The Emerging Roles of Ferroptosis and NETosis in Pregnancy Complications: Insights into Preeclampsia and Gestational Diabetes Mellitus
Abstract
1. Introduction
2. Methods
3. Foundations and Failures of Uteroplacental Circulation
4. Ferroptosis in Pregnancy
4.1. Iron Metabolism: Pathways and Key Regulatory Molecules
Pathway | Key Molecular Marker | Molecular Name | Mechanistic Role | Association with PE | Association with GDM | Reference |
---|---|---|---|---|---|---|
Ferroptosis | NDRG1 | N-myc downstream-regulated gene 1 | Promotes tumor survival by inhibiting ferroptotic cell death | Upregulation in PE | NR | He et al. [30] |
P4HA1 | Prolyl 4-hydroxylase subunit alpha 1 | Mevalonate pathway Activates HMGCS1 Promoting proliferation and metastasis Protects cell from erastin induced ferroptosis | Upregulation in PE | NR | He et al. [30] | |
LDHA | Lactate dehydrogenase A | Drives glycolysis and lactate production-resistance to ferroptosis | Upregulation in PE | NR | He et al. [30] | |
IDO-1 | Indoleamine 2,3-dioxygenase 1 | Kynurenine pathway Catalyzes tryptophan degradation to kynurenine Suppresses ferroptosis indirectly through scavenging ROS and activating NRF2. | Downregulation in PE | NR | He et al. [30] | |
Promotes vasodilation through degradation of tryptophan to kynurenine | Downregulation in PE | NR | He et al. [30] | |||
ALB | Albumin | Native albumin mediates antioxidant effects Oxidized albumin promotes ferroptosis by increasing intracellular iron | Increased expression in PE | NR | Wu et al. [31] | |
CDKN2A | Cyclin-dependent kinase inhibitor 2A | Activates JAK2/STAT3 signaling pathway and upregulates anti-ferroptotic proteins | Increased expression in PE | NR | Wu et al. [31] | |
TXNRD1 | Thioredoxin reductase-1 | Cytosolic selenoenzyme with antioxidant features Prevents accumulation of lipid hydroperoxides | Increased expression in PE | NR | Wu et al. [31] | |
CAV1 | Caveolin-1 | Membrane scaffolding enzyme regulates lipid peroxidation & expression of GPX-4 and SLC7A11 Overexpression inhibits ferroptosis by reducing ROS | Increased expression in PE | NR | Wu et al. [31] | |
SRXN1 | Sulfiredoxin-1 | Activates HO-1 Promotes ferroptosis | Downregulation in PE | NR | Wei et al. [32] | |
NOX 1/2 | NADPH Oxidase 1/2 | Production of superoxide Positive regulator of ferroptosis | Increased expression in PE | NR | Wu et al. [31] | |
NOX4 | NADPH Oxidase-4 | Production of hydrogen peroxide and superoxide and promotes ferroptosis | Increased expression in PE | NR | Wu et al. [31] | |
ACSL4 | Acyl-CoA synthetase long-chain family member 4. | Ligation of PUFAs | Increased expression in PE | NR | Ortega et al. [33] | |
GPX4 | Glutathione peroxidase 4 | Central defender against ferroptosis Reduction of PLOOHs to non-toxic lipid alcohols using GSH as cofactor | Increased expression in PE | Increased levels in GDM driven by upregulation of SIRT3 | Ortega et al. [33] | |
SLC7A11 | Solute carrier family 7-member 11 | Light chain subunit of system Xc- Cystine/glutamate antiporter Regulates levels of cystine imported inside the cell | Increased expression in PE | Increased levels in GDM driven by upregulation of SIRT3 | Ortega et al. [33] | |
TfRC | Transferrin Receptor | Cellular iron uptake after binding with circulated transferrin | Increased expression in PE | NR | Ortega et al. [33] | |
SIRT 6 | Sirtuin 6 | Upregulates NRF-2/HO-1 axis leading to increased expression of antioxidant genes | Elevated levels in PE related with stimulated pathway of NRF-2/HO-1 | NR | Qi et al. [34] | |
FPN | Ferroportin | Iron exporter of the cellular membrane Exports Fe2+ from the cell decreasing iron accumulation | Reduced expression in pregnancies complicated with PE | NR | Ng. et al. [35] | |
IRS 2 /IRS 3 | Insulin-receptor substrate 2/3 | Mediates downstream of PI3K/AKT Modulates glucose metabolism via AKT-mediated NRF2-activation Promotes synthesis of GSH and reduces oxidative stress Inhibit ferroptosis | NR | Serine residuals phosphorylation inhibits GLUT incorporation in cell membrane sustaining hyperglycemia resulting in GDM | Metz and Houghtonet al. [36] | |
mTOR | Mechanistic target of rapamycin | Upregulation of SREBP-1, enhances lipid biosynthesis and maintains redox homeostasis Negative regulator of ferroptosis | Hyperactivation of mTOR pathway promotes insulin resistance and indirect hyperglycemia predisposing in GDM and PE | Saxton et al. [37] | ||
LPCAT3 | Lys phosphatidylcholine acyltransferase 3 | Incorporates PUFAs into membrane phospholipids promoting ferroptosis | NR | Increased lipid peroxidation impairs trophoblast invasion and enhances ferroptosis that precipitates in GDM | Du et al. [38] | |
NETosis | ASK-1 inflammasome | Apoptosis signal-regulating kinase 1 | Promotes apoptosis and inflammation | Increased oxidative stress and inflammation activate ASK-1, which can amplify trophoblast apoptosis and placental injury, contributing to PE and GDM | NaveenKumar et al. [39] | |
L-Selectin | Leukocyte adhesion molecule participates in neutrophils’ recruitment | Amplify inflammation and oxidative stress predispose to PE and GDM | ||||
ICAM-1 | Intercellular adhesion molecule 1 | Luppi et al. [40] | ||||
IL-8 | Interleukin-8 | Neutrophil chemoattractant protein induces NETs formation | Leik et al. [41] | |||
NE | Neutrophil elastase | Translocates to cell nucleus and it cleaves histones and further promotes chromatin relaxation. | Elevated levels detected in PE and associations with level-dependent disease severity | Kenny et al. [42] | ||
MPO | Myeloperoxidase | Facilitates both NE nuclear translocation and chromatin decondensation | Kenny et al. [42] | |||
HMGB-1 | High-mobility group box 1 | Promotes inflammation and oxidative stress resulting in trophoblast injury | Enhanced oxidative stress in placental interface of pregnancies complicated with PE | Increased levels in maternal serum and predisposes to insulin resistance | Dong et al. [43] |
4.2. Placental Iron Transport: Links Between Ferroptosis, Iron Imbalance, and Placental Dysfunction
4.3. Maternal Adaptations to Iron Demands During Pregnancy
4.4. Cellular Defense Mechanisms Against Ferroptosis
4.5. Ferroptosis and Intracellular Pathways in Pregnancy Complications
5. Preeclampsia Pathogenesis and Ferroptosis
5.1. Common Pathophysiological Pathways in Preeclampsia and Ferroptosis
5.2. Potential Therapeutic Targets in Preeclampsia
6. Gestational Diabetes Mellitus Pathogenesis
Gestational Diabetes Mellitus Molecular Pathways and Ferroptosis
7. NETosis: A Novel Cell Death Mechanism in Pregnancy Complications
8. Endothelial Pathophysiology in Pregnancy: Mechanistic Insights from HUVEC Models of Preeclampsia and Hyperglycemia
9. Clinical Implications and Future Directions
10. Limitations
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
ACSL | Acyl-CoA Synthetase Long-chain |
DMT | Divalent Metal Transporter |
GDM | Gestational Diabetes Mellitus |
GPX4 | Glutathione Peroxidase 4 |
GSH | Glutathione |
LPCAT | Lys phosphatidylcholine Acyltransferase |
NETs | Neutrophil Extracellular Traps |
NLRP | NOD-LRR-and Pyrin Domain-Containing Protein |
PE | Preeclampsia |
PLOOH | Phospholipid Hydroperoxides |
PUFAs | Polyunsaturated Fatty Acids |
ROS | Reactive Oxygen Species |
Tf | Transferrin |
TfR | Transferrin Receptor |
References
- Sebastian, S.A.; Sethi, Y.; Mathews, A.M.; Santhosh, T.; Lorraine Co, E.; Padda, I.; Johal, G. Cardiovascular Complications during Pregnancy: Advancing Cardio-Obstetrics. Disease-a-Month 2024, 70, 101780. [Google Scholar] [CrossRef]
- Williamson, C.G.; Altendahl, M.; Martinez, G.; Ng, A.; Lin, J.P.; Benharash, P.; Afshar, Y. Cardiovascular Disease in Pregnancy. JACC Adv. 2024, 3, 101071. [Google Scholar] [CrossRef]
- Täufer Cederlöf, E.; Lundgren, M.; Lindahl, B.; Christersson, C. Pregnancy Complications and Risk of Cardiovascular Disease Later in Life: A Nationwide Cohort Study. J. Am. Heart Assoc. 2022, 11, e023079. [Google Scholar] [CrossRef]
- Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.N.; Oparil, S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [Google Scholar] [CrossRef]
- Torres-Torres, J.; Monroy-Muñoz, I.E.; Perez-Duran, J.; Solis-Paredes, J.M.; Camacho-Martinez, Z.A.; Baca, D.; Espino-Y-Sosa, S.; Martinez-Portilla, R.; Rojas-Zepeda, L.; Borboa-Olivares, H.; et al. Cellular and Molecular Pathophysiology of Gestational Diabetes. Int. J. Mol. Sci. 2024, 25, 11641. [Google Scholar] [CrossRef]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Pre-Eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front. Endocrinol. 2020, 11, 655. [Google Scholar] [CrossRef]
- Rao, R.; Sen, S.; Han, B.; Ramadoss, S.; Chaudhuri, G. Gestational Diabetes, Preeclampsia and Cytokine Release: Similarities and Differences in Endothelial Cell Function. Adv. Exp. Med. Biol. 2014, 814, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Guillotin, F.; Fortier, M.; Portes, M.; Demattei, C.; Mousty, E.; Nouvellon, E.; Mercier, E.; Chea, M.; Letouzey, V.; Gris, J.-C.; et al. Vital NETosis vs. Suicidal NETosis during Normal Pregnancy and Preeclampsia. Front. Cell Dev. Biol. 2022, 10, 1099038. [Google Scholar] [CrossRef]
- Natorska, J.; Ząbczyk, M.; Undas, A. Neutrophil Extracellular Traps (NETs) in Cardiovascular Diseases: From Molecular Mechanisms to Therapeutic Interventions. Pol. Heart J. 2023, 81, 1205–1216. [Google Scholar] [CrossRef]
- Qin, S.; Zhu, C.; Chen, C.; Sheng, Z.; Cao, Y. An Emerging Double-edged Sword Role of Ferroptosis in Cardiovascular Disease (Review). Int. J. Mol. Med. 2025, 55, 16. [Google Scholar] [CrossRef]
- Vokalova, L.; van Breda, S.V.; Ye, X.L.; Huhn, E.A.; Than, N.G.; Hasler, P.; Lapaire, O.; Hoesli, I.; Rossi, S.W.; Hahn, S. Excessive Neutrophil Activity in Gestational Diabetes Mellitus: Could It Contribute to the Development of Preeclampsia? Front. Endocrinol. 2018, 9, 542. [Google Scholar] [CrossRef]
- Zhong, J.; Jiang, R.; Liu, N.; Cai, Q.; Cao, Q.; Du, Y.; Zhao, H. Iron-Immune Crosstalk at the Maternal-Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia. Antioxidants 2025, 14, 890. [Google Scholar] [CrossRef]
- Pavlicev, M.; Norwitz, E.R. Human Parturition: Nothing More Than a Delayed Menstruation. Reprod. Sci. 2018, 25, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, T.M.; Holme, A.M.; Holm, M.B.; Roland, M.C.; Haugen, G.; Powell, T.L.; Jansson, T.; Henriksen, T. Uteroplacental Glucose Uptake and Fetal Glucose Consumption: A Quantitative Study in Human Pregnancies. J. Clin. Endocrinol. Metab. 2019, 104, 873–882. [Google Scholar] [CrossRef]
- Szlapinski, S.K.; Hill, D.J. Metabolic Adaptations to Pregnancy in Healthy and Gestational Diabetic Pregnancies: The Pancreas—Placenta Axis. Curr. Vasc. Pharmacol. 2021, 19, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Barron, A.; Tuulari, J.J.; Karlsson, L.; Karlsson, H.; O’Keeffe, G.W.; McCarthy, C.M. Simulated Ischaemia/Reperfusion Impairs Trophoblast Function through Divergent Oxidative Stress- and MMP-9-Dependent Mechanisms. Biosci. Rep. 2024, 44, BSR20240763. [Google Scholar] [CrossRef]
- Garrido-Gómez, T.; Castillo-Marco, N.; Cordero, T.; Simón, C. Decidualization Resistance in the Origin of Preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S886–S894. [Google Scholar] [CrossRef]
- Varberg, K.M.; Soares, M.J. Paradigms for Investigating Invasive Trophoblast Cell Development and Contributions to Uterine Spiral Artery Remodeling. Placenta 2021, 113, 48–56. [Google Scholar] [CrossRef]
- Enko, D. Physiology of Iron Metabolism. Clin. Lab. 2025, 71. [Google Scholar] [CrossRef]
- Shastri, L.; Mishra, P.E.; Dwarkanath, P.; Thomas, T.; Duggan, C.; Bosch, R.; McDonald, C.M.; Thomas, A.; Kurpad, A.V. Association of Oral Iron Supplementation with Birth Outcomes in Non-Anaemic South Indian Pregnant Women. Eur. J. Clin. Nutr. 2015, 69, 609–613. [Google Scholar] [CrossRef]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron Deficiency Anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- Ohgami, R.S.; Campagna, D.R.; McDonald, A.; Fleming, M.D. The Steap Proteins Are Metalloreductases. Blood 2006, 108, 1388–1394. [Google Scholar] [CrossRef]
- Canonne-Hergaux, F.; Zhang, A.S.; Ponka, P.; Gros, P. Characterization of the Iron Transporter DMT1 (NRAMP2/DCT1) in Red Blood Cells of Normal and Anemic Mk/Mk Mice. Blood 2001, 98, 3823–3830. [Google Scholar] [CrossRef]
- MacKenzie, E.L.; Iwasaki, K.; Tsuji, Y. Intracellular Iron Transport and Storage: From Molecular Mechanisms to Health Implications. Antioxid. Redox Signal. 2008, 10, 997–1030. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Jin, L. Iron Metabolism and Ferroptosis in Physiological and Pathological Pregnancy. Int. J. Mol. Sci. 2022, 23, 9395. [Google Scholar] [CrossRef]
- Sandnes, M.; Reikvam, H. Hepcidin as a Therapeutic Target in Iron Overload. Expert Opin. Ther. Targets 2024, 28, 1039–1046. [Google Scholar] [CrossRef]
- Miozzo, J.; Meunier, C.; Park, S.; Faure, P.; Van Noolen, L. Role and interest of hepcidin in iron homeostasis. Ann. Biol. Clin. 2023, 81, 111–124. [Google Scholar] [CrossRef]
- Balogh, A.; Derzbach, L.; Vásárhelyi, B. Hepcidin, the negative regulator of iron absorbtion. Orvosi Hetil. 2004, 145, 1549–1552. [Google Scholar]
- He, L.; Zhan, F.; Li, X.; Yang, H.; Wu, J. Ferroptosis-Related Genes in Preeclampsia: Integrative Bioinformatics Analysis, Experimental Validation and Drug Prediction. BMC Pregnancy Childbirth 2025, 25, 189. [Google Scholar] [CrossRef]
- Wu, Q.; Ying, X.; Yu, W.; Li, H.; Wei, W.; Lin, X.; Zhang, X. Identification of Ferroptosis-Related Genes in Syncytiotrophoblast-Derived Extracellular Vesicles of Preeclampsia. Medicine 2022, 101, e31583. [Google Scholar] [CrossRef]
- Wei, J.; Qiu, D.; Yang, X.; Wang, J.; Shi, M.; Sun, L.; Lu, X.; Wang, C.; Liu, H.; Li, R. Unraveling the Role of Sulfiredoxin-1 in Early-Onset Preeclampsia: A Key Player in Trophoblast Ferroptosis. J. Reprod. Immunol. 2024, 164, 104273. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Garcia-Puente, L.M.; Fraile-Martinez, O.; Pekarek, T.; García-Montero, C.; Bujan, J.; Pekarek, L.; Barrena-Blázquez, S.; Gragera, R.; Rodríguez-Rojo, I.C.; et al. Oxidative Stress, Lipid Peroxidation and Ferroptosis Are Major Pathophysiological Signatures in the Placental Tissue of Women with Late-Onset Preeclampsia. Antioxidants 2024, 13, 591. [Google Scholar] [CrossRef]
- Qi, L.; Qian, L.; Yu, X.; Qiu, K. SIRT6 Mitigates Oxidative Stress and RSL3-Induced Ferroptosis in HTR-8/SVneo Cells. Tissue Cell 2025, 93, 102639. [Google Scholar] [CrossRef]
- Ng, S.-W.; Lee, C.; Ng, A.; Ng, S.-K.; Arcuri, F.; House, M.D.; Norwitz, E.R. Ferroportin Expression and Regulation in Human Placenta/Fetal Membranes: Implications for Ferroptosis and Adverse Pregnancy Outcomes. Reprod. Biol. 2023, 23, 100816. [Google Scholar] [CrossRef] [PubMed]
- Metz, H.E.; Houghton, A.M. Insulin Receptor Substrate Regulation of Phosphoinositide 3-Kinase. Clin. Cancer Res. 2011, 17, 206–211. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Du, G.; Zhang, Q.; Huang, X.; Wang, Y. Molecular Mechanism of Ferroptosis and Its Role in the Occurrence and Treatment of Diabetes. Front. Genet. 2022, 13, 1018829. [Google Scholar] [CrossRef]
- NaveenKumar, S.K.; Hemshekhar, M.; Sharathbabu, B.N.; Kemparaju, K.; Mugesh, G.; Girish, K.S. Platelet Activation and Ferroptosis Mediated NETosis Drives Heme Induced Pulmonary Thrombosis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2023, 1869, 166688. [Google Scholar] [CrossRef]
- Luppi, P.; Tse, H.; Lain, K.Y.; Markovic, N.; Piganelli, J.D.; DeLoia, J.A. Preeclampsia Activates Circulating Immune Cells with Engagement of the NF-kappaB Pathway. Am. J. Reprod. Immunol. 2006, 56, 135–144. [Google Scholar] [CrossRef]
- Leik, C.E.; Walsh, S.W. Neutrophils Infiltrate Resistance-Sized Vessels of Subcutaneous Fat in Women with Preeclampsia. Hypertension 2004, 44, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Kenny, E.F.; Herzig, A.; Krüger, R.; Muth, A.; Mondal, S.; Thompson, P.R.; Brinkmann, V.; von Bernuth, H.; Zychlinsky, A. Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways. Elife 2017, 6, e24437. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, Y.; Tang, W.; Chen, Q.; Kong, C. Increased Trophoblast Cell Ferroptosis via HMGB1/ACSL4 Pathway Is Associated with Spontaneous Abortion. Reprod. Sci. 2025, 32, 1713–1722. [Google Scholar] [CrossRef]
- de Matos Reis, Á.E.; Teixeira, I.S.; Maia, J.M.; Luciano, L.A.A.; Brandião, L.M.; Silva, M.L.S.; Branco, L.G.S.; Soriano, R.N. Maternal Nutrition and Its Effects on Fetal Neurodevelopment. Nutrition 2024, 125, 112483. [Google Scholar] [CrossRef]
- Dewey, K.G.; Oaks, B.M. U-Shaped Curve for Risk Associated with Maternal Hemoglobin, Iron Status, or Iron Supplementation. Am. J. Clin. Nutr. 2017, 106, 1694S–1702S. [Google Scholar] [CrossRef]
- Fatima, N.; Yaqoob, S.; Rana, L.; Imtiaz, A.; Iqbal, M.J.; Bashir, Z.; Shaukat, A.; Naveed, H.; Sultan, W.; Afzal, M.; et al. Micro-Nutrient Sufficiency in Mothers and Babies: Management of Deficiencies While Avoiding Overload during Pregnancy. Front. Nutr. 2025, 12, 1476672. [Google Scholar] [CrossRef]
- Chong, W.S.; Kwan, P.C.; Chan, L.Y.; Chiu, P.Y.; Cheung, T.K.; Lau, T.K. Expression of Divalent Metal Transporter 1 (DMT1) Isoforms in First Trimester Human Placenta and Embryonic Tissues. Hum. Reprod. 2005, 20, 3532–3538. [Google Scholar] [CrossRef]
- Sangkhae, V.; Nemeth, E. Placental Iron Transport: The Mechanism and Regulatory Circuits. Free Radic. Biol. Med. 2019, 133, 254–261. [Google Scholar] [CrossRef]
- Ng, S.-W.; Norwitz, S.G.; Norwitz, E.R. The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. Int. J. Mol. Sci. 2019, 20, 3283. [Google Scholar] [CrossRef]
- van Santen, S.; Kroot, J.J.C.; Zijderveld, G.; Wiegerinck, E.T.; Spaanderman, M.E.A.; Swinkels, D.W. The Iron Regulatory Hormone Hepcidin Is Decreased in Pregnancy: A Prospective Longitudinal Study. Clin. Chem. Lab. Med. 2013, 51, 1395–1401. [Google Scholar] [CrossRef]
- Best, C.M.; Pressman, E.K.; Cao, C.; Cooper, E.; Guillet, R.; Yost, O.L.; Galati, J.; Kent, T.R.; O’Brien, K.O. Maternal Iron Status during Pregnancy Compared with Neonatal Iron Status Better Predicts Placental Iron Transporter Expression in Humans. FASEB J. 2016, 30, 3541–3550. [Google Scholar] [CrossRef] [PubMed]
- Srai, S.K.S.; Bomford, A.; McArdle, H.J. Iron Transport across Cell Membranes: Molecular Understanding of Duodenal and Placental Iron Uptake. Best Pract. Res. Clin. Haematol. 2002, 15, 243–259. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Jenkitkasemwong, S.; Duarte, S.; Sparkman, B.K.; Shawki, A.; Mackenzie, B.; Knutson, M.D. ZIP8 Is an Iron and Zinc Transporter Whose Cell-Surface Expression Is up-Regulated by Cellular Iron Loading. J. Biol. Chem. 2012, 287, 34032–34043. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, J.; Gao, J.; Shang, C.; Jiang, Y.; Chen, L.; Qian, Z.; Liu, L.; Wu, D.; Zhang, Y.; et al. The Crosstalk between Cell Death and Pregnancy Related Diseases: A Narrative Review. Biomed. Pharmacother. 2024, 176, 116815. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The Hub of Lipid Oxidation, Ferroptosis, Disease and Treatment. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2023, 1878, 188890. [Google Scholar] [CrossRef]
- Lee, W.C.; Dixon, S.J. Mechanisms of Ferroptosis Sensitization and Resistance. Dev. Cell 2025, 60, 982–993. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, N.; Xu, T.; Zhao, M.; Liu, K. Ferroptosis in Obstetrical and Gynecological Diseases: A Mini Review. Front. Biosci. 2024, 29, 282. [Google Scholar] [CrossRef]
- Vornic, I.; Buciu, V.; Furau, C.G.; Gaje, P.N.; Ceausu, R.A.; Dumitru, C.-S.; Barb, A.C.; Novacescu, D.; Cumpanas, A.A.; Latcu, S.C.; et al. Oxidative Stress and Placental Pathogenesis: A Contemporary Overview of Potential Biomarkers and Emerging Therapeutics. Int. J. Mol. Sci. 2024, 25, 12195. [Google Scholar] [CrossRef]
- Lee, K.M.; Kim, T.H.; Noh, E.-J.; Han, J.W.; Kim, J.-S.; Lee, S.K. 25-Hydroxycholesterol Induces Oxidative Stress, Leading to Apoptosis and Ferroptosis in Extravillous Trophoblasts. Chem. Biol. Interact. 2024, 403, 111214. [Google Scholar] [CrossRef] [PubMed]
- Meihe, L.; Shan, G.; Minchao, K.; Xiaoling, W.; Peng, A.; Xili, W.; Jin, Z.; Huimin, D. The Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy. Front. Cell Dev. Biol. 2021, 9, 707959. [Google Scholar] [CrossRef]
- Lesiak, A.; Wodz, K.; Ceryn, J.; Sobolewska-Sztychny, D.; Bednarski, I.; Piekarski, J.; Pabianek, M.; Nejc, D.; Dróżdż, I.; Narbutt, J.; et al. New Insight into the Role of the Pathway NLRP1 and NLRP3 Inflammasomes and IL-33 in Ultraviolet-Induced Cutaneous Carcinogenesis. Front. Med. 2024, 11, 1483208. [Google Scholar] [CrossRef] [PubMed]
- Mesa, A.; Puig-Jové, C.; Pané, A.; Vinagre, I.; López-Quesada, E.; Meler, E.; Alonso-Carril, N.; Quirós, C.; Amor, A.J.; Perea, V. Preeclampsia as an Independent Predictor of Atherosclerosis Progression in Women with Type 1 Diabetes: A 5-Year Prospective Study. Cardiovasc. Diabetol. 2025, 24, 160. [Google Scholar] [CrossRef] [PubMed]
- Solt, I.; Cohen, S.M.; Admati, I.; Beharier, O.; Dominsky, O.; Yagel, S. Placenta at Single-Cell Resolution in Early and Late Preeclampsia: Insights and Clinical Implications. Am. J. Obstet. Gynecol. 2025, 232, S176–S189. [Google Scholar] [CrossRef]
- Cavalheri, A.C.; Costa, M.L.; Fernandes, I.; Sass, N.; Korkes, H.A. Postpartum Care after Preeclampsia: Lack of Knowledge and Inadequate Counseling on Long-Term Consequences. Pregnancy Hypertens. 2025, 40, 101220. [Google Scholar] [CrossRef]
- Alayu, B.A.; Balla, E.; Fekene, D.B.; Namara, G.T.; Fekadu, M. Determinants of Stillbirth Among Deliveries Attended at Public Hospitals of Southwest Shoa Zone, Oromia, Ethiopia: A Case-Control Study. Health Sci. Rep. 2025, 8, e70806. [Google Scholar] [CrossRef]
- Beharier, O.; Tyurin, V.A.; Goff, J.P.; Guerrero-Santoro, J.; Kajiwara, K.; Chu, T.; Tyurina, Y.Y.; St Croix, C.M.; Wallace, C.T.; Parry, S.; et al. PLA2G6 Guards Placental Trophoblasts against Ferroptotic Injury. Proc. Natl. Acad. Sci. USA 2020, 117, 27319–27328. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Potekhina, A.; Filatova, A.; Svirida, O.; Zherebchikova, K.; Ageev, F.; Belyavskiy, E. Effects of Empagliflozin on Functional Capacity, LV Filling Pressure, and Cardiac Reserves in Patients with Type 2 Diabetes Mellitus and Heart Failure with Preserved Ejection Fraction: A Randomized Controlled Open-Label Trial. Cardiovasc. Diabetol. 2025, 24, 196. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Yang, L.; Liu, Y.; Yu, Y.; Zhang, L.; Zhang, Z.; Yang, Z.; Qin, Q.; Niu, J.; Gu, Y. Empagliflozin Attenuates Renal Tubular Ferroptosis in Preeclampsia via Tazarotene-Induced Gene. Eur. J. Pharmacol. 2025, 986, 177140. [Google Scholar] [CrossRef]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Kudzu Root: Traditional Uses and Potential Medicinal Benefits in Diabetes and Cardiovascular Diseases. J. Ethnopharmacol. 2011, 134, 584–607. [Google Scholar] [CrossRef]
- Yue, X.; Pang, M.; Chen, Y.; Cheng, Z.; Zhou, R.; Wang, Y.; Zha, Z.; Huang, L. Puerarin Alleviates Symptoms of Preeclampsia through the Repression of Trophoblast Ferroptosis via the CREB/HO-1 Pathway. Placenta 2024, 158, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Sun, L.; Wei, J.; Shen, Y.; Wang, J.; Zhang, P.; Yang, X.; Ding, Y.; Yin, W.; Lu, X.; et al. Quercetin Alleviates Endothelial Dysfunction in Preeclampsia by Inhibiting Ferroptosis and Inflammation through EGFR Binding. Commun. Biol. 2025, 8, 90. [Google Scholar] [CrossRef]
- Matsuoka, T.; Kajiwara, K.; Kawasaki, T.; Wada, S.; Samura, O.; Sago, H.; Okamoto, A.; Umezawa, A.; Akutsu, H. Inhibitory Effect of All-Trans Retinoic Acid on Ferroptosis in BeWo Cells Mediated by the Upregulation of Heme Oxygenase-1. Placenta 2024, 154, 110–121. [Google Scholar] [CrossRef]
- Mazumder, T.; Akter, E.; Rahman, S.M.; Islam, M.T.; Talukder, M.R. Prevalence and Risk Factors of Gestational Diabetes Mellitus in Bangladesh: Findings from Demographic Health Survey 2017–2018. Int. J. Environ. Res. Public Health 2022, 19, 2583. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, C.; Li, J.; Kang, W.; Li, X.; Fan, W. Inflammatory Indices in First Trimester as Predictors of Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes. Am. J. Reprod. Immunol. 2025, 93, e70070. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.; Zhaxi, P.; Kou, X.; Liu, Y.; Xue, Z. 66. Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review. Antioxidants 2025, 14, 378. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Saucedo, R.; Ortega-Camarillo, C.; Ferreira-Hermosillo, A.; Díaz-Velázquez, M.F.; Meixueiro-Calderón, C.; Valencia-Ortega, J. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants 2023, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Rassie, K.L.; Giri, R.; Melder, A.; Joham, A.; Mousa, A.; Teede, H.J. Lactogenic Hormones in Relation to Maternal Metabolic Health in Pregnancy and Postpartum: Protocol for a Systematic Review. BMJ Open 2022, 12, e055257. [Google Scholar] [CrossRef]
- Du, H.; Li, D.; Molive, L.M.; Wu, N. Advances in Free Fatty Acid Profiles in Gestational Diabetes Mellitus. J. Transl. Med. 2024, 22, 180. [Google Scholar] [CrossRef]
- Ruan, H.; Dong, L.Q. Adiponectin Signaling and Function in Insulin Target Tissues. J. Mol. Cell Biol. 2016, 8, 101–109. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Q.; Li, B.; Wang, Y.; Wang, Y. Ferroptosis and Its Potential Role in Gestational Diabetes Mellitus: Updated Evidence from Pathogenesis to Therapy. Front. Endocrinol. 2023, 14, 1177547. [Google Scholar] [CrossRef]
- Ding, K.; Liu, C.; Li, L.; Yang, M.; Jiang, N.; Luo, S.; Sun, L. Acyl-CoA Synthase ACSL4: An Essential Target in Ferroptosis and Fatty Acid Metabolism. Chin. Med. J. 2023, 136, 2521–2537. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Willmer, T.; Adam, S.; Pheiffer, C. The Role of Maternal DNA Methylation in Pregnancies Complicated by Gestational Diabetes. Front. Clin. Diabetes Healthc. 2022, 3, 982665. [Google Scholar] [CrossRef]
- Bertelsen, M.; Anggård, E.E.; Carrier, M.J. Oxidative Stress Impairs Insulin Internalization in Endothelial Cells in Vitro. Diabetologia 2001, 44, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yuan, X.; Luan, X.; Lei, T.; Li, Y.; Chu, W.; Yao, Q.; Baker, P.N.; Qi, H.; Li, H. GLUT1 Exacerbates Trophoblast Ferroptosis by Modulating AMPK/ACC Mediated Lipid Metabolism and Promotes Gestational Diabetes Mellitus Associated Fetal Growth Restriction. Mol. Med. 2024, 30, 257. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, H. Down-Regulation of CPEB4 Alleviates Preeclampsia through the Inhibition of Ferroptosis by PFKFB3. Crit. Rev. Eukaryot. Gene Expr. 2024, 34, 73–82. [Google Scholar] [CrossRef]
- Remijsen, Q.; Kuijpers, T.W.; Wirawan, E.; Lippens, S.; Vandenabeele, P.; Vanden Berghe, T. Dying for a Cause: NETosis, Mechanisms behind an Antimicrobial Cell Death Modality. Cell Death Differ. 2011, 18, 581–588. [Google Scholar] [CrossRef]
- Chu, C.; Wang, X.; Yang, C.; Chen, F.; Shi, L.; Xu, W.; Wang, K.; Liu, B.; Wang, C.; Sun, D.; et al. Neutrophil Extracellular Traps Drive Intestinal Microvascular Endothelial Ferroptosis by Impairing Fundc1-Dependent Mitophagy. Redox Biol. 2023, 67, 102906. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, L.; Ding, S.; Shen, X.; Wang, Z.; Qi, H.; Yang, S. Neutrophil Extracellular Trap-Induced Ferroptosis Promotes Abdominal Aortic Aneurysm Formation via SLC25A11-Mediated Depletion of Mitochondrial Glutathione. Free Radic. Biol. Med. 2024, 221, 215–224. [Google Scholar] [CrossRef]
- Hernández González, L.L.; Pérez-Campos Mayoral, L.; Hernández-Huerta, M.T.; Mayoral Andrade, G.; Martínez Cruz, M.; Ramos-Martínez, E.; Pérez-Campos Mayoral, E.; Cruz Hernández, V.; Antonio García, I.; Matias-Cervantes, C.A.; et al. Targeting Neutrophil Extracellular Trap Formation: Exploring Promising Pharmacological Strategies for the Treatment of Preeclampsia. Pharmaceuticals 2024, 17, 605. [Google Scholar] [CrossRef]
- de Buhr, N.; von Köckritz-Blickwede, M. Detection, Visualization, and Quantification of Neutrophil Extracellular Traps (NETs) and NET Markers. In Neutrophil: Methods and Protocols; Springer: New York, NY, USA, 2019; Volume 2087, pp. 425–442. [Google Scholar] [CrossRef]
- von Leitner, E.-C.; Klinke, A.; Atzler, D.; Slocum, J.L.; Lund, N.; Kielstein, J.T.; Maas, R.; Schmidt-Haupt, R.; Pekarova, M.; Hellwinkel, O.; et al. Pathogenic Cycle between the Endogenous Nitric Oxide Synthase Inhibitor Asymmetrical Dimethylarginine and the Leukocyte-Derived Hemoprotein Myeloperoxidase. Circulation 2011, 124, 2735–2745. [Google Scholar] [CrossRef]
- Giacobbe, A.; Granese, R.; Grasso, R.; Salpietro, V.; Corrado, F.; Giorgianni, G.; Foti, G.; Amadore, D.; Triolo, O.; Giunta, L.; et al. Association between Maternal Serum High Mobility Group Box 1 Levels and Pregnancy Complicated by Gestational Diabetes Mellitus. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 414–418. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, Y.; Liu, X.; Tian, Y.; Zhao, X.; Li, Q.; Lu, Y.; Wang, X. NETs Exacerbate Placental Inflammation and Injury through High Mobility Group Protein B1 during Preeclampsia. Placenta 2025, 159, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.W.; Al Dulaimi, M.; Strauss, J.F. Aspirin Inhibits the Inflammatory Response of Protease-Activated Receptor 1 in Pregnancy Neutrophils: Implications for Treating Women with Preeclampsia. Int. J. Mol. Sci. 2022, 23, 13218. [Google Scholar] [CrossRef] [PubMed]
- Nashif, S.K.; Mahr, R.M.; Jena, S.; Jo, S.; Nelson, A.B.; Sadowski, D.; Crawford, P.A.; Puchalska, P.; Alejandro, E.U.; Gearhart, M.D.; et al. Metformin Impairs Trophoblast Metabolism and Differentiation in Dose Dependent Manner. Front. Cell Dev. Biol. 2023, 11, 1167097. [Google Scholar] [CrossRef]
- Duranova, H.; Kuzelova, L.; Borotova, P.; Simora, V.; Fialkova, V. Human Umbilical Vein Endothelial Cells as a Versatile Cellular Model System in Diverse Experimental Paradigms: An Ultrastructural Perspective. Microsc. Microanal. 2024, 30, 419–439. [Google Scholar] [CrossRef]
- Viana-Mattioli, S.; Fonseca-Alaniz, M.H.; Pinheiro-de-Sousa, I.; Krieger, J.E.; Sandrim, V.C. Missing Links in Preeclampsia Cell Model Systems of Endothelial Dysfunction. Trends Mol. Med. 2023, 29, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Alahari, S.; Ausman, J.; Liu, R.; Nguyen, F.; Sallais, J.; Post, M.; Caniggia, I. Placental Hypoxia-Induced Ferroptosis Drives Vascular Damage in Preeclampsia. Circ. Res. 2025, 136, 361–378. [Google Scholar] [CrossRef]
- Zheng, L.; Li, M.; Li, H. High Glucose Promotes and Aggravates the Senescence and Dysfunction of Vascular Endothelial Cells in Women with Hyperglycemia in Pregnancy. Biomolecules 2024, 14, 329. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, J.; Wang, Q.; Ren, X.; Xie, J.; Yu, J.; Xiao, Y.; Zhang, Y.; Chen, X.; Hong, A. Mechanisms of Vascular Endothelial Cell Injury Triggered by Blood Glucose Changes in Gestational Diabetes Mellitus. Diabetes Obes. Metab. 2025, 27, 4203–4219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsi, V.; Alifragki, A.; Fragkiadakis, K.; Kopidakis, N.; Kallergis, E.; Zacharis, E.; Kampanieris, E.; Simantirakis, E.; Tsioufis, K.; Marketou, M. The Emerging Roles of Ferroptosis and NETosis in Pregnancy Complications: Insights into Preeclampsia and Gestational Diabetes Mellitus. Curr. Issues Mol. Biol. 2025, 47, 685. https://doi.org/10.3390/cimb47090685
Katsi V, Alifragki A, Fragkiadakis K, Kopidakis N, Kallergis E, Zacharis E, Kampanieris E, Simantirakis E, Tsioufis K, Marketou M. The Emerging Roles of Ferroptosis and NETosis in Pregnancy Complications: Insights into Preeclampsia and Gestational Diabetes Mellitus. Current Issues in Molecular Biology. 2025; 47(9):685. https://doi.org/10.3390/cimb47090685
Chicago/Turabian StyleKatsi, Vasiliki, Angeliki Alifragki, Konstantinos Fragkiadakis, Nikolaos Kopidakis, Eleutherios Kallergis, Evangelos Zacharis, Emmanouil Kampanieris, Emmanouil Simantirakis, Konstantinos Tsioufis, and Maria Marketou. 2025. "The Emerging Roles of Ferroptosis and NETosis in Pregnancy Complications: Insights into Preeclampsia and Gestational Diabetes Mellitus" Current Issues in Molecular Biology 47, no. 9: 685. https://doi.org/10.3390/cimb47090685
APA StyleKatsi, V., Alifragki, A., Fragkiadakis, K., Kopidakis, N., Kallergis, E., Zacharis, E., Kampanieris, E., Simantirakis, E., Tsioufis, K., & Marketou, M. (2025). The Emerging Roles of Ferroptosis and NETosis in Pregnancy Complications: Insights into Preeclampsia and Gestational Diabetes Mellitus. Current Issues in Molecular Biology, 47(9), 685. https://doi.org/10.3390/cimb47090685