh, J.; Sluss, H.K.; Dérijard, B.; Davis, R.J. Selective Interaction of JNK Protein Kinase Isoforms with Transcription Factors. EMBO J. 1996, 15, 2760–2770. [Google Scholar] [CrossRef]
- Yazgan, O.; Pfarr, C.M. Differential Binding of the Menin Tumor Suppressor Protein to JunD Isoforms. Cancer Res. 2001, 61, 916–920. [Google Scholar]
- Vinciguerra, M.; Vivacqua, A.; Fasanella, G.; Gallo, A.; Cuozzo, C.; Morano, A.; Maggiolini, M.; Musti, A.M. Differential Phosphorylation of C-Jun and JunD in Response to the Epidermal Growth Factor Is Determined by the Structure of MAPK Targeting Sequences *. J. Biol. Chem. 2004, 279, 9634–9641. [Google Scholar] [CrossRef]
- Ijiri, K.; Zerbini, L.F.; Peng, H.; Correa, R.G.; Lu, B.; Walsh, N.; Zhao, Y.; Taniguchi, N.; Huang, X.-L.; Otu, H.; et al. A Novel Role for GADD45beta as a Mediator of MMP-13 Gene Expression during Chondrocyte Terminal Differentiation. J. Biol. Chem. 2005, 280, 38544–38555. [Google Scholar] [CrossRef]
- Wang, H.; Xie, Z.; Scott, R.E. JunD Phosphorylation, and Expression of AP-1 DNA Binding Activity Modulated by Serum Growth Factors in Quiescent Murine 3T3T Cells. Oncogene 1996, 13, 2639–2647. [Google Scholar]
- Eriksson, M.; Leppä, S. Mitogen-Activated Protein Kinases and Activator Protein 1 Are Required for Proliferation and Cardiomyocyte Differentiation of P19 Embryonal Carcinoma Cells. J. Biol. Chem. 2002, 277, 15992–16001. [Google Scholar] [CrossRef]
- Okazaki, S.; Ito, T.; Ui, M.; Watanabe, T.; Yoshimatsu, K.; Iba, H. Two Proteins Translated by Alternative Usage of Initiation Codons in mRNA Encoding a JunD Transcriptional Regulator. Biochem. Biophys. Res. Commun. 1998, 250, 347–353. [Google Scholar] [CrossRef]
- Gallo, A.; Cuozzo, C.; Esposito, I.; Maggiolini, M.; Bonofiglio, D.; Vivacqua, A.; Garramone, M.; Weiss, C.; Bohmann, D.; Musti, A.M. Menin Uncouples Elk-1, JunD and c-Jun Phosphorylation from MAP Kinase Activation. Oncogene 2002, 21, 6434–6445. [Google Scholar] [CrossRef]
- Hernandez, J.; Floyd, D.; Weilbaecher, K.; Green, P.; Boris-Lawrie, K. Multiple Facets of junD Gene Expression Are Atypical among AP-1 Family Members. Oncogene 2008, 27, 4757–4767. [Google Scholar] [CrossRef]
- Musti, A.M.; Treier, M.; Peverali, F.A.; Bohmann, D. Differential Regulation of C-Jun and JunD by Ubiquitin-Dependent Protein Degradation. Biol. Chem. 1996, 377, 619–624. [Google Scholar] [CrossRef]
- Konishi, N.; Shimada, K.; Nakamura, M.; Ishida, E.; Ota, I.; Tanaka, N.; Fujimoto, K. Function of JunB in Transient Amplifying Cell Senescence and Progression of Human Prostate Cancer. Clin. Cancer Res. 2008, 14, 4408–4416. [Google Scholar] [CrossRef]
- Thomsen, M.K.; Bakiri, L.; Hasenfuss, S.C.; Wu, H.; Morente, M.; Wagner, E.F. Loss of JUNB/AP-1 Promotes Invasive Prostate Cancer. Cell Death Differ. 2015, 22, 574–582. [Google Scholar] [CrossRef]
- Birner, P.; Egger, G.; Merkel, O.; Kenner, L. JunB and PTEN in Prostate Cancer: “Loss Is Nothing Else than Change”. Cell Death Differ. 2015, 22, 522–523. [Google Scholar] [CrossRef]
- Zhang, X.; Koga, N.; Suzuki, H.; Kato, M. Promotion of Cellular Senescence by THG-1/TSC22D4 Knockout through Activation of JUNB. Biochem. Biophys. Res. Commun. 2020, 522, 897–902. [Google Scholar] [CrossRef]
- Maity, P.; Singh, K.; Krug, L.; Koroma, A.; Hainzl, A.; Bloch, W.; Kochanek, S.; Wlaschek, M.; Schorpp-Kistner, M.; Angel, P.; et al. Persistent JunB Activation in Fibroblasts Disrupts Stem Cell Niche Interactions Enforcing Skin Aging. Cell Rep. 2021, 36, 109634. [Google Scholar] [CrossRef]
- Ott, R.G.; Simma, O.; Kollmann, K.; Weisz, E.; Zebedin, E.M.; Schorpp-Kistner, M.; Heller, G.; Zöchbauer, S.; Wagner, E.F.; Freissmuth, M.; et al. JunB Is a Gatekeeper for B-Lymphoid Leukemia. Oncogene 2007, 26, 4863–4871. [Google Scholar] [CrossRef][Green Version]
- Sadeghi, M.; Ranjbar, B.; Ganjalikhany, M.R.; Khan, F.M.; Schmitz, U.; Wolkenhauer, O.; Gupta, S.K. MicroRNA and Transcription Factor Gene Regulatory Network Analysis Reveals Key Regulatory Elements Associated with Prostate Cancer Progression. PLoS ONE 2016, 11, e0168760. [Google Scholar] [CrossRef]
- Khan, F.M.; Sadeghi, M.; Gupta, S.K.; Wolkenhauer, O. A Network-Based Integrative Workflow to Unravel Mechanisms Underlying Disease Progression. Methods Mol. Biol. 2018, 1702, 247–276. [Google Scholar] [CrossRef]
- Liu, W.; Iiizumi-Gairani, M.; Okuda, H.; Kobayashi, A.; Watabe, M.; Pai, S.K.; Pandey, P.R.; Xing, F.; Fukuda, K.; Modur, V.; et al. KAI1 Gene Is Engaged in NDRG1 Gene-Mediated Metastasis Suppression through the ATF3-NFkappaB Complex in Human Prostate Cancer. J. Biol. Chem. 2011, 286, 18949–18959. [Google Scholar] [CrossRef]
- Marreiros, A.; Dudgeon, K.; Dao, V.; Grimm, M.-O.; Czolij, R.; Crossley, M.; Jackson, P. KAI1 Promoter Activity Is Dependent on P53, junB and AP2: Evidence for a Possible Mechanism Underlying Loss of KAI1 Expression in Cancer Cells. Oncogene 2005, 24, 637–649. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, C. Emerging Roles of ATF3 in the Suppression of Prostate Cancer. Mol. Cell. Oncol. 2015, 3, e1010948. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Ding, H.-F.; Kim, J.; Zhang, J.; Hai, T.; Yan, C. Loss of ATF3 Promotes Akt Activation and Prostate Cancer Development in a Pten Knockout Mouse Model. Oncogene 2015, 34, 4975–4984. [Google Scholar] [CrossRef]
- Ku, H.-C.; Cheng, C.-F. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front. Endocrinol. 2020, 11, 556. [Google Scholar] [CrossRef]
- Lakshman, M.; Huang, X.; Ananthanarayanan, V.; Jovanovic, B.; Liu, Y.; Craft, C.S.; Romero, D.; Vary, C.P.H.; Bergan, R.C. Endoglin Suppresses Human Prostate Cancer Metastasis. Clin. Exp. Metastasis 2011, 28, 39–53. [Google Scholar] [CrossRef][Green Version]
- Roumeliotou, A.; Strati, A.; Chamchougia, F.; Xagara, A.; Tserpeli, V.; Smilkou, S.; Lagopodi, E.; Christopoulou, A.; Kontopodis, E.; Drositis, I.; et al. Comprehensive Analysis of CXCR4, JUNB, and PD-L1 Expression in Circulating Tumor Cells (CTCs) from Prostate Cancer Patients. Cells 2024, 13, 782. [Google Scholar] [CrossRef]
- Heinrich, R.; Livne, E.; Ben-Izhak, O.; Aronheim, A. The C-Jun Dimerization Protein 2 Inhibits Cell Transformation and Acts as a Tumor Suppressor Gene. J. Biol. Chem. 2004, 279, 5708–5715. [Google Scholar] [CrossRef]
- Knyazev, E.N.; Samatov, T.R.; Fomicheva, K.A.; Nyushko, K.M.; Alekseev, B.Y.; Shkurnikov, M.Y. MicroRNA Hsa-miR-4674 in Hemolysis-Free Blood Plasma Is Associated with Distant Metastases of Prostatic Cancer. Bull. Exp. Biol. Med. 2016, 161, 112–115. [Google Scholar] [CrossRef]
- Guan, H.; Peng, R.; Fang, F.; Mao, L.; Chen, Z.; Yang, S.; Dai, C.; Wu, H.; Wang, C.; Feng, N.; et al. Tumor-Associated Macrophages Promote Prostate Cancer Progression via Exosome-Mediated miR-95 Transfer. J. Cell. Physiol. 2020, 235, 9729–9742. [Google Scholar] [CrossRef]
- Selvaraj, N.; Budka, J.A.; Ferris, M.W.; Plotnik, J.P.; Hollenhorst, P.C. Extracellular Signal-Regulated Kinase Signaling Regulates the Opposing Roles of JUN Family Transcription Factors at ETS/AP-1 Sites and in Cell Migration. Mol. Cell. Biol. 2015, 35, 88–100. [Google Scholar] [CrossRef]
- Hsu, F.-N.; Chen, M.-C.; Lin, K.-C.; Peng, Y.-T.; Li, P.-C.; Lin, E.; Chiang, M.-C.; Hsieh, J.-T.; Lin, H. Cyclin-Dependent Kinase 5 Modulates STAT3 and Androgen Receptor Activation through Phosphorylation of Ser727 on STAT3 in Prostate Cancer Cells. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E975–E986. [Google Scholar] [CrossRef]
- Long, X.; Hou, H.; Wang, X.; Liu, S.; Diao, T.; Lai, S.; Hu, M.; Zhang, S.; Liu, M.; Zhang, H. Immune Signature Driven by ADT-Induced Immune Microenvironment Remodeling in Prostate Cancer Is Correlated with Recurrence-Free Survival and Immune Infiltration. Cell Death Dis. 2020, 11, 779. [Google Scholar] [CrossRef]
- Park, S.; Yang, K.-M.; Park, Y.; Hong, E.; Hong, C.P.; Park, J.; Pang, K.; Lee, J.; Park, B.; Lee, S.; et al. Identification of Epithelial-Mesenchymal Transition-Related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation. J. Cancer Prev. 2018, 23, 1–9, Erratum in J. Cancer Prev. 2018, 23, 107. [Google Scholar] [CrossRef]
- Edwards, J.; Krishna, N.S.; Witton, C.J.; Bartlett, J.M.S. Gene Amplifications Associated with the Development of Hormone-Resistant Prostate Cancer. Clin. Cancer Res. 2003, 9, 5271–5281. [Google Scholar]
- Sharma, N.V.; Pellegrini, K.L.; Ouellet, V.; Giuste, F.O.; Ramalingam, S.; Watanabe, K.; Adam-Granger, E.; Fossouo, L.; You, S.; Freeman, M.R.; et al. Identification of the Transcription Factor Relationships Associated with Androgen Deprivation Therapy Response and Metastatic Progression in Prostate Cancer. Cancers 2018, 10, 379. [Google Scholar] [CrossRef]
- Asirvatham, A.J.; Schmidt, M.; Gao, B.; Chaudhary, J. Androgens Regulate the Immune/Inflammatory Response and Cell Survival Pathways in Rat Ventral Prostate Epithelial Cells. Endocrinology 2006, 147, 257–271. [Google Scholar] [CrossRef]
- Raspin, K.; FitzGerald, L.M.; Marthick, J.R.; Field, M.A.; Malley, R.C.; Banks, A.; Donovan, S.; Thomson, R.J.; Foley, G.R.; Stanford, J.L.; et al. A Rare Variant in EZH2 Is Associated with Prostate Cancer Risk. Int. J. Cancer 2021, 149, 1089–1099. [Google Scholar] [CrossRef]
- Wang, W.; Lu, K.; Zhang, X.; Wei, K.; Cheng, G.; Tang, Z.; Zhan, M.; Fan, C.; Fu, X. Single-Cell Analysis Combined with Mendelian Randomization Identifies Genes Associated with Prostate Cancer Cells. World J. Men’s Health 2025, 43, e23. [Google Scholar] [CrossRef]
- Adir, O.; Sagi-Assif, O.; Meshel, T.; Ben-Menachem, S.; Pasmanik-Chor, M.; Hoon, D.S.B.; Witz, I.P.; Izraely, S. Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression. Cancers 2023, 15, 4979. [Google Scholar] [CrossRef]
- Ramos, R.B.; Martino, N.; Chuy, D.; Lu, S.; Zuo, M.X.G.; Balasubramanian, U.; Di John Portela, I.; Vincent, P.A.; Adam, A.P. Shock Drives a STAT3 and JunB-Mediated Coordinated Transcriptional and DNA Methylation Response in the Endothelium. J. Cell Sci. 2023, 136, jcs261323. [Google Scholar] [CrossRef]
- Duval, D.; Reinhardt, B.; Kedinger, C.; Boeuf, H. Role of Suppressors of Cytokine Signaling (Socs) in Leukemia Inhibitory Factor (LIF)—Dependent Embryonic Stem Cell Survival. FASEB J. 2000, 14, 1577–1584. [Google Scholar] [CrossRef]
- Wang, S.; Iyer, R.; Han, X.; Wei, J.; Li, N.; Cheng, Y.; Zhou, Y.; Gao, Q.; Zhang, L.; Yan, M.; et al. CRISPR Screening Identifies the Deubiquitylase ATXN3 as a PD-L1-Positive Regulator for Tumor Immune Evasion. J. Clin. Investig. 2023, 133, e167728. [Google Scholar] [CrossRef]
- Singh, T.; Chhokar, A.; Thakur, K.; Aggarwal, N.; Pragya, P.; Yadav, J.; Tripathi, T.; Jadli, M.; Bhat, A.; Gupta, P.; et al. Targeting Aberrant Expression of STAT3 and AP-1 Oncogenic Transcription Factors and HPV Oncoproteins in Cervical Cancer by Berberis Aquifolium. Front. Pharmacol. 2021, 12, 757414. [Google Scholar] [CrossRef]
- He, L.; Pratt, H.; Gao, M.; Wei, F.; Weng, Z.; Struhl, K. YAP and TAZ Are Transcriptional Co-Activators of AP-1 Proteins and STAT3 during Breast Cellular Transformation. Elife 2021, 10, e67312. [Google Scholar] [CrossRef]
- Moon, Y.-M.; Lee, S.-Y.; Kwok, S.-K.; Lee, S.H.; Kim, D.; Kim, W.K.; Her, Y.-M.; Son, H.-J.; Kim, E.-K.; Ryu, J.-G.; et al. The Fos-Related Antigen 1-JUNB/Activator Protein 1 Transcription Complex, a Downstream Target of Signal Transducer and Activator of Transcription 3, Induces T Helper 17 Differentiation and Promotes Experimental Autoimmune Arthritis. Front. Immunol. 2017, 8, 1793. [Google Scholar] [CrossRef]
- Zhou, J.; Mo, J.; Tan, C.; Xie, F.; Liang, J.; Huang, W. JUND Promotes Tumorigenesis via Specifically Binding on Enhancers of Multiple Oncogenes in Cervical Cancer. OncoTargets Ther. 2023, 16, 347–357. [Google Scholar]
- Zhang, D.; Pan, G.; Cheng, N.; Sun, L.; Zhou, X.; Li, C.; Zhao, J. JUND Facilitates Proliferation and Angiogenesis of Esophageal Squamous Cell Carcinoma Cell via MAPRE2 Up-Regulation. Tissue Cell 2023, 81, 102010. [Google Scholar] [CrossRef]
- Caffarel, M.M.; Moreno-Bueno, G.; Cerutti, C.; Palacios, J.; Guzman, M.; Mechta-Grigoriou, F.; Sanchez, C. JunD Is Involved in the Antiproliferative Effect of Δ9-Tetrahydrocannabinol on Human Breast Cancer Cells. Oncogene 2008, 27, 5033–5044. [Google Scholar] [CrossRef]
- Ruiz, E.J.; Lan, L.; Diefenbacher, M.E.; Riising, E.M.; Da Costa, C.; Chakraborty, A.; Hoeck, J.D.; Spencer-Dene, B.; Kelly, G.; David, J.-P.; et al. JunD, Not c-Jun, Is the AP-1 Transcription Factor Required for Ras-Induced Lung Cancer. JCI Insight 2021, 6, e124985. [Google Scholar] [CrossRef]
- Gerald, D.; Berra, E.; Frapart, Y.M.; Chan, D.A.; Giaccia, A.J.; Mansuy, D.; Pouysségur, J.; Yaniv, M.; Mechta-Grigoriou, F. JunD Reduces Tumor Angiogenesis by Protecting Cells from Oxidative Stress. Cell 2004, 118, 781–794. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chen, J.J.; Wang, C.-C.; Yu, S.-L.; Cheng, A.-L.; Lee, Y.-S.; Yang, P.-C. Curcumin Induces the Novel Tumor Suppressor, HLJ1, through JunD Pathway and Inhibits Lung Cancer Cell Invasion. Cancer Res. 2006, 66, 312. [Google Scholar]
- Leaner, V.D.; Kinoshita, I.; Birrer, M.J. AP-1 Complexes Containing cJun and JunB Cause Cellular Transformation of Rat1a Fibroblasts and Share Transcriptional Targets. Oncogene 2003, 22, 5619–5629. [Google Scholar] [CrossRef]
- Singh, G.; Fritz, S.E.; Seufzer, B.; Boris-Lawrie, K. The mRNA Encoding the JUND Tumor Suppressor Detains Nuclear RNA-Binding Proteins to Assemble Polysomes That Are Unaffected by mTOR. J. Biol. Chem. 2020, 295, 7763–7773. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Novotny, E.A.; Crabtree, J.S.; Weitzman, J.B.; Yaniv, M.; Burns, A.L.; Chandrasekharappa, S.C.; Collins, F.S.; Spiegel, A.M.; Marx, S.J. Transcription Factor JunD, Deprived of Menin, Switches from Growth Suppressor to Growth Promoter. Proc. Natl. Acad. Sci. USA 2003, 100, 10770–10775. [Google Scholar] [CrossRef]
- Wu, T.; Hua, X. Menin Represses Tumorigenesis via Repressing Cell Proliferation. Am. J. Cancer Res. 2011, 1, 726–739. [Google Scholar]
- Meixner, A.; Karreth, F.; Kenner, L.; Penninger, J.M.; Wagner, E.F. Jun and JunD-Dependent Functions in Cell Proliferation and Stress Response. Cell Death Differ. 2010, 17, 1409–1419. [Google Scholar] [CrossRef]
- Pollack, P.S.; Pasquarello, L.M.; Budjak, R.; Fernandez, E.; Soprano, K.J.; Redfern, B.G.; Goldman, B. Differential Expression of C-Jun and junD in End-Stage Human Cardiomyopathy. J. Cell. Biochem. 1997, 65, 245–253. [Google Scholar] [CrossRef]
- Pfarr, C.M.; Mechta, F.; Spyrou, G.; Lallemand, D.; Carillo, S.; Yaniv, M. Mouse JunD Negatively Regulates Fibroblast Growth and Antagonizes Transformation by Ras. Cell 1994, 76, 747–760. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cong, J.; Zhou, X.; Gao, W.; Li, W.; Yang, Q.; Li, X.; Liu, Z.; Luo, A. JunD-miR494-CUL3 Axis Promotes Radioresistance and Metastasis by Facilitating EMT and Restraining PD-L1 Degradation in Esophageal Squamous Cell Carcinoma. Cancer Lett. 2024, 587, 216731. [Google Scholar] [CrossRef] [PubMed]
- Odaka, T.; Sakamoto, R.; Kumagai, K.; Okuma, K.; Nishizawa, M.; Kimura, T. Ephrin Type-A Receptor 2-Antisense RNA1/2 Promote Proliferation and Migration of MDA-MB-231 Cells through EPHA2-Dependent Ras Signaling Pathway Mediated by MAPK8/JNK1, MAPK9/JNK2-NFATC2/NFAT1 and JUND. Front. Mol. Biosci. 2024, 11, 1402354. [Google Scholar] [CrossRef]
- Lei, S.; Cao, W.; Zeng, Z.; Zhang, Z.; Jin, B.; Tian, Q.; Wu, Y.; Zhang, T.; Li, D.; Hu, C.; et al. JUND/Linc00976 Promotes Cholangiocarcinoma Progression and Metastasis, Inhibits Ferroptosis by Regulating the miR-3202/GPX4 Axis. Cell Death Dis. 2022, 13, 967. [Google Scholar] [CrossRef]
- Ghosh, S.; Talukdar, P.D.; Bhattacharjee, A.; Giri, S.; Bhattacharyya, N.P.; Chatterji, U. JunD Accentuates Arecoline-Induced Disruption of Tight Junctions and Promotes Epithelial-to-Mesenchymal Transition by Association with NEAT1 lncRNA. Oncotarget 2021, 12, 1520–1539. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Zhang, M.; Wang, X.; Bai, X.; Li, H.; Kan, L.; Zhou, Y.; Niu, H.; He, P. MicroRNA-663a Is Downregulated in Non-Small Cell Lung Cancer and Inhibits Proliferation and Invasion by Targeting JunD. BMC Cancer 2016, 16, 315. [Google Scholar] [CrossRef]
- Church, D.R.; Lee, E.; Thompson, T.A.; Basu, H.S.; Ripple, M.O.; Ariazi, E.A.; Wilding, G. Induction of AP-1 Activity by Androgen Activation of the Androgen Receptor in LNCaP Human Prostate Carcinoma Cells. Prostate 2005, 63, 155–168. [Google Scholar] [CrossRef]
- Mehraein-Ghomi, F.; Lee, E.; Church, D.R.; Thompson, T.A.; Basu, H.S.; Wilding, G. JunD Mediates Androgen-Induced Oxidative Stress in Androgen Dependent LNCaP Human Prostate Cancer Cells. Prostate 2008, 68, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Zerbini, L.F.; Wang, Y.; Cho, J.-Y.; Libermann, T.A. Constitutive Activation of Nuclear Factor kappaB P50/P65 and Fra-1 and JunD Is Essential for Deregulated Interleukin 6 Expression in Prostate Cancer. Cancer Res. 2003, 63, 2206–2215. [Google Scholar] [CrossRef] [PubMed]
- Polytarchou, C.; Hatziapostolou, M.; Papadimitriou, E. Hydrogen Peroxide Stimulates Proliferation and Migration of Human Prostate Cancer Cells through Activation of Activator Protein-1 and up-Regulation of the Heparin Affin Regulatory Peptide Gene. J. Biol. Chem. 2005, 280, 40428–40435. [Google Scholar] [CrossRef] [PubMed]
- Kajanne, R.; Miettinen, P.; Tenhunen, M.; Leppä, S. Transcription Factor AP-1 Promotes Growth and Radioresistance in Prostate Cancer Cells. Int. J. Oncol. 2009, 35, 1175–1182. [Google Scholar] [CrossRef]
- Yamamoto, H.; Oue, N.; Sato, A.; Hasegawa, Y.; Yamamoto, H.; Matsubara, A.; Yasui, W.; Kikuchi, A. Wnt5a Signaling Is Involved in the Aggressiveness of Prostate Cancer and Expression of Metalloproteinase. Oncogene 2010, 29, 2036–2046. [Google Scholar] [CrossRef]
- Zerbini, L.F.; de Vasconcellos, J.F.; Czibere, A.; Wang, Y.; Paccez, J.D.; Gu, X.; Zhou, J.-R.; Libermann, T.A. JunD-Mediated Repression of GADD45α and γ Regulates Escape from Cell Death in Prostate Cancer. Cell Cycle 2011, 10, 2583–2591. [Google Scholar] [CrossRef]
- Elliott, B.; Millena, A.C.; Matyunina, L.; Zhang, M.; Zou, J.; Wang, G.; Zhang, Q.; Bowen, N.; Eaton, V.; Webb, G.; et al. Essential Role of JunD in Cell Proliferation Is Mediated via MYC Signaling in Prostate Cancer Cells. Cancer Lett. 2019, 448, 155–167. [Google Scholar] [CrossRef]
- Luo, Y.; Vlaeminck-Guillem, V.; Baron, S.; Dallel, S.; Zhang, C.X.; Le Romancer, M. MEN1 Silencing Aggravates Tumorigenic Potential of AR-Independent Prostate Cancer Cells through Nuclear Translocation and Activation of JunD and β-Catenin. J. Exp. Clin. Cancer Res. 2021, 40, 270. [Google Scholar] [CrossRef]
- Xu, M.; Gong, S.; Li, Y.; Zhou, J.; Du, J.; Yang, C.; Yang, M.; Zhang, F.; Liang, C.; Tong, Z. Identifying Long Non-Coding RNA of Prostate Cancer Associated with Radioresponse by Comprehensive Bioinformatics Analysis. Front. Oncol. 2020, 10, 498. [Google Scholar] [CrossRef]
- Tang, L.; Li, W.; Xu, H.; Zheng, X.; Qiu, S.; He, W.; Wei, Q.; Ai, J.; Yang, L.; Liu, J. Mutator-Derived lncRNA Landscape: A Novel Insight into the Genomic Instability of Prostate Cancer. Front. Oncol. 2022, 12, 876531. [Google Scholar] [CrossRef]
- Mehraein-Ghomi, F.; Basu, H.S.; Church, D.R.; Hoffmann, F.M.; Wilding, G. Androgen Receptor Requires JunD as a Coactivator to Switch on an Oxidative Stress Generation Pathway in Prostate Cancer Cells. Cancer Res. 2010, 70, 4560–4568. [Google Scholar] [CrossRef]
- Mehraein-Ghomi, F.; Kegel, S.J.; Church, D.R.; Schmidt, J.S.; Reuter, Q.R.; Saphner, E.L.; Basu, H.S.; Wilding, G. Targeting Androgen Receptor and JunD Interaction for Prevention of Prostate Cancer Progression. Prostate 2014, 74, 792–803. [Google Scholar] [CrossRef]
- Sarkar, D.; Wang, X.-Y.; Fisher, P.B. Targeting JunD: A Potential Strategy to Counteract Hormone-Refractory Prostate Cancer. Cell Cycle 2011, 10, 3433. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liebermann, D.A.; Hoffman, B. Prostate Cancer: JunD, Gadd45a and Gadd45g as Therapeutic Targets. Cell Cycle 2011, 10, 3428. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thompson-Elliott, B.; Johnson, R.; Khan, S.A. Alterations in TGFβ Signaling during Prostate Cancer Progression. Am. J. Clin. Exp. Urol. 2021, 9, 318–328. [Google Scholar] [PubMed][Green Version]
- Kim, H.-Y.; Kim, J.-M.; Shin, Y.K. Granzyme mRNA-miRNA Interaction and Its Implication to Functional Impact. Genes Genom. 2024, 46, 1495–1506. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Zhang, S. microRNA-124-3p Inhibits Tumourigenesis by Targeting Mitogen-Activated Protein Kinase 4 in Papillary Thyroid Carcinoma. Cell Biochem. Funct. 2020, 38, 1017–1024. [Google Scholar] [CrossRef]
- Tai, F.; Gong, K.; Song, K.; He, Y.; Shi, J. Enhanced JunD/RSK3 Signalling Due to Loss of BRD4/FOXD3/miR-548d-3p Axis Determines BET Inhibition Resistance. Nat. Commun. 2020, 11, 258. [Google Scholar] [CrossRef]
- Shimada, K.; Nakamura, M.; De Velasco, M.A.; Tanaka, M.; Ouji, Y.; Miyake, M.; Fujimoto, K.; Hirao, K.; Konishi, N. Role of Syndecan-1 (CD138) in Cell Survival of Human Urothelial Carcinoma. Cancer Sci. 2010, 101, 155–160. [Google Scholar] [CrossRef]
- Drobná, Z.; Jaspers, I.; Thomas, D.J.; Stýblo, M. Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals. FASEB J. 2003, 17, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Billottet, C.; Tuefferd, M.; Gentien, D.; Rapinat, A.; Thiery, J.-P.; Broët, P.; Jouanneau, J. Modulation of Several Waves of Gene Expression during FGF-1 Induced Epithelial-Mesenchymal Transition of Carcinoma Cells. J. Cell. Biochem. 2008, 104, 826–839. [Google Scholar] [CrossRef] [PubMed]
- de Luna Vitorino, F.N.; Montoni, F.; Moreno, J.N.; de Souza, B.F.; de Camargo Lopes, M.; Cordeiro, B.; Fonseca, C.S.; Gilmore, J.M.; Sardiu, M.I.; Reis, M.S.; et al. FGF2 Antiproliferative Stimulation Induces Proteomic Dynamic Changes and High Expression of FOSB and JUNB in K-Ras-Driven Mouse Tumor Cells. Proteomics 2018, 18, e1800203. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, G. Dissecting Immunosuppressive Cell Communication Patterns Reveals JunB Proto-Oncogene (JUNB) Shaping a Non-Inflamed Tumor Microenvironment. Front. Genet. 2022, 13, 883583. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, Y.; Su, J.; Wang, S.; Su, X.; Ding, X.; Jiang, L.; Fei, X.; Zhang, W. Lactate-Induced Activation of Tumor-Associated Fibroblasts and IL-8-Mediated Macrophage Recruitment Promote Lung Cancer Progression. Redox Biol. 2024, 74, 103209. [Google Scholar] [CrossRef]
- Habanjar, O.; Bingula, R.; Decombat, C.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 4002. [Google Scholar] [CrossRef]
- Tian, Z.; Luo, Y.; Zhu, J.; Hua, X.; Xu, J.; Huang, C.; Jin, H.; Huang, H.; Huang, C. Transcriptionally Elevation of miR-494 by New ChlA-F Compound via a HuR/JunB Axis Inhibits Human Bladder Cancer Cell Invasion. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 822–833. [Google Scholar] [CrossRef]
- Sobolewski, C.; Dubuquoy, L.; Legrand, N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers 2022, 14, 3516. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Y.; Chen, S.; Wang, J.; Jiang, C.; Hou, W.; Xu, C. JUND-Dependent up-Regulation of HMOX1 Is Associated with Cisplatin Resistance in Muscle-Invasive Bladder Cancer. J. Biochem. 2020, 168, 73–82. [Google Scholar] [CrossRef]
- Xing, Z.; Yang, T.; Li, X.; Xu, H.; Hong, Y.; Shao, S.; Li, T.; Ye, L.; Li, Y.; Jin, X.; et al. High-Glucose-Associated YTHDC1 Lactylation Reduces the Sensitivity of Bladder Cancer to Enfortumab Vedotin Therapy. Cell Rep. 2025, 44, 115545. [Google Scholar] [CrossRef]
- Nikanjam, M.; Pérez-Granado, J.; Gramling, M.; Larvol, B.; Kurzrock, R. Nectin-4 Expression Patterns and Therapeutics in Oncology. Cancer Lett. 2025, 622, 217681. [Google Scholar] [CrossRef]
- Filon, M.; Schmidt, B. The Future of Novel Antibody-Drug Conjugates in Localized Urothelial Cancer. Eur. Urol. Focus 2025. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Han, J.; Wei, N.; Wu, H.; Wang, Y.; Sun, J. LINC00702-Mediated DUSP1 Transcription in the Prevention of Bladder Cancer Progression: Implications in Cancer Cell Proliferation and Tumor Inflammatory Microenvironment. Genomics 2022, 114, 110428. [Google Scholar] [CrossRef] [PubMed]
- Li, E.-H.; Xu, B.-H.; Wei, H.-B.; Bai, Y.-C.; Zhang, Q.; Yu, W.-W.; Xu, Z.-H.; Qi, X.-L.; Zhang, D.-H.; Wang, H. Molecular Mechanism of Di-n-Butyl Phthalate Promotion of Bladder Cancer Development. Toxicol. Vitr. 2023, 86, 105508. [Google Scholar] [CrossRef]
- Koo, A.S.; Chiu, R.; Soong, J.; Dekernion, J.B.; Belldegrun, A. The Expression of C-Jun and junB mRNA in Renal Cell Cancer and in Vitro Regulation by Transforming Growth Factor Beta 1 and Tumor Necrosis Factor Alpha 1. J. Urol. 1992, 148, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Urakami, S.; Tsuchiya, H.; Orimoto, K.; Kobayashi, T.; Igawa, M.; Hino, O. Overexpression of Members of the AP-1 Transcriptional Factor Family from an Early Stage of Renal Carcinogenesis and Inhibition of Cell Growth by AP-1 Gene Antisense Oligonucleotides in the Tsc2 Gene Mutant (Eker) Rat Model. Biochem. Biophys. Res. Commun. 1997, 241, 24–30. [Google Scholar] [CrossRef]
- He, H.; Wang, L.; Zhou, W.; Zhang, Z.; Wang, L.; Xu, S.; Wang, D.; Dong, J.; Tang, C.; Tang, H.; et al. MicroRNA Expression Profiling in Clear Cell Renal Cell Carcinoma: Identification and Functional Validation of Key miRNAs. PLoS ONE 2015, 10, e0125672. [Google Scholar] [CrossRef]
- Gervasi, M.; Bianchi-Smiraglia, A.; Cummings, M.; Zheng, Q.; Wang, D.; Liu, S.; Bakin, A.V. JunB Contributes to Id2 Repression and the Epithelial-Mesenchymal Transition in Response to Transforming Growth Factor-β. J. Cell Biol. 2012, 196, 589–603. [Google Scholar] [CrossRef]
- Arakaki, R.; Yamasaki, T.; Kanno, T.; Shibasaki, N.; Sakamoto, H.; Utsunomiya, N.; Sumiyoshi, T.; Shibuya, S.; Tsuruyama, T.; Nakamura, E.; et al. CCL2 as a Potential Therapeutic Target for Clear Cell Renal Cell Carcinoma. Cancer Med. 2016, 5, 2920–2933. [Google Scholar] [CrossRef]
- Lee, S.; Nakamura, E.; Yang, H.; Wei, W.; Linggi, M.S.; Sajan, M.P.; Farese, R.V.; Freeman, R.S.; Carter, B.D.; Kaelin, W.G.; et al. Neuronal Apoptosis Linked to EglN3 Prolyl Hydroxylase and Familial Pheochromocytoma Genes: Developmental Culling and Cancer. Cancer Cell 2005, 8, 155–167. [Google Scholar] [CrossRef]
- Kanno, T.; Kamba, T.; Yamasaki, T.; Shibasaki, N.; Saito, R.; Terada, N.; Toda, Y.; Mikami, Y.; Inoue, T.; Kanematsu, A.; et al. JunB Promotes Cell Invasion and Angiogenesis in VHL-Defective Renal Cell Carcinoma. Oncogene 2012, 31, 3098–3110. [Google Scholar] [CrossRef]
- Suzuki, S.; Nagaya, T.; Suganuma, N.; Tomoda, Y.; Seo, H. Inductions of Immediate Early Genes (IEGS) and Ref-1 by Human Chorionic Gonadotropin in Murine Leydig Cell Line (MA-10). Biochem. Mol. Biol. Int. 1998, 44, 217–224. [Google Scholar] [CrossRef]
- Kaelin, W.G. The von Hippel-Lindau Tumor Suppressor Protein: Roles in Cancer and Oxygen Sensing. Cold Spring Harb. Symp. Quant. Biol. 2005, 70, 159–166. [Google Scholar] [CrossRef]
- Gurzov, E.N.; Ortis, F.; Bakiri, L.; Wagner, E.F.; Eizirik, D.L. JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells. PLoS ONE 2008, 3, e3030. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.-O.; Heo, J.-S.; Kim, T.-G.; Jeon, Y.-M.; Kim, J.-G.; Lee, J.-C. Over-Expression of JunB Inhibits Mitochondrial Stress and Cytotoxicity in Human Lymphoma Cells Exposed to Chronic Oxidative Stress. BMB Rep. 2010, 43, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.A.; Gurzov, E.N.; Naamane, N.; Ortis, F.; Cardozo, A.K.; Bugliani, M.; Marchetti, P.; Eizirik, D.L.; Cnop, M. JunB Protects β-Cells from Lipotoxicity via the XBP1–AKT Pathway. Cell Death Differ. 2014, 21, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.; Sasaki, D.; Taira, N.; Chien, H.; Sarkar, S.; Seto, Y.; Miyagi, M.; Ishikawa, H. JunB Is Critical for Survival of T Helper Cells. Front. Immunol. 2022, 13, 901030. [Google Scholar] [CrossRef]
- Ren, X.; Cui, Z.; Zhang, Q.; Su, Z.; Xu, W.; Wu, J.; Jiang, H. JunB Condensation Attenuates Vascular Endothelial Damage under Hyperglycemic Condition. J. Mol. Cell. Biol. 2023, 15, mjad072. [Google Scholar] [CrossRef]
- Fiore, M.; Taddia, A.; Indio, V.; Bertuccio, S.N.; Messelodi, D.; Serravalle, S.; Bandini, J.; Spreafico, F.; Perotti, D.; Collini, P.; et al. Molecular Signature of Biological Aggressiveness in Clear Cell Sarcoma of the Kidney (CCSK). Int. J. Mol. Sci. 2023, 24, 3743. [Google Scholar] [CrossRef]
- Delbès, G.; Chan, D.; Pakarinen, P.; Trasler, J.M.; Hales, B.F.; Robaire, B. Impact of the Chemotherapy Cocktail Used to Treat Testicular Cancer on the Gene Expression Profile of Germ Cells from Male Brown-Norway Rats. Biol. Reprod. 2009, 80, 320–327. [Google Scholar] [CrossRef]
Cancer | Model | Role | Mechanism | Effect | Ref. |
---|---|---|---|---|---|
PCa | Androgen-independent human PCa cell line (DU-145) | Tumor suppressor | Activity opposing c-JUN. Downregulation of FGF1, PTPN5, ADAM19, SERPINE1, CXCR7, MMP9, PLAU, and PTHLH | Migration suppression | [99] |
PCa | Human PCa cell lines (DU-145, PC-3, LNCaP) and mice xenografts | Tumor suppressor | The expression of JUND increases as a result of JDP2 | Tumorigenesis inhibition | [96] |
PCa | Human PCa cell lines (DU-145, LNCaP) | Tumor suppressor | G1 arrest and JUND upregulation 72 h after exposure to androgen | Cell cycle arrest | [133] |
PCa | Androgen-dependent human PCa cell line (LNCaP) | Tumor suppressor | JUND has an essential role in the androgen-induced increase in ROS levels | Increase in ROS levels | [134] |
PCa | Human PCa cell lines (DU-145, PC-3, LNCaP) | Oncogene | Nuclear factor kappa B p50/p65, FRA1, and JUND promote the overexpression of IL6 | Disease progression and drug resistance | [135] |
PCa | Androgen-dependent human PCa cell line (LNCaP) | Oncogene | JUND is activated by PTN following stimulation with H2O2 | Proliferation promotion | [136] |
PCa | Androgen-independent human PCa cell lines (DU-145, PC-3) | Oncogene | JUND is upregulated and mediates EGFR- and PI3K-dependent signaling | Proliferation promotion and radio-resistance | [137] |
PCa | Human PCa cell lines (DU-145, PC-3, LNCaP) | Oncogene | JUND is activated by WNT5A and upregulates MMP1 | Invasion promotion | [138] |
PCa | Androgen-independent human PCa cell lines (DU-145, PC-3) | Oncogene | JUND suppresses GADD45A/G and mediates JNK- and p38-dependent signaling | Cell death suppression and cell growth | [139] |
PCa | Normal prostate (RWPE-1) and human PCa cell lines (DU-145, PC-3) | Oncogene | Knockdown of JUND expression suppresses proliferation, while forced overexpression of JUND increases it | Proliferation promotion | [24] |
PCa | Androgen-independent human PCa cell lines (DU-145, PC-3) | Oncogene | JUND overexpression induces the expression of proliferation-associated genes, including c-MYC | Proliferation promotion | [140] |
PCa | Androgen-independent human PCa cell lines (DU-145, PC-3) | Oncogene | JUBD and CTNNB1 are necessary for sustained MYC expression triggered by MEN1 inactivation | Proliferation promotion | [141] |
PCa | Bioinformatics study and patient-derived tissues | Oncogene | The expression of JUND is positively regulated by LINC01600 and is upregulated in radioresistant PCa | Radio-resistance | [142] |
PCa | Bioinformatics study | Oncogene | JUND was found to participate in the regulation of genome-instability-associated lncRNAs with prognostic value | Genome instability | [143] |
PCa | Androgen-dependent human PCa cell line (LNCaP) | Oncogene | JUND can induce the expression of SSAT, which produces excessive ROS | Carcinogenesis promotion | [144] |
PCa | Androgen-dependent human PCa cell line (LNCaP) | Oncogene | GWARJD10 inhibits the JUND-AR interaction and represses the ROS-induced disease progression | Disease progression | [145] |
CRPC | Patient-derived tissues | Oncogene | JUND was found to be a part of a transcription factor coordinated group (TFCG) enriched in the most aggressive type of disease | Disease progression | [104] |
Cancer | Model | Role | Mechanism | Effect | Ref. |
---|---|---|---|---|---|
UC | Human UC cell lines (UM-UC-2 and UM-UC-3) | Oncogene | JUNB is a downstream target of SDC-1 | Promotes tumorigenesis | [152] |
UC | Human UC cell line (UROtsa) | Oncogene | c-JUN, JUNB, JUND, and FRA1 are activated upon treatment with trivalent arsenic compounds | Increased AP1 DNA binding | [153] |
BCa | Bladder carcinoma cell line (NBT-II) | Oncogene | JUNB is stimulated by FGF | Promotes EMT | [154] |
BCa | Bioinformatics study, patient-derived tissues, and human BCa cell line (T24) | Oncogene | JUNB promotes the formation of an immunosuppressive TME | TME remodeling | [156] |
UC | Human UC cell line (UM-UC-3) | Tumor suppressor | JUNB was found to be implicated in FGF2-induced cytostatic signaling | Suppresses proliferation | [155] |
BCa | BCa cell lines (UM-UC-3 and HT-1197) | Tumor suppressor | JUNB stabilization promotes the expression of miR-494, which decreases c-MYC expression | Suppresses proliferation | [159] |
Cancer | Model | Role | Mechanism | Effect | Ref. |
---|---|---|---|---|---|
UC | Human UC cell line (UROtsa) | Oncogene | JUND is activated upon treatment with trivalent arsenic compounds | Increased AP1 DNA binding | [153] |
MIBC | Bioinformatics study and patient-derived tissues | Oncogene | JUND upregulates the antioxidant defense via HMOX1 | Cisplatin resistance | [161] |
BCa | Patient-derived tissues, mouse models, and BCa cell lines (HT1376 and RT112) | Oncogene | JUND controls the expression of NECTIN4. However, its high expression determines EV therapy sensitivity | Treatment response modulation | [162] |
BCa | Bioinformatics study, patient-derived tissues, human BCa cell lines (HT-1197, HT-1376, T24, and UM-UC-3), and the normal human urothelial cell line (SV-HUC-1) | Tumor suppressor | JUND is recruited by LINC00702 and upregulates DUSP1, which represses ERK1/2 | Proliferation inhibition and modulation of TMI | [165] |
BCa | Human BCa cell lines (T24 and UM-UC-3) | Tumor suppressor | DBP upregulates FOSB and RHOQ while downregulating ATP6V1C2, DUSP3, ORAI3, PLA2G15, PRICKLE3, TUBA1A, and JUND | Proliferation inhibition | [166] |
Cancer | Model | Role | Mechanism | Effect | Ref. |
---|---|---|---|---|---|
RCC | Rat-derived tumors and rat RCC cell lines (LK9d, ERC-18, ERC27, ERC-31) | Oncogene | JUND is overexpressed in early-stage rat RCC tumors compared to normal kidney tissue | Disease development | [168] |
CCSK | Bioinformatics study, patient-derived tissues, and HEK-293 cells | Oncogene | JUND is overexpressed in metastatic CCSK | Metastasis progression | [181] |
Leydig cells | The mouse Leydig-cell tumor cell line (MA-10) | Oncogene | JUND exhibits increased activity following treatment with hCG | Cell growth | [174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalampounias, G.; Androutsopoulou, T.; Katsoris, P. JUNB and JUND in Urological Cancers: A Literature Review. Curr. Issues Mol. Biol. 2025, 47, 741. https://doi.org/10.3390/cimb47090741
Kalampounias G, Androutsopoulou T, Katsoris P. JUNB and JUND in Urological Cancers: A Literature Review. Current Issues in Molecular Biology. 2025; 47(9):741. https://doi.org/10.3390/cimb47090741
Chicago/Turabian StyleKalampounias, Georgios, Theodosia Androutsopoulou, and Panagiotis Katsoris. 2025. "JUNB and JUND in Urological Cancers: A Literature Review" Current Issues in Molecular Biology 47, no. 9: 741. https://doi.org/10.3390/cimb47090741
APA StyleKalampounias, G., Androutsopoulou, T., & Katsoris, P. (2025). JUNB and JUND in Urological Cancers: A Literature Review. Current Issues in Molecular Biology, 47(9), 741. https://doi.org/10.3390/cimb47090741