Research Progress on the Molecular Mechanism of Poultry Feather Follicle Development
Abstract
1. Introduction: The Structure and Overview of Feather and Feather Follicles
1.1. The Structure and Overview of Feather
1.1.1. The Structure and Classification of Feathers
1.1.2. The Development of Feathers
1.2. The Structure and Overview of Feather Follicles
2. Research Progress on the Effects of the Feather Follicle Signalling Pathway
2.1. Wnt Signalling Pathway
2.2. SHH Signalling Pathway
2.3. BMP Signalling Pathway
2.4. EGF Signalling Pathway
2.5. FGF Signalling Pathway
3. Research Progress on the Characteristics of Poultry Feather Follicles
4. Research Progress in the Biotechnology of Poultry Feather Follicle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Zhou, Z.; Dudley, R.; Mackem, S.; Chuong, C.M.; Erickson, G.M.; Varricchio, D.J. An integrative approach to understanding bird origins. Science 2014, 346, 1253293. [Google Scholar] [CrossRef] [PubMed]
- Brusatte, S.L.; O’Connor, J.K.; Jarvis, E.D. The Origin and Diversification of Birds. Curr. Biol. 2015, 25, R888–R898. [Google Scholar] [CrossRef] [PubMed]
- Päckert, M.; Favre, A.; Schnitzler, J.; Martens, J.; Sun, Y.H.; Tietze, D.T.; Hailer, F.; Michalak, I.; Strutzenberger, P. “Into and Out of” the Qinghai-Tibet Plateau and the Himalayas: Centers of origin and diversification across five clades of Eurasian montane and alpine passerine birds. Ecol. Evol. 2020, 10, 9283–9300. [Google Scholar] [CrossRef]
- Wu, P.; Yan, J.; Lai, Y.C.; Ng, C.S.; Li, A.; Jiang, X.; Elsey, R.M.; Widelitz, R.; Bajpai, R.; Li, W.H.; et al. Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion. Mol. Biol. Evol. 2018, 35, 417–430. [Google Scholar] [CrossRef]
- Yue, Z.; Jiang, T.X.; Widelitz, R.B.; Chuong, C.M. Mapping stem cell activities in the feather follicle. Nature 2005, 438, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.; Gibson, L.J. Structure and mechanics of water-holding feathers of Namaqua sandgrouse (Pterocles namaqua). J. R. Soc. Interface 2023, 20, 20220878. [Google Scholar] [CrossRef]
- Chen, C.F.; Foley, J.; Tang, P.C.; Li, A.; Jiang, T.X.; Wu, P.; Widelitz, R.B.; Chuong, C.M. Development, regeneration, and evolution of feathers. Annu. Rev. Anim. Biosci. 2015, 3, 169–195. [Google Scholar] [CrossRef]
- Chen, M.J.; Xie, W.Y.; Jiang, S.G.; Wang, X.Q.; Yan, H.C.; Gao, C.Q. Molecular Signaling and Nutritional Regulation in the Context of Poultry Feather Growth and Regeneration. Front. Physiol. 2019, 10, 1609. [Google Scholar] [CrossRef]
- Walter, S.P.; Philip, J.C. Bristles before down: A new perspective on the functional origin of feathers. Evol. Int. J. Org. Evol. 2015, 69, 857–862. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Persons Iv, W.S.; Currie, P.J. A continued role for signaling functions in the early evolution of feathers. Evol. Int. J. Org. Evol. 2017, 71, 797–799. [Google Scholar] [CrossRef]
- Sawyer, R.H.; Knapp, L.W. Avian skin development and the evolutionary origin of feathers. J. Exp. Zool. Part B Mol. Dev. Evol. 2003, 298, 57–72. [Google Scholar] [CrossRef]
- Feo, T.J.; Simon, E.; Prum, R.O. Theory of the development of curved barbs and their effects on feather morphology. J. Morphol. 2016, 277, 995–1013. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Yue, Z.; Wu, P.; Wu, D.Y.; Mayer, J.A.; Medina, M.; Widelitz, R.B.; Jiang, T.X.; Chuong, C.M. The biology of feather follicles. Int. J. Dev. Biol. 2004, 48, 181–191. [Google Scholar] [CrossRef]
- Alibardi, L.; Toni, M. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis. Prog. Histochem. Cytochem. 2008, 43, 1–69. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Wu, P.; Fan, W.L.; Yan, J.; Chen, C.K.; Lai, Y.T.; Wu, S.M.; Mao, C.T.; Chen, J.J.; Lu, M.Y.; et al. Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. Genome Biol. Evol. 2014, 6, 2258–2273. [Google Scholar] [CrossRef]
- Chen, C.W.; Chuong, C.M. Avian integument provides multiple possibilities to analyse different phases of skin appendage morphogenesis. J. Investig. Dermatol. Symp. Proc. 1999, 4, 333–337. [Google Scholar] [CrossRef]
- Chuong, C.M.; Edelman, G.M. Expression of cell-adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers. J. Cell Biol. 1985, 101, 1027–1043. [Google Scholar]
- Widelitz, R.B.; Jiang, T.X.; Yu, M.; Shen, T.; Shen, J.Y.; Wu, P.; Yu, Z.; Chuong, C.M. Molecular biology of feather morphogenesis: A testable model for evo-devo research. J. Exp. Zool. Part B Mol. Dev. Evol. 2003, 298, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.X.; Tuan, T.L.; Wu, P.; Widelitz, R.B.; Chuong, C.M. From buds to follicles: Matrix metalloproteinases in developmental tissue remodeling during feather morphogenesis. Differ. Res. Biol. Divers. 2011, 81, 307–314. [Google Scholar] [CrossRef]
- Lin, C.M.; Jiang, T.X.; Widelitz, R.B.; Chuong, C.M. Molecular signaling in feather morphogenesis. Curr. Opin. Cell Biol. 2006, 18, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Chuong, C.M.; Patel, N.; Lin, J.; Jung, H.S.; Widelitz, R.B. Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: Perspectives in development and evolution. Cell. Mol. Life Sci. CMLS 2000, 57, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
- Jenni, L.; Ganz, K.; Milanesi, P.; Winkler, R. Determinants and constraints of feather growth. PLoS ONE 2020, 15, e0231925. [Google Scholar] [CrossRef]
- Ji, G.; Zhang, M.; Tu, Y.; Liu, Y.; Shan, Y.; Ju, X.; Zou, J.; Shu, J.; Sheng, Z.; Li, H. Molecular Regulatory Mechanisms in Chicken Feather Follicle Morphogenesis. Genes 2023, 14, 1646. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Jiang, T.X.; Lei, M.; Chen, C.K.; Hsieh Li, S.M.; Widelitz, R.B.; Chuong, C.M. Cyclic growth of dermal papilla and regeneration of follicular mesenchymal components during feather cycling. Development 2021, 148, dev198671. [Google Scholar] [CrossRef]
- Lee, J.; Rabbani, C.C.; Gao, H.; Steinhart, M.R.; Woodruff, B.M.; Pflum, Z.E.; Kim, A.; Heller, S.; Liu, Y.; Shipchandler, T.Z.; et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 2020, 582, 399–404. [Google Scholar] [CrossRef]
- Jiang, T.X.; Chuong, C.M. Mechanism of skin morphogenesis. I. Analyses with antibodies to adhesion molecules tenascin, N.-CAM, and integrin. Dev. Biol. 1992, 150, 82–98. [Google Scholar] [CrossRef]
- Mabrouk, I.; Zhou, Y.; Wang, S.; Song, Y.; Fu, X.; Xu, X.; Liu, T.; Wang, Y.; Feng, Z.; Fu, J.; et al. Transcriptional Characteristics Showed That miR-144-y/FOXO3 Participates in Embryonic Skin and Feather Follicle Development in Zhedong White Goose. Animals 2022, 12, 2099. [Google Scholar] [CrossRef]
- Xie, W.Y.; Chen, M.J.; Jiang, S.G.; Yan, H.C.; Wang, X.Q.; Gao, C.Q. Investigation of feather follicle morphogenesis and the expression of the Wnt/β-catenin signaling pathway in yellow-feathered broiler chick embryos. Br. Poult. Sci. 2020, 61, 557–565. [Google Scholar] [CrossRef]
- Chen, X.; Ge, K.; Wang, M.; Zhang, C.; Geng, Z. Integrative analysis of the Pekin duck (Anas anas) MicroRNAome during feather follicle development. BMC Dev. Biol. 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Guo, Q.; Bai, H.; Jiang, Y.; Zhang, Y.; Liang, W.; Wang, Z.; Xu, Q.; Chang, G.; Chen, G. Identification of key genes and pathways associated with duck (Anas platyrhynchos) embryonic skin development using weighted gene co-expression network analysis. Genome 2020, 63, 615–628. [Google Scholar] [CrossRef]
- Stenn, K.S.; Paus, R. Controls of hair follicle cycling. Physiol. Rev. 2001, 81, 449–494. [Google Scholar] [CrossRef]
- Ji, S.; Zhu, Z.; Sun, X.; Fu, X. Functional hair follicle regeneration: An updated review. Signal Transduct. Target. Ther. 2021, 6, 66. [Google Scholar] [CrossRef]
- Hardy, M.H. The secret life of the hair follicle. Trends Genet. TIG 1992, 8, 55–61. [Google Scholar] [CrossRef]
- Shang, F.; Wang, Y.; Ma, R.; Rong, Y.; Wang, M.; Wu, Z.; Hai, E.; Pan, J.; Liang, L.; Wang, Z.; et al. Screening of microRNA and mRNA related to secondary hair follicle morphogenesis and development and functional analysis in cashmere goats. Funct. Integr. Genom. 2022, 22, 835–848. [Google Scholar] [CrossRef]
- Lin, C.M.; Yuan, Y.P.; Chen, X.C.; Li, H.H.; Cai, B.Z.; Liu, Y.; Zhang, H.; Li, Y.; Huang, K. Expression of Wnt/β-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. J. Mol. Histol. 2015, 46, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.; Wells, K.; Arcaroli, J.; Vanderbilt, C.; Aisner, D.L.; Messersmith, W.A.; Lieu, C.H. Targeting the WNT Signaling Pathway in Cancer Therapeutics. The Oncologist 2015, 20, 1189–1198. [Google Scholar] [CrossRef]
- Shin, S.H.; Kim, D.; Hwang, J.; Kim, M.K.; Kim, J.C.; Sung, Y.K. OVO homolog-like 1, a target gene of the Wnt/β-catenin pathway, controls hair follicle neogenesis. J. Investig. Dermatol. 2014, 134, 838–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xing, C.; Wang, H.; Zhang, H.; Wei, W.; Xu, J.; Liu, Y.; Guo, X.; Jiang, R. Identification of key modules and hub genes involved in regulating the feather follicle development of Wannan chickens using WGCNA. Poult. Sci. 2024, 103, 103903. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Hu, X.; Zhou, Y.; Yang, Z.; Hou, J.; Liu, F.; Liu, Q.; Mabrouk, I.; Yu, J.; et al. Dermal FOXO3 activity in response to Wnt/β-catenin signaling is required for feather follicle development of goose embryos (Anser cygnoides). Poult. Sci. 2024, 103, 103424. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Song, Y.; Mabrouk, I.; Zhou, Y.; Liu, Q.; Yu, J.; Li, X.; Xue, G.; Wang, J.; Yu, Z.; et al. miR-140-y targets TCF4 to regulate the Wnt signaling pathway and promote embryonic feather follicle development in Hungarian white goose. Poult. Sci. 2024, 103, 103508. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Lv, Y.; Feng, Y.; Gao, C. Mitochondrial PGAM5 modulates methionine metabolism and feather follicle development by targeting Wnt/β-catenin signaling pathway in broiler chickens. J. Anim. Sci. Biotechnol. 2025, 16, 35. [Google Scholar] [CrossRef]
- Liu, A. Proteostasis in the Hedgehog signaling pathway. Semin. Cell Dev. Biol. 2019, 93, 153–163. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, I.W.; Turmaine, M.; Patel, K. Sonic Hedgehog functions by localizing the region of proliferation in early developing feather buds. Dev. Biol. 2004, 272, 76–88. [Google Scholar] [CrossRef]
- Li, A.; Cho, J.H.; Reid, B.; Tseng, C.C.; He, L.; Tan, P.; Yeh, C.Y.; Wu, P.; Li, Y.; Widelitz, R.B.; et al. Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks. Nat. Commun. 2018, 9, 5377. [Google Scholar] [CrossRef]
- Cooper, R.L.; Milinkovitch, M.C. In vivo sonic hedgehog pathway antagonism temporarily results in ancestral proto-feather-like structures in the chicken. PLoS Biol. 2025, 23, e3003061. [Google Scholar] [CrossRef]
- Botchkarev, V.A.; Sharov, A.A. BMP signaling in the control of skin development and hair follicle growth. Differ. Res. Biol. Divers. 2004, 72, 512–526. [Google Scholar] [CrossRef]
- Ashique, A.M.; Fu, K.; Richman, J.M. Signalling via type IA and type IB bone morphogenetic protein receptors (BMPR) regulates intramembranous bone formation, chondrogenesis and feather formation in the chicken embryo. Int. J. Dev. Biol. 2002, 46, 243–253. [Google Scholar]
- Jung, H.S.; Francis-West, P.H.; Widelitz, R.B.; Jiang, T.X.; Ting-Berreth, S.; Tickle, C.; Wolpert, L.; Chuong, C.M. Local inhibitory action of BMPs and their relationships with activators in feather formation: Implications for periodic patterning. Dev. Biol. 1998, 196, 11–23. [Google Scholar] [CrossRef]
- Ho, W.K.W.; Freem, L.; Zhao, D.; Painter, K.J.; Woolley, T.E.; Gaffney, E.A.; McGrew, M.J.; Tzika, A.; Milinkovitch, M.C.; Schneider, P.; et al. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol. 2019, 17, e3000132. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Makarenkova, H.; Jung, H.S. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech. Dev. 1999, 86, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Atit, R.; Conlon, R.A.; Niswander, L. EGF signaling patterns the feather array by promoting the interbud fate. Dev. Cell 2003, 4, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Dohrmann, C.E.; Noramly, S.; Raftery, L.A.; Morgan, B.A. Opposing effects on TSC-22 expression by BMP and receptor tyrosine kinase signals in the developing feather tract. Dev. Dyn. 2002, 223, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Widelitz, R.B.; Jiang, T.X.; Noveen, A.; Chen, C.W.; Chuong, C.M. FGF induces new feather buds from developing avian skin. J. Investig. Dermatol. 1996, 107, 797–803. [Google Scholar] [CrossRef]
- Gentile, P.; Garcovich, S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019, 8, 466. [Google Scholar] [CrossRef]
- Huh, S.H.; Närhi, K.; Lindfors, P.H.; Häärä, O.; Yang, L.; Ornitz, D.M.; Mikkola, M.L. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 2013, 27, 450–458. [Google Scholar] [CrossRef]
- Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer 2022, 21, 144. [Google Scholar] [CrossRef]
- Widelitz, R.B.; Jiang, T.X.; Lu, J.; Chuong, C.M. Beta-catenin in epithelial morphogenesis: Conversion of part of avian foot scales into feather buds with a mutated beta-catenin. Dev Biol 2000, 219, 98–114. [Google Scholar] [CrossRef]
- Yue, Z.; Jiang, T.X.; Widelitz, R.B.; Chuong, C.M. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proc. Natl. Acad. Sci. USA 2006, 103, 951–955. [Google Scholar] [CrossRef]
- Lu, C.P.; Polak, L.; Keyes, B.E.; Fuchs, E. Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science 2016, 354, aah6102. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.H.; Lee, K. Research Note: Injection of adenoviral CRISPR/Cas9 system targeting melanophilin gene into different sites of embryos induced regional feather color changes in posthatch quail. Poult. Sci. 2023, 102, 103087. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, J.; Choi, W.; Lee, K. The Melanophilin knockout chicken, as a new alopecia animal model. Poult. Sci. 2025, 104, 105429. [Google Scholar] [CrossRef]
- Choudhry, Z.; Rikani, A.A.; Choudhry, A.M.; Tariq, S.; Zakaria, F.; Asghar, M.W.; Sarfraz, M.K.; Haider, K.; Shafiq, A.A.; Mobassarah, N.J. Sonic hedgehog signalling pathway: A complex network. Ann. Neurosci. 2014, 21, 28–31. [Google Scholar] [CrossRef]
- Carreira, A.C.; Lojudice, F.H.; Halcsik, E.; Navarro, R.D.; Sogayar, M.C.; Granjeiro, J.M. Bone morphogenetic proteins: Facts, challenges, and future perspectives. J. Dent. Res. 2014, 93, 335–345. [Google Scholar] [CrossRef]
- Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016, 12, 203–221. [Google Scholar] [CrossRef]
- Candar, T.; Asena, L.; Alkayid, H.; Altınörs, D.D. Galectin-3, IL-1A, IL-6, and EGF Levels in Corneal Epithelium of Patients With Recurrent Corneal Erosion Syndrome. Cornea 2020, 39, 1354–1358. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Zhou, L.; Wang, L.; Li, X.; Pan, Z. Germinal peptide eye drops promote corneal wound healing and decrease inflammation after alkali injury. Exp. Eye Res. 2020, 199, 108191. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M. FGFs, heparan sulfate and FGFRs: Complex interactions essential for development. BioEssays 2000, 22, 108–112. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. Fibroblast growth factors. Genome Biol. 2001, 2, Reviews3005. [Google Scholar] [CrossRef]
- Fadeeva, E.O.; Chernova, O.F. Peculiarities of the contour feather microstructure in the Corvidae family. Biol. Bull. Russ. Acad. Sci. 2011, 38, 369–378. [Google Scholar] [CrossRef]
- Prum, R.O.; Dyck, J. A hierarchical model of plumage: Morphology, development, and evolution. J. Exp. Zool. B Mol. Dev. Evol. 2003, 298, 73–90. [Google Scholar] [CrossRef]
- Wang, J.; Wei, W.; Xing, C.; Wang, H.; Liu, M.; Xu, J.; He, X.; Liu, Y.; Guo, X.; Jiang, R. Transcriptome and Weighted Gene Co-Expression Network Analysis for Feather Follicle Density in a Chinese Indigenous Breed. Animals 2024, 14, 173. [Google Scholar] [CrossRef]
- Chen, X.; Bai, H.; Li, L.; Zhang, W.; Jiang, R.; Geng, Z. Follicle characteristics and follicle developmental related Wnt6 polymorphism in Chinese indigenous Wanxi-white goose. Mol. Biol. Rep. 2012, 39, 9843–9848. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.G.; Zhang, M.; Liu, Y.F.; Shan, Y.J.; Tu, Y.J.; Ju, X.J.; Zou, J.M.; Shu, J.T.; Wu, J.F.; Xie, J.F. A gene co-expression network analysis of the candidate genes and molecular pathways associated with feather follicle traits of chicken skin. J. Anim. Breed. Genet. 2021, 138, 122–134. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, B.; Zhang, Y.; Zhong, H.; Nie, R.; Li, J.; Zhang, H.; Wu, C. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Sci. Rep. 2020, 10, 12088. [Google Scholar] [CrossRef]
- Sello, C.T.; Liu, C.; Sun, Y.; Msuthwana, P.; Hu, J.; Sui, Y.; Chen, S.; Zhou, Y.; Lu, H.; Xu, C.; et al. De Novo Assembly and Comparative Transcriptome Profiling of Anser anser and Anser cygnoides Geese Species’ Embryonic Skin Feather Follicles. Genes 2019, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Jia, X.; Li, H.; Tan, S.; Nie, Q.; Yu, H.; Yang, Y. Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genom. 2018, 19, 399. [Google Scholar] [CrossRef]
- Yang, J.; Qu, Y.; Huang, Y.; Lei, F. Dynamic transcriptome profiling towards understanding the morphogenesis and development of diverse feather in domestic duck. BMC Genom. 2018, 19, 391. [Google Scholar] [CrossRef]
- Adetula, A.A.; Liu, X.; Yang, L.; Fang, C.; Yu, H.; Li, H.; Li, S. RAI14 in the blood feather regulates chicken pigmentation. Arch. Anim. Breed. 2020, 63, 231–239. [Google Scholar] [CrossRef]
- Guo, Q.; Jiang, Y.; Wang, Z.; Bi, Y.; Chen, G.; Bai, H.; Chang, G. Genome-Wide Analysis Identifies Candidate Genes Encoding Feather Color in Ducks. Genes 2022, 13, 1249. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Q.; Lin, R.; Chen, H.; Zhang, M.; Jiang, B.; Wang, Y.; Xue, P.; Gan, Q.; Shen, Y.; et al. Genome-wide association study for the primary feather color trait in a native Chinese duck. Front. Genet. 2023, 14, 1065033. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Z.; Li, J.; Bao, H.; Wu, C. Genome-Wide Association Study and Transcriptome Differential Expression Analysis of the Feather Rate in Shouguang Chickens. Front. Genet. 2020, 11, 613078. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Hou, Z.; Fan, G.; Pi, J.; Sun, S.; Chen, J.; Liu, H.; Du, X.; Shen, J.; et al. Population genomic data reveal genes related to important traits of quail. GigaScience 2018, 7, giy049. [Google Scholar] [CrossRef]
- Wang, Q.; Pi, J.; Shen, J.; Pan, A.; Qu, L. Genome-wide association study confirms that the chromosome Z harbours a region responsible for rumplessness in Hongshan chickens. Anim. Genet. 2018, 49, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, J.; Liu, M.; Yang, N.; Bao, Z.; Zhang, X.; Dai, Y.; Cai, J.; Chen, Y.; Wu, X. DNA Methylation Mediates lncRNA2919 Regulation of Hair Follicle Regeneration. Int. J. Mol. Sci. 2022, 23, 9481. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Sun, H.; Jiang, W.; Yang, L.; Liu, G.; Zhao, X.; Hu, H.; Wang, J.; Gao, S. DNA methylation and histone acetylation are involved in Wnt10b expression during the secondary hair follicle cycle in Angora rabbits. J. Anim. Physiol. Anim. Nutr. 2021, 105, 599–609. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, X.; Du, J.; Zeng, W.; Wu, W.; Di, J.; Huang, X.; Tian, K. Differential Methylation and Transcriptome Integration Analysis Identified Differential Methylation Annotation Genes and Functional Research Related to Hair Follicle Development in Sheep. Front. Genet. 2021, 12, 735827. [Google Scholar] [CrossRef]
Variety | Feather Formation | Primary Feather Follicle | Secondary Feather Follicle |
---|---|---|---|
Chicken | Embryonic days 10 to 11 | Embryonic days 11 to 12 | Embryonic days 15 to 16 |
Duck | Day 11 of the embryonic stage | Day 15 of the embryonic stage | Day 20 of the embryonic stage |
Goose | Embryonic days 13 to 14 | Day 14 of the embryonic stage | Day 18 of the embryonic stage |
Name | Family | Functions and Features | Regulation | Location of Action | References |
---|---|---|---|---|---|
Wnt signalling pathway | The Wnt family | The Wnt signalling pathway is the first signalling pathway to initiate the development of feather follicles | Positive | Epithelial cell | [35,36,37,38,39,40,41] |
SHH signalling pathway | The Hh family | The process of skin coagulation is initiated, resulting in the formation of fine, feather-like structures | Positive | Feather | [42,43,44,45] |
BMP signalling pathway | The BMP family | The BMP signalling pathway plays a crucial role in controlling epidermal cell differentia-tion and apoptosis during development, as well as in key steps of feather follicle development, such as initialisation, cell fate determination and cell lineage differentiation | Negative | Epithelial cell | [46,47,48,49,50] |
EGF signalling pathway | The EGF family | The EGF signalling pathway plays a positive role in establishing identity between buds | Positive | Feather bud | [51,52] |
FGF signalling pathway | The FGF family | The FGF signalling acts as an activator, driving the formation of feather primordia patterns during avian embryonic development | Positive | Feather primordia | [23,53,54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhu, S.; Xiong, X.; Qiu, M.; Zhang, Z.; Hu, C.; Yang, L.; Peng, H.; Song, X.; Chen, J.; et al. Research Progress on the Molecular Mechanism of Poultry Feather Follicle Development. Curr. Issues Mol. Biol. 2025, 47, 684. https://doi.org/10.3390/cimb47090684
Wang J, Zhu S, Xiong X, Qiu M, Zhang Z, Hu C, Yang L, Peng H, Song X, Chen J, et al. Research Progress on the Molecular Mechanism of Poultry Feather Follicle Development. Current Issues in Molecular Biology. 2025; 47(9):684. https://doi.org/10.3390/cimb47090684
Chicago/Turabian StyleWang, Jiangxian, Shiliang Zhu, Xia Xiong, Mohan Qiu, Zengrong Zhang, Chenming Hu, Li Yang, Han Peng, Xiaoyan Song, Jialei Chen, and et al. 2025. "Research Progress on the Molecular Mechanism of Poultry Feather Follicle Development" Current Issues in Molecular Biology 47, no. 9: 684. https://doi.org/10.3390/cimb47090684
APA StyleWang, J., Zhu, S., Xiong, X., Qiu, M., Zhang, Z., Hu, C., Yang, L., Peng, H., Song, X., Chen, J., Xia, B., Xiong, Z., Du, L., Yu, C., & Yang, C. (2025). Research Progress on the Molecular Mechanism of Poultry Feather Follicle Development. Current Issues in Molecular Biology, 47(9), 684. https://doi.org/10.3390/cimb47090684