Roxadustat as a Hypoxia-Mimetic Agent: Erythropoietic Mechanisms, Bioanalytical Detection, and Regulatory Considerations in Sports Medicine
Abstract
1. Overview
2. Origin, Synthetic Approaches, and Physicochemical Profile of Roxadustat: From Development to Therapeutic Application
3. Analytical Techniques for the Detection and Quantification of Roxadustat and Its Metabolites
3.1. Detection of Roxadustat and Its Metabolites in Biological Fluids by Chromatographic Analyses
3.2. Detection of Roxadustat Through Investigation of Metabolic Conversion
3.3. The Bioanalytical Approach of Drug–Drug Interactions
3.4. Quechers Method
4. Molecular Insights, Clinical Indications, and Evidence-Based Applications of Roxadustat
- A.
- Direct mechanism and erythropoiesis
- B.
- Other applications
5. Safety Profile, Risk Assessment, and Environmental Considerations of Roxadustat
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, N.; Wish, J.B. Hypoxia-inductible factor prolyl hydroxylase inhibitors: A potential new treatament for anemia in patients with CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef]
- Haase, V.H. Hypoxic regulation of erythropoiesis and iron metabolism. Am. J. Physiol. Renal Physiol. 2010, 299, F1–F13. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef]
- Andersen, A.B.; Bejder, J.; Bonne, T.C.; Sørensen, H.; Sørensen, H.; Jung, G.; Ganz, T.; Nemeth, E.; Secher, N.H.; Johansson, P.I.; et al. Hepcidin and Erythroferrone Complement the Athlete Biological Passport in the Detection of Autologous Blood Transfusion. Med. Sci. Sports Exerc. 2022, 54, 1604–1616. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, G.; Yoon, S.; Gopalan, B.; Savage, A.R.; Brown, R.; Case, K.; Vasanji, A.; Chan, E.R.; Silver, R.B.; Sears, J.E. Comparative systems pharmacology of HIF stabilization in the prevention of retinopathy of prematurity. Proc. Natl. Acad. Sci. USA 2016, 113, E2516–E2525. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Fukuyama, T.; Omiya, H.; Pham, T.D.; Inoue, H.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; et al. Effects of Roxadustat on Erythropoietin Production in the Rat Body. Molecules 2022, 27, 1119. [Google Scholar] [CrossRef] [PubMed]
- Yasuoka, Y.; Izumi, Y.; Fukuyama, T.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; Nanami, M.; Shimada, Y.; Nagaba, Y.; et al. Tubular Endogenous Erythropoietin Protects Renal Function against Ischemic Reperfusion Injury. Int. J. Mol. Sci. 2024, 25, 1223. [Google Scholar] [CrossRef]
- Miyauchi, K.; Nakai, T.; Saito, S.; Yamamoto, T.; Sato, K.; Kato, K.; Nezu, M.; Miyazaki, M.; Ito, S.; Yamamoto, M.; et al. Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions. EBioMedicine 2021, 64, 103209. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Suzuki, N.; Hirano, I.; Yamazaki, S.; Minegishi, N.; Yamamoto, M. Isolation and Characterization of Renal Erythropoietin-Producing Cells from Genetically Produced Anemia Mice. PLoS ONE 2011, 6, e25839. [Google Scholar] [CrossRef]
- Imeri, F.; Nolan, K.A.; Bapst, A.M.; Santambrogio, S.; Abreu-Rodríguez, I.; Spielmann, P.; Pfundstein, S.; Libertini, S.; Crowther, L.; Orlando, I.M.C.; et al. Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2-driven Epo kinetics, cell-autonomous feedback regulation, and a telocyte phenotype. Kidney Int. 2019, 95, 375–387. [Google Scholar] [CrossRef]
- Nakai, T.; Iwamura, Y.; Kato, K.; Hirano, I.; Matsumoto, Y.; Tomioka, Y.; Yamamoto, M.; Suzuki, N. Drugs activating hypoxia-inducible factors correct erythropoiesis and hepcidin levels via renal EPO induction in mice. Blood Adv. 2023, 7, 3793–3805. [Google Scholar] [CrossRef]
- Li, Z.L.; Tu, Y.; Liu, B.C. Treatment of renal anemia with Roxadustat: Advantages and Achievement. Kidney Dis. 2020, 6, 65–66. [Google Scholar] [CrossRef]
- Suzuki, N.; Hirano, I.; Pan, X.; Minegishi, N.; Yamamoto, M. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis. Nat. Commun. 2013, 4, 2902. [Google Scholar] [CrossRef]
- Ugawa, T.; Ashizaki, M.; Murata, A.s.a.m.i.; Majikawa, Y. Roxadustat (Evrenzo® tablet), a therapeutic drug for renal anemia: Pharmacological characteristics and clinical evidence in Japan. Folia Pharmacol. Japonica. 2021, 156, 187–197. [Google Scholar] [CrossRef]
- Dey, S.; Lee, J.; Noguchi, C.T. Erythropoietin Non-hematopoietic Tissue Response and Regulation of Metabolism During Diet Induced Obesity. Front. Pharmacol. 2021, 12, 725734. [Google Scholar] [CrossRef]
- Mahajan, R.; Samanthula, G.; Srivastava, S.; Asthana, A. A critical review of Roxadustat formulations, solid state studies, and analytical methodology. Heliyon 2023, 9, e16595. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Lee, J.; Noguchi, C.T. Effects of Erythropoietin in White Adipose Tissue and Bone Microenvironment. Front. Cell Dev. Biol. 2020, 8, 584696. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Iwasaki, M.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M. Phase 3, Randomized, Double-Blind, Active-Comparator (Darbepoetin Alfa) Study of Oral Roxadustat in CKD Patients with Anemia on Hemodialysis in Japan. J. Am. Soc. Nephrol. 2020, 31, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Kuuranne, T.; Geyer, H. Annual banned-substance review: Analytical approaches in human sports drug testing 2019–2020. Drug Test. Anal. 2020, 13, 8–35. [Google Scholar] [CrossRef]
- Eichner, D.; Van Wagoner, R.M.; Brenner, M.; Chou, J.; Leigh, S.; Wright, L.R.; Flippin, L.A.; Martinelli, M.; Krug, O.; Schänzer, W.; et al. Implementation of the prolyl hydroxylase inhibitor Roxadustat (FG-4592) and its main metabolites into routine doping controls. Drug Test. Anal. 2017, 9, 1768–1769. [Google Scholar] [CrossRef]
- Thevis, M.; Kuuranne, T.; Geyer, H. Annual banned-substance review: Analytical approaches in human sports drug testing 2021–2022. Drug Test. Anal. 2023, 15, 5–26. [Google Scholar] [CrossRef]
- World Anti-Doping Code and International Standard/Prohibited List 2025. Available online: https://www.wada-ama.org/en/news/wadas-2025-prohibited-list-now-force (accessed on 1 November 2024).
- Dhilon, S. Roxadustat: First Global Approval. Drugs 2019, 79, 563–572. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, L.; Wei, X.; Long, M.; Du, Y. Roxadustat: Not just for anemia. Front. Pharmacol. 2022, 13, 971795. [Google Scholar] [CrossRef] [PubMed]
- EMA/CHMP-Committee for Medicinal Products for Human Use (CHMP), Summary of Opinion1 (Initial Authorisation). 2021. Available online: https://www.ema.europa.eu/en/committees/committee-medicinal-products-human-use-chmp (accessed on 25 December 2023).
- Evrenzo-Procedural Steps Taken and Scientific Information After the Authorization. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/evrenzo (accessed on 28 August 2025).
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Roxadustat (accessed on 10 October 2023).
- Xu, Y. Method for Synthesis of Roxadustat and Intermediate Compounds Thereof, EP 3 712 130 B1/en, Published in Accordance with Art. 153(4) EPC (51) Int Cl.: 03.08.2022 Bulletin 2022/31. Available online: https://patents.google.com/patent/EP3712130B1 (accessed on 19 March 2025).
- Lekkala, A.; Lilakar, J.; Aaseef, M.; Budhdev, R.; Nariyam, S.; Bandichhor, R.; Pachore, S.; Sarkar, S.; Ireni, B.; Mala, D.; et al. Process for the Preparation of Roxadustat and Its Intermediates. Available online: https://patents.google.com/patent/WO2019106621A1/en (accessed on 19 March 2025).
- Meloun, M.; Čápová, A.; Pilařová, L.; Pekárek, T. Multiwavelength UV-metric and pH-metric determination of the dissociation constants of the hypoxia-inducible factor prolyl hydroxylase inhibitor Roxadustat. J. Mol. Liq. 2018, 268, 386–402. [Google Scholar] [CrossRef]
- Mahajan, R.; Sharma, A.; Patra, B.; Mani, L.; Grover, P.; Kumar, S.; Guru, S.K.; Samanthula, G.; Dikundwar, A.G.; Asthana, A. Investigation on photo-isomeric impurity of Roxadustat: Structure conformation, physicochemical characterization, interconversion feasibility and in vitro toxicological evaluation. J. Mol. Struct. 2024, 1298, 137017. [Google Scholar] [CrossRef]
- Damle, M.C.; Sonule, J.A. Hydrolytic degradation study of roxadustat by RP-HPLC and HPTLC. Int. J. Pharm. Pharm. Sci. 2023, 15, 36–49. [Google Scholar] [CrossRef]
- Beuck, S.; Möller, I.; Thomas, A.; Klose, A.; Schlörer, N.; Schänzer, W.; Thevis, M. Structure characterisation of urinary metabolites of the cannabimimetic JWH-018 using chemically synthesised reference material for the support of LC-MS/MS-based drug testing. Anal. Bioanal. Chem. 2011, 401, 493–505. [Google Scholar] [CrossRef]
- Vicente, J.P.; Esteve-Romero, J.; Carda-Broch, S. Validation of Analytical Method Based on Chromayographic Techniques: An Overview. Anal. Sep. Sci. 2015, 15, 1757–1808. [Google Scholar] [CrossRef]
- Hoffmann, E.; Stroobant, V. Mass Spectrosmetry: Principles and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-03310-4. [Google Scholar]
- Tadikonda, R.R.; Yashwanth, T.; Usha, B. Liquid Chromatography-Mass Spectrometry: A Review. J. Drug Deliv. Therap. 2024, 14, 298–304. [Google Scholar] [CrossRef]
- Mathew, B.; Philip, M.; Perwad, Z.; Karatt, T.K.; Caveney, M.R.; Subhahar, M.B.; Kal, A.K.K. Identification of Hypoxia-inducible factor (HIF) stabilizer roxadustat and its possible metabolites in thoroughbred horses for doping control. Drug Test. Anal. 2021, 13, 1203–1215. [Google Scholar] [CrossRef]
- Buisson, C.; Marchand, A.; Bailloux, I.; Lahaussois, A.; Martin, L.; Molina, A. Detection by LC–MS/MS of HIF stabilizer FG-4592 used as a new doping agent: Investigation on a positive case. J. Pharm. Biomed. Anal. 2016, 121, 181–187. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, X.; Liu, T.; Jiang, J.; Cui, X.; Zhao, Q.; Hu, P. Liquid chromatography-tandem mass spectrometry methods for quantification of roxadustat (FG-4592) in human plasma and urine and the applications in two clinical pharmacokinetic studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1203, 123274. [Google Scholar] [CrossRef]
- Philip, M.; Mathew, B.; Karatt, T.; Perwad, Z.; Subhahar, M.; Kal, A. Metabolic studies of hypoxia-inducible factor stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping control. Drug Test. Anal. 2021, 13, 794–816. [Google Scholar] [CrossRef]
- Görgens, C.; Guddat, S.; Bosse, C.; Knoop, A.; Geyer, H.; Thevis, M. Implementation of the HIF activator IOX-2 in routine doping controls—Pilot study data. Drug Test. Anal. 2020, 12, 1614–1619. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Sands, J.; Kawahara, K.; Nonoguchi, H. Progress in the Detection of Erythropoietin in Blood, Urine and Tissue. Molecules 2023, 28, 4446. [Google Scholar] [CrossRef]
- Mazzarino, M.; Perretti, I.; Stacchini, C.; Comunità, F.; de la Torre, X.; Botrè, F. UPLC–MS-Based procedures to detect prolyl-Hydroxylase inhibitors of HIF in urine. J. Anal. Toxicol. 2020, 45, 184–194. [Google Scholar] [CrossRef]
- Shibata, T.; Nomura, Y.; Takada, A.; Aoki, S.; Katashima, M.; Murakami, H. Evaluation of the effect of lanthanum carbonate hydrate on the pharmacokinetics of roxadustat in non-elderly healthy adult male subjects. J. Clin. Pharm. Ther. 2018, 43, 633–639. [Google Scholar] [CrossRef]
- Kim, S.H.; Lim, N.R.; Min, H.; Sung, C.; Oh, H.B.; Kim, K.H. Analysis of Hypoxia-inducible factor stabilizers by a modified QuEChERS extraction for antidoping analysis. Mass Spectrom. Lett. 2020, 11, 118–124. [Google Scholar] [CrossRef]
- Diaconu, C.C.; Cozma, M.-A.; Dobrică, E.-C.; Gheorghe, G.; Jichitu, A.; Ionescu, V.A.; Nicolae, A.C.; Drăgoi, C.M.; Găman, M.-A. Polypharmacy in the Management of Arterial Hypertension—Friend or Foe? Medicina 2021, 57, 1288. [Google Scholar] [CrossRef] [PubMed]
- Drăgoi, C.M.; Diaconu, C.C.; Nicolae, A.C.; Dumitrescu, I.B. Redox Homeostasis and Molecular Biomarkers in Precision Therapy for Cardiovascular Diseases. Antioxidants 2024, 13, 1163. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, M.A.; Mitrea, N.; Nicolae, A.C.; Constantinescu, M.Z.; Drăgoi, C.M.; Arsene, A.L.; Barbu, C.G. The dynamics of adiponectin and leptin on metabolic syndrome patients and age matched healthy subjects. Farmacia 2014, 62, 532–545. [Google Scholar]
- Dragoi, C.M.; Yang, Z.; Fekry, B.; Brenna, A. Chronobiology in cardiometabolic health and disease. Front. Pharmacol. 2025, 15, 1544963. [Google Scholar] [CrossRef]
- Chen, N.; Hao, C.; Liu, B.-C.; Lin, H.; Wang, C.; Xing, C.; Liang, X.; Jiang, G.; Liu, Z.; Li, X.; et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 2019, 381, 1011–1022. [Google Scholar] [CrossRef]
- Haase, V.H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013, 27, 41–53. [Google Scholar] [CrossRef]
- Drăgoi, C.M.; Nicolae, A.C.; Ungurianu, A.; Margină, D.M.; Grădinaru, D.; Dumitrescu, I.B. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis—Molecular Mechanisms in Human Health. Cells 2024, 13, 138. [Google Scholar] [CrossRef]
- Drăgoi, C.M.; Moroşan, E.; Dumitrescu, I.B.; Nicolae, A.C.; Arsene, A.L.; Drăgănescu, D.; Lupuliasa, D.; Ioniţă, A.C.; Stoian, A.P.; Stoian, C.; et al. Mititelu, Insights into chrononutrition: The innermost interplay amongst nutrition, metabolism and the circadian Clock, in the context of epigenetic reprogramming. Farmacia 2019, 67, 557–571. [Google Scholar] [CrossRef]
- Czock, D.; Keller, F. Clinical Pharmacokinetics and Pharmacodynamics of Roxadustat. Clin. Pharmacokinet. 2022, 61, 347–348. [Google Scholar] [CrossRef]
- Angeletti, A.; Cravedi, P. Roxadustat: More Than an Erythropoietic Agent? Kidney Int. Rep. 2024, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Sun, X.; Zhang, L.; Lin, H.; Wang, N.; Li, Y.; Zhao, S.; Fu, P.; Cheng, H.; Guo, Z.; et al. Randomized Trial of Lower-Dose Roxadustat Efficacy and Safety in Non-Dialysis-Dependent CKD-Associated Anemia. Kidney Int. Rep. 2025, 10, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hu, Y.; Dong, S.; Meng, J.; Wang, Z.; Ouyang, J.; Lin, Z.; Cheng, X.; Chen, Z.; Wu, R. Therapeutic potential of roxadustat in immune thrombocytopenia: A Mendelian randomization analysis. J. Thromb. Haemost. 2025, 23, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wu, J.; Jiang, J.; Guo, Q.; Yu, Y.; Liu, Y.; Zhang, H.; Qian, L.; Dai, X.; Xie, Y.; et al. Efficacy and Safety of Roxadustat for Anemia in Patients Receiving Chemotherapy for Nonmyeloid Malignancies: A Randomized, Open-Label, Active-Controlled Phase III Study. J. Clin. Oncol. 2025, 43, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wu, X.; Shen, Z.; Wang, M.; Liu, X.; Lin, X.; Qiu, Y.; Jiang, H.; Chen, J.; Lou, Y.; et al. The Efficacy and Safety of Roxadustat for the Treatment of Posttransplantation Anemia: A Randomized Study. Kidney Int. Rep. 2024, 9, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Hamano, T.; Tsuchiya, K.; Kuragano, T.; Joki, N.; Tsuruya, K.; Honda, H.; Uemura, Y.; Nitta, K. PARAMOUNT Study Investigators. Not baseline but time-dependent erythropoiesis-stimulating agent responsiveness predicts cardiovascular disease in hemodialysis patients receiving epoetin beta pegol: A multicenter prospective PARAMOUNT-HD Study. Int. J. Cardiol. 2023, 375, 110–118. [Google Scholar] [CrossRef]
- Choukroun, G.; Strutz, F.; Harkavyi, A.; Santos, V.; Jiletcovici, A.; Del Vecchio, L. Efficacy and Safety of Roxadustat in Patients with CKD: Pooled Analysis by Baseline Inflammation Status. J. Clin. Med. 2025, 14, 303. [Google Scholar] [CrossRef]
- Rodgers, G.M.; Gilreath, J.A. Reply to: Concerns on Potential Risk of Roxadustat in Promoting Tumor Progression: Double-Edged Sword of Hypoxia-Inducible Factor-1α Activation. J. Clin. Oncol. 2025, 43, 1267–1268. [Google Scholar] [CrossRef]
- Signore, P.; Guo, G.; Wei, Z.; Zhang, W.; Lin, A.; Balzo, U.A. small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase improves obesity, nephropathy and cardiomyopathy in obese ZSF1 rats. PLoS ONE 2021, 16, e0255022. [Google Scholar] [CrossRef]
- Barratt, J.; Dellanna, F.; Portoles, J.; Choukroun, G.; De Nicola, L.; Young, J.; Dimković, N.; Reusch, M. Safety of Roxadustat Versus Erythropoiesis-Stimulating Agents in Patients with Anemia of Non-dialysis-Dependent or Incident-to-Dialysis Chronic Kidney Disease: Pooled Analysis of Four Phase 3 Studies. Adv. Ther. 2023, 40, 1546–1559. [Google Scholar] [CrossRef]
- Abdelazeem, B.; Abbas, K.S.; Shehata, J.; El-Shahat, N.A.; Baral, N.; Savarapu, P.; Kunadi, A. The efficacy of Roxadustat for the treatment of anemia in dialysis dependent chronic kidney disease patients: An updated systematic review and meta-analysis of randomized clinical trials. Ann. Transl. Med. 2021, 9, 1714. [Google Scholar] [CrossRef]
- Fliser, D.; Bhandari, S.; Ortiz, A.; Santos, V.; Khalife, N.; Jiletcovici, A.; Akizawa, T. Roxadustat Efficacy and Safety in Patients Receiving Peritoneal Dialysis: Pooled Analysis of Four Phase 3 Studies. J. Clin. Med. 2024, 13, 6729. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Zhang, D.-F.; Tong, X.-W.; Zhao, W.-M.; Shi, R.; Li, X.-L.; Wang, Z.-J.; Wang, D.-G. Roxadustat increases markers of calcification in patients with end-stage kidney disease: Prospective cohort study. J. Bone. Miner. Res. 2025, 40, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-Y.; Xiong, Q.-W.; Yao, X.; Liu, F.; Tang, X.; Fu, H.; Tong, T.; Mao, J.; Peng, W.-X. Roxadustat: Do we know all the answers ? Biomol. Biomed. 2023, 23, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Del Balzo, U.; Signore, P.E.; Walkinshaw, G.; Seeley, T.W.; Brenner, M.C.; Wang, Q.; Guo, G.; Arend, M.P.; Flippin, L.A.; Chow, F.A.; et al. Nonclinical Characterization of the Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat, a Novel Treatment of Anemia of Chronic Kidney Disease. J. Pharmacol. Exp. Ther. 2020, 374, 342–353. [Google Scholar] [CrossRef]
- Li, X.; Jiang, S.; Gu, X.; Liu, X.; Shang, S.; Zhang, J.; Pang, K.; Li, W. Assessment of the safety of Roxadustat for cardiovascular events in chronic kidney disease-related anemia using meta-analysis and bioinformatics. Front. Pharmacol. 2024, 15, 1380326. [Google Scholar] [CrossRef] [PubMed]
- Dine, G.; Lamzouri, A.; Guibert, E.; Alvarez, J.C. Hematological ABP: Interest of New Generation Sequencing Methods (NGS) to Study Suspicious Fluctuations in Erythropoiesis. Drug Test. Anal. 2025, 17, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, J.; Kaur, M.; Moola, S.; Ramachandran, R.; Meena, P.; Bajpai, D.; Bhaumik, S. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors for Anemia in Non-Dialysis Dependent Chronic Kidney Disease: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Indian J. Nephrol. 2025, 35, 217–233. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, Q.; Feng, B.; Yang, X.; Jin, H. Roxadustat regulates the cell cycle and inhibits proliferation of mesangial cells via the hypoxia-inducible factor-1α/P53/P21 pathway. Front. Cell Dev. Biol. 2025, 13, 1503477. [Google Scholar] [CrossRef]
- Maidana, D.; Arroyo-Álvarez, A.; Barreres-Martín, G.; Arenas-Loriente, A.; Cepas-Guillen, P.; Garofo, R.T.B.; Caravaca-Pérez, P.; Bonanad, C. Targeting Inflammation and Iron Deficiency in Heart Failure: A Focus on Older Adults. Biomedicines 2025, 13, 462. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, X.; Shu, G.; Li, H.; Lin, J.; Duan, Q.; Cao, X.; Cheng, M.; Zheng, Z. The efficacy and safety of low-dose roxadustat in combination with recombinant human erythropoietin for treating hemodialysis patients with moderate anemia: A retrospective cohort study. Clin. Nephrol. 2025, 103, 172–183. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, S.; Cao, Z.; Tang, J.; Cui, H. The Efficacy and Safety of Roxadustat for Anemia in Hemodialysis Patients with Chronic Kidney Disease: A Meta-Analysis of Randomized Controlled Trials. Toxics 2024, 12, 846. [Google Scholar] [CrossRef]
- Lu, C.-M.; Hsu, Y.-H.; Lin, I.-H.; Kuo, K.-L.; Liao, J.-F.; Huang, H.-F.; Lu, P.-H. Conventional and complementary alternative medicine therapies for renal anemia: A literature review. Front. Endocrinol. 2025, 15, 1342873. [Google Scholar] [CrossRef]
- Tsuruya, K.; Sugamori, H.; Tanaka, Y.; Wakasugi, N.; Ito, Y. Real-world safety and effectiveness of Roxadustat in patients with anemia of chronic kidney disease: Interim results from a post-marketing surveillance study in Japan. Expert Opin. Pharmacother. 2025, 26, 503–517. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Wang, J.; Yang, M.; Fan, Q.L. EPO-Mimetic Peptide Pegmolesatide Therapy for Pure Red Cell Aplasia in a Patient with Non-dialysis-dependent Type 1 Diabetic Nephropathy: A Case Report. Kidney Med. 2024, 7, 100947. [Google Scholar] [CrossRef]
- Hashimoto, M.; Nagayama, Y.; Iida, A.I.; Inoue, T. Roxadustat-Induced Central Hypothyroidism Masked by Uremia at the Initiation of Hemodialysis: A Case Report. Cureus 2024, 16, e76499. [Google Scholar] [CrossRef]
- Jain, S.; Patil, R.; Sharma, S. Bioanalysis, Analysis, Chemistry, and Pharmacological Aspects of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors. Curr. Top. Med. Chem. 2025, 25, 1451–1466. [Google Scholar] [CrossRef]
- Glaspy, J.; Gabrail, N.Y.; Locantore-Ford, P.; Lee, T.; Modelska, K.; Samal, V.; Henry, D.H. Open-label, Phase 2 study of roxadustat for the treatment of anemia in patients receiving chemotherapy for non-myeloid malignancies. Am. J. Hem. 2023, 98, 703–711. [Google Scholar] [CrossRef]
- Fan, L.; Cao, L.; Luo, Y.; Gao, F. Roxadustat combined with immunosuppressants for treatment of pure red cell aplasia with kidney injury. Ann. Hematol. 2024, 103, 5925–5927. [Google Scholar] [CrossRef]
- Meng, X.; Asadi-Asadabad, S.; Cao, S.; Song, R.; Lin, Z.; Safhi, M.; Qin, Y.; Tactoum, E.T.; Taudte, V.; Ekici, A.; et al. Metabolic rewiring controlled by HIF-1α tunes IgA-producing B-cell differentiation and intestinal inflammation. Cell Mol. Immunol. 2025, 22, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Kawase, K.; Hamamoto, S.; Unno, R.; Taguchi, K.; Okada, A. Prolyl hydroxylase domain inhibitors prevent kidney crystal formation by suppressing inflammation. Urolithiasis 2024, 53, 16. [Google Scholar] [CrossRef]
- Hauge, J.W.; Wærp, C.M.; Hofsø, D.; Abedini, S. Central hypothyroidism caused by Roxadustat. Tidsskr. Nor. Laegeforen. 2024, 144. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Cui, X.; Hu, Y.; Wei, H.; Xu, H.; Zhang, C.; Du, C.; Chang, J.; Li, Y.; Ming, W.; et al. Hypoxia Reduces Mouse Urine Output via HIF1α-Mediated Upregulation of Renal AQP1. Kidney Dis. 2024, 10, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hu, Y.; Dong, S.; Meng, J.; Wang, Z.; Ouyang, J.; Lin, Z.; Cheng, X.; Chen, Z.; Wu, R. Therapeutic potential of roxadustat in immune thrombocytopenia: A Mendelian randomization analysis. Blood 2024, 144, 5415. [Google Scholar] [CrossRef]
- Liu, D.; Gu, D.; Deng, B.; Chen, D.; Yu, P.; Deng, S. Pharmacological Evaluation of a First-in-Class Hemoglobin Elevating Agent (HbEA) AND017 in Sprague Dawley Rats. Blood 2024, 144, 5220. [Google Scholar] [CrossRef]
- Singh, A.; Uzun, G.; Bakchoul, T. Primary Immune Thrombocytopenia: Novel Insights into Pathophysiology and Disease Management. J. Clin. Med. 2021, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Pai, P.; Zhu, W.; Chen, X.; Cui, L. Positive response of a hemodialysis patient with pure red cell aplasia on recombinant human erythropoietin therapy to cyclosporine and Roxadustat. CEN Case Rep. 2024, 13, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-P.; Mao, X.-Y.; Wang, C.; Xu, Z.-H.; Bu, Z.-H.; Xu, M.; Li, B. Roxadustat treatment for anemia in peritoneal dialysis patients: A randomized controlled trial. J. Form. Med. Ass. 2022, 121, 529–538. [Google Scholar] [CrossRef]
- Ito, H.; Araki, R.; Mori, T.; Inoue, H.; Matsumoto, S.; Antoku, S.; Yamasaki, T.; Togane, M. Relationship Between the Effect of Roxadustat and Comorbid Diabetes in Non-dialyzed Chronic Kidney Disease Patients: A Retrospective Observational Study. Cureus 2023, 15, e39543. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.-H.; Yue, Y.; Chen, Y.-L.; Chiang, J.Y.; Cheng, B.-C.; Yang, C.-C.; Chai, H.-T.; Yip, H.-K. Combined dapagliflozin and roxadustat effectively protected heart and kidney against cardiorenal syndrome-induced damage in rodent through activation of cell stress-Nfr2/ARE signalings and stabilizing HIF-1α. Biomed. Pharmacother. 2024, 180, 117567. [Google Scholar] [CrossRef]
- Aburahess, S.; Li, L.; Hussain, A.; Obeidat, M.; Alavi, P.; Azad, A.K.; Jahroudi, N.; Ballermann, B.J. Hypoxia-induced TIMAP Upregulation in Endothelial Cells and TIMAP-dependent Tumour Angiogenesis. Am. J. Physiol. Cell Physiol. 2024, 327, C1359–C1372. [Google Scholar] [CrossRef]
- Shen, Z.-W.; Yang, X.-Y.; Han, L.; Xie, J.; Liu, X.-Q.; Mao, J.-H.; Dai, H.-R.; Kong, W.-W.; Wu, X.-Y.; Qiu, Y.-Q.; et al. Optimizing the dosing regimen of roxadustat in kidney transplant recipients with early post-transplant anemia. J. Pharm. Sci. 2024, 113, 3344–3353. [Google Scholar] [CrossRef]
- Raguraman, V.; Mohiyuddin, S.; Benge, C.; Banker, L.; Plank, T.; Hammer, R.D.; Palaniyandi, S.; Hildebrandt, G.C. Stabilization of HIF-1? By the Prolyl Hydroxylase Inhibitor Roxadustat Reduces Gastrointestinal Graft-Versus-Host Disease. Blood 2024, 144, 262. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, Z.; Luo, Y. Co-Catalyzed Suzuki-Miyaura Coupling of Organoboronic Acids and Alkynyl Chlorides Using Potassium Bicarbonate as Base. Org. Lett. 2024, 26, 9717–9721. [Google Scholar] [CrossRef]
- Jiao, K.; Zhang, H.; Li, B.; Wang, Y.; Liu, J. Roxadustat protects oxidative stress and tissue injury in the brain induced by ischemic stroke via the HIF-1α/NRF2 axis. J. Neurosurg. Sci. 2024, 68, 714–717. [Google Scholar] [CrossRef]
- Virtanen, N.; Saarela, U.; Karpale, M.; Arffman, R.K.; Mäkelä, K.A.; Herzig, K.-H.; Koivunen, P.; Piltonen, T. Roxadustat alleviates metabolic traits in letrozole-induced PCOS mice. Biochem. Pharmacol. 2024, 229, 116522. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, S.; Sree, S.; Nisula, T.A.; Kultalahti, H. Activation of the hypoxia-inducible factor pathway by roxadustat improves glucose metabolism in human primary myotubes from men. Diabetologia 2024, 67, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, E.; Kitamura, M.; Funakoshi, S.; Mukae, H.; Nishino, T. Roxadustat has risks of reversible central hypothyroidism in patients undergoing hemodialysis: A single-center retrospective cohort study. Ren. Fail. 2024, 46, 2410375. [Google Scholar] [CrossRef]
- Sobolevsky, T.; Fedoruk, M.; Dellanna, F.; Geyer, H.; Ahrens, B.; Thevis, M. Long-Term Excretion of Roxadustat in Urine. Drug Test. Anal. 2024, 17, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Haase, V.H. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 2021, 11, 8–25. [Google Scholar] [CrossRef]
- Chambers, J.C.; Zhang, W.; Li, Y.; Sehmi, J.; Wass, M.N.; Zabaneh, D.; Hoggart, C.; Bayele, H.; McCarthy, M.I.; Peltonen, L.; et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat. Genet. 2009, 41, 1170–1172. [Google Scholar] [CrossRef]
- Beall, C.M.; Cavalleri, G.L.; Deng, L.; Elston, R.C.; Gao, Y.; Knight, J.; Li, C.; Li, J.C.; Liang, Y.; McCormack, M.; et al. Natural selection on EPAS1 (HIF-2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl. Acad. Sci. USA 2010, 107, 11459–11464. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Xiao, R.; Köttgen, A.; Wühl, E.; Wong, C.S.; Wuttke, M.; Bayazit, A.K.; Çalişkan, S.; Warady, B.A.; Schaefer, F.; et al. Genetic associations of hemoglobin in children with chronic kidney disease in the PediGFR Consortium. Pediatr. Res. 2019, 85, 324–328. [Google Scholar] [CrossRef]
- Ren, S.; Zhao, Y.; Wu, J.; Ren, S.; Feng, Y. Hypoxia-inducible factor–prolyl hydroxylase inhibitors for treatment of anemia in CKD: A systematic review and network meta-analysis. Front. Pharmacol. 2024, 15, 1406588. [Google Scholar] [CrossRef] [PubMed]
- Sackeyfio, A.; Lopes, R.D.; Kovesdy, C.P.; Cases, A.; A Mallett, S.; Ballew, N.; Keeley, T.J.; Garcia-Horton, V.; Ayyagari, R.; Camejo, R.R.; et al. Comparison of outcomes on HIF-PHIs in anaemia of CKD: Network meta-analysis in dialysis and non-dialysis populations. Clin. Kidney J. 2024, 17, sfad298. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; McMurray, J.J.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for anemia in patients not undergoing dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Carroll, K.; Perkovic, V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 2021, 385, 2325–2335. [Google Scholar] [CrossRef] [PubMed]
Identification Element | Details |
---|---|
Registered Product Code (EMA) | EMEA/H/C/004871 [16] |
Active pharmaceutical ingredient | Roxadustat |
Global non-exclusive name | Roxadustat |
Therapeutic uses | Anemia, nephrological chronic diseases |
ATC Code (anatomical therapeutic chemical)—classification of the drug according to the system/organ targeted by the therapeutic intake and chemical and pharmacological performances [26] | B03XA05 |
Additional monitoring | Drug under monitoring process |
Parameter | Value at 25 °C | Value at 37 °C | Method |
---|---|---|---|
pKa1 | 4.33 (09) | 4.25 (09) | Potentiometric |
pKa2 | 6.57 (11) | 6.49 (10) | Potentiometric |
pKa3 | 8.88 (05) | 8.80 (06) | Potentiometric |
pKa4 | 9.03 (04) | 9.00 (05) | Potentiometric |
pKa1 (UV-metric) | 3.60 (04) | Spectrophotometric (SQUAD84, REACTLAB) | |
pKa2 (UV-metric) | 5.62 (14) | Spectrophotometric (SQUAD84, REACTLAB) | |
pKa3 (UV-metric) | 7.66 (16) | Spectrophotometric (SQUAD84, REACTLAB) | |
pKa4 (UV-metric) | 9.08 (02) | Spectrophotometric (SQUAD84, REACTLAB) | |
ΔH0 (enthalpy of dissociation) | Endothermic | ||
ΔG0 (Gibbs free energy) | Positive | ||
ΔS0 (entropy of dissociation) | Negative | ||
Identified protonated species | LH4+, LH3, LH2−, L3− | LH4+, LH3, LH2−, L3− |
Analysis | Equipment and Materials |
---|---|
LC | UltiMate 3000 UPLC+ (Dionex, Sunnyvale, CA, USA) |
LC | Reversed-phase HPLC column: C18, 4.5 × 150 mm |
LC | Eluents: A—5 mM ammonium acetate, 0.2% formic acid aqueous solution; B—cyanomethane |
MS | Dionex UltiMate 3000 UHPLC+; QExactive high-resolution accurate mass spectrometer |
MS | 70,000 resolutions; mass range m/z 50–750. |
MS | Capillary voltage—4000 V; capillary temperature—320 °C |
Analyte | Formula | RT [min] |
---|---|---|
ROX | C19H17N2O5 | 11.04 |
M1 | C19H17N2O6 | 8.82 |
M2 | C19H16N2O6 | 7.53 |
M3 | C19H16N2O6 | 9.82 |
M4 | C17H13NO4 | 8.03 |
M5 | C17H14N2O3 | 11.05 |
M6 | C16H13NO2 | 11.82 |
M7 | C17H13NO5 | 10.99 |
M8 | C25H24N2O11 | 7.56 |
M9 | C25H24N2O12 | 7.15 |
M10 | C23H21NO10 | 8.38 |
M11 | C19H16N2O9S | 7.74 |
M12 | C17H13NO8S | 7.33 |
M13 | C17H14N2O7S | 8.34 |
Name | Roxadustat |
---|---|
Formula | C19H16N2O5 |
Polarity | + |
m/z | 353.113 |
RT (min.) | 6.3 |
Manufacturer | MCE |
Application/Context | Evidence Level | Key Mechanisms/Targets | Reported Benefits (Signal/Outcomes) | Noted Risks/Limitations | Risk–Benefit Summary | Evidence Gaps/Next Steps | Ref. |
---|---|---|---|---|---|---|---|
Calcium/Vitamin D axis (FGF23) | Clinical/observational in ESKD | ↑ FGF23; SPP24 changes | Links to mineral metabolism markers | Possible calcification risk in ESKD | Uncertain; monitor minerals | Mechanistic and outcome studies | [67,68] |
Iron deficiency/inflammation | Translational/ clinical mechanistic | HIF activation despite cytokines; ↓ hepcidin; iron mobilization | Maintains Hb increase in inflammatory milieu | Benefit depends on iron stores; risk of functional iron deficiency | Potentially favorable with iron monitoring | Prospective, trials stratified by CRP/hepcidin | [68,69,70,71,72] |
PCOS (metabolic) | Preclinical (letrozole mice) | HIF-mediated metabolic re-programming | Improved metabolic profile (models) | No human validation | Unknown; exploratory | Translational metabolic studies | [72] |
HF with anemia/inflammation | Hypothesis/limited clinical | HIF-mediated iron handling; anti-inflammatory effects | Potential improvement in iron indices/Hb | Cardiovascular safety needs careful monitoring | Equivocal; requires targeted trials | HF-specific RCTs with iron/hepcidin strata | [73,74] |
CKD anemia (erythropoiesis) | Phase 3 RCTs /pooled analyses | HIF-PHD inhibition → HIF-1/2α stabilization; ↑ EPO; ↓ hepcidin; ↑ DMT1/ferroportin | ↑ Hb; ESA noninferiority; reduced IV iron use in some settings | GI events, hypertension, hyperkalemia; thyroid function changes in dialysis subsets | Favorable in indicated CKD populations with monitoring | Head-to-head long-term CV outcomes by phenotype; thyroid signal characterization | [1,2,51,63,64,65,71,74,75,76,77] |
Diabetic kidney disease (early) | Preclinical/cellular | HIF-1α–p53/p21 modulation; anti-proliferative in mesangial cells | Nephroprotective signals (preclinical) | Clinical translation unproven | Uncertain; hypothesis-generating | Early-phase trials with renal endpoints | [62,73,78] |
Hemodialysis–thyroid axis | Observational/case reports | Central hypothyroidism; THR-β modulation | Reversible TSH/TRH changes reported | Potential endocrine signal | Caution; monitor thyroid | Prospective thyroid function monitoring | [79,80] |
Chemotherapy Induced Anemia | Clinical-Phase 2 RCTs | HIF pathway activation | Increased Hb levels, reduced transfusion needs | Short-term study, with potential side effects and no control group | Increases Hb, reduces transfusions, evidence is limited by small design | Larger, long-term, randomized trials needed to confirm safety, efficacy and optimal dosing in diverse patients | [81] |
Pure red cell aplasia (PRCA) | Case series/clinical use | Endogenous EPO stimulation | Restoration of Hb with immunosuppression | Heterogeneous etiologies; small N | Cautiously favorable in select cases | Registries/prospective cohorts | [82] |
Intestinal inflammation | Preclinical, mouse models and B cells in vitro | HIF-1α regulates B cell metabolism and acetyl-CoA- dependent epigenetic changes to improve IgA class switching and to reduce intestinal inflammation | Enhanced IgA production, reduced severity of intestinal inflammation (DSS-induced colitis) | Human relevance is untested | Enhanced IgA production, reduced intestinal inflammation, effects in humans remain uncertain | Need for validation in human studies | [83] |
Kidney stone disease | Preclinical (models of Ca-oxalate) | ↓ CCL2, TNF, ADGRE1 (anti-inflammatory) | ↓ Crystal deposition; renal protection in models | Human data lacking | Unknown; preclinical only | Pilot clinical feasibility | [84,85] |
Water balance/edema | Preclinical | HIF-dependent; AQP1 regulation in proximal tubule | Mechanistic rationale for diuresis modulation | No clinical outcome data | Unknown; mechanistic only | Human biomarker studies | [86] |
Immune thrombocytopenia (ITP) | Case/early clinical signals | HIF-1α immunomodulation; Hb elevation | Hb increase in ITP setting | Limited sample sizes; mechanism indirect | Unclear; adjunctive role at most | Controlled trials | [87,88,89] |
Hemodialysis due to PRCA | Case series/clinical use | Endogenous EPO stimulation | PRCA treatment showed a positive response to rhEPO, cyclosporine and ROX | Single patient case report, diagnostic uncertainty | Effective PRCA treatment in one patient, potential therapy risks | Requires larger studies, long-term outcomes and improved diagnostic for PRCA | [82,90] |
Peritoneal dialysis (PD) anemia | Phase 3 pooled analyses | EPO/HIF axis activation | Noninferior to ESA; safe in PD cohorts | Class-typical AEs; PD-specific data still limited | Favorable with standard monitoring | Longer follow-up in PD | [65,91] |
Non-dialyzed patients with or without diabetes | Retrospective observational study | HIF pathway activation | Improved Hb, no difference in adverse effects between diabetic and non-diabetic patients | Small retrospective study, limited follow up | Effective in anemia treatment with dose-dependent risks | Larger, prospective, multicenter trials | [92] |
Cardiorenal combo (with dapagliflozin) | Preclinical (CRS models) | PI3K/AKT/mTOR; ERK; JNK/p38 activation | Heart–kidney protection signals (models) | No human data | Unknown; preclinical synergy | Phase 1/2 PK-PD and safety | [93] |
Tumor angiogenesis (TIMAP/SMAD) | Preclinical | ↑ TIMAP via SMAD1/5/8 inhibition | Pro-angiogenic effects (context-specific) | Oncologic risk concern in tumors | Potential risk in active malignancy | Tumor-context contraindication guidance | [20,21,94] |
Post-transplant anemia | Clinical study, level 2b | HIF pathway activation | Increased Hb, improved iron utilization, potential to reduce ESA use | Limited sample, population specific | Effective in anemia correction, improved iron metabolism, good short-term tolerability | Need larger, long term-studies, ESA comparison to confirm safety, efficacy and optimal dosing | [95] |
GI GvHD/barrier protection | Preclinical (transplant models) | ↓ IFN-γ, TNF-α; epithelial protection | Reduced early gut injury (models) | Clinical translation pending | Unknown; promising preclinical | Early clinical trials | [22,82,96,97] |
Ischemic stroke/oxidative stress | Preclinical | HIF-1/NRF2 antioxidant activation | Neuroprotection; ↓ ROS in models | Timing/ dose critical; human data absent | Unknown; time-sensitive | Phase 1 neuroprotection studies | [49,93,98] |
Polycystic Ovary Syndrome | Preclinical, mouse models of PCOS | HIF pathway activation | Improved glucose tolerance, improved insulin sensitivity, adipose tissue function | Preclinical setting, lack of human outcomes | Significant metabolic effects in PCOS mice | Human translation, long-term safety, reproductive outcomes remain the main evidence gaps | [99] |
Diabetes/skeletal muscle | Preclinical (human myotubes) | ↑ Glycolysis; ↓ mitochondrial respiration; ↑ glycogen synthesis | Improved insulin-stimulated glycogen synthesis (ex vivo) | In vivo human effect unknown | Unknown; mechanism-oriented | Physiology studies in T2D | [72,73,100] |
Reversible central hypothyroidism | Clinical study, Level 3 | Suppresses pituitary TSH production, leading to central hypothyroidism | Reversibility of thyroid dysfunction | Reversible central hypothyroidism, lack of clinical symptom data | Effective anemia treatment in hemodialysis patients, clinicians must monitor thyroid function due to the risk of potential central hypothyroidism | More robust, long-term studies | [101] |
Anti-doping (detection) | Analytical validation/case report | Long-window urinary detection; metabolite panels | Detection at sub-pg/mL for extended periods; ABP integration | Not a therapeutic application | N/A (forensic context) | Harmonize target metabolites and cut-offs | [19,45,70,102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Creangă, E.-C.; Ott, C.; Nicolae, A.-C.; Drăgoi, C.M.; Stan, R. Roxadustat as a Hypoxia-Mimetic Agent: Erythropoietic Mechanisms, Bioanalytical Detection, and Regulatory Considerations in Sports Medicine. Curr. Issues Mol. Biol. 2025, 47, 734. https://doi.org/10.3390/cimb47090734
Creangă E-C, Ott C, Nicolae A-C, Drăgoi CM, Stan R. Roxadustat as a Hypoxia-Mimetic Agent: Erythropoietic Mechanisms, Bioanalytical Detection, and Regulatory Considerations in Sports Medicine. Current Issues in Molecular Biology. 2025; 47(9):734. https://doi.org/10.3390/cimb47090734
Chicago/Turabian StyleCreangă, Elena-Christen, Cristina Ott, Alina-Crenguţa Nicolae, Cristina Manuela Drăgoi, and Raluca Stan. 2025. "Roxadustat as a Hypoxia-Mimetic Agent: Erythropoietic Mechanisms, Bioanalytical Detection, and Regulatory Considerations in Sports Medicine" Current Issues in Molecular Biology 47, no. 9: 734. https://doi.org/10.3390/cimb47090734
APA StyleCreangă, E.-C., Ott, C., Nicolae, A.-C., Drăgoi, C. M., & Stan, R. (2025). Roxadustat as a Hypoxia-Mimetic Agent: Erythropoietic Mechanisms, Bioanalytical Detection, and Regulatory Considerations in Sports Medicine. Current Issues in Molecular Biology, 47(9), 734. https://doi.org/10.3390/cimb47090734