Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward
Abstract
:1. Introduction
2. Methods
3. Esophageal and Gastric Cancers
3.1. Clinical Trials
3.2. Pre-Clinical Data
Reference | Cancer Type | Phase | Number of Patients | Treatment | Results |
---|---|---|---|---|---|
Karasic et al. [18] | Gastric/gastroesophageal | 2 | 21 | Palbociclib | No OR, PFS: 1.8 mos, OS: 3 mos |
Doi et al. [19] | Esophageal | 1 | 9 | Ribociclib | No OR |
Infante et al. [39] | Colorectal | 1 | 19 | Ribociclib | No OR |
Sorah et al. [40] | Colorectal KRAS wt | 1 | 10 | Palbociclib and cetuximab | No OR, PFS: 1.8 mos, OS: 6.6 mos |
Weitz et al. [41] | Mucinous peritoneal GNAS mutant | Personalized cohort | 16 | Palbociclib | Prolonged stability and CEA responses observed |
Chiorean et al. [42] | Pancreatic | Early phase | Abemaciclib with or without LY3023414 versus chemotherapy | Chemotherapy arm (capecitabine or gemcitabine) numerically superior in PFS and DCR | |
Tang et al. [43] | Pancreatic | Case series | 5 | CDK inhibitor and trametinib | No OR |
Al Baghdadi et al. [44] | Pancreatic and biliary with CDKN2A loss or mutation | Basket trial | Palbociclib | No OR, PFS: 2 mos, OS: 3 mos |
Reference | Alteration | Implications |
---|---|---|
Min et al. [20] | Amplification of Cyclin E | Worse survival when cyclin E amplification or cyclin D over-expression present. Knock-down of CDK4 and CDK6 reverses resistance |
Ismael et al. [21] | Over-expression of Cyclin D | |
Bae et al. [23] | Methylation of CDKN2A | Methyltransferase transfection increased palbociclib sensitivity |
Zha et al. [25] | Up-regulation of eIF4E | eIF4E inhibitor ribavirin or eIF4E knock-down sensitized cells to abemaciclib |
Bi et al. [27] | Notch signaling | Jagged antagonized CDK4/6 inhibition |
Inoue et al. [29] | p53 dysfunction | P53 function required to prevent autophagy and senescence as mechanisms to CDK4/6 inhibitor resistance |
Zhang et al. [35] | YAP/TEAD signaling | YAP activity associated with both gastric intestinal metaplasia and CDK4/6 inhibitor resistance |
4. Colorectal Cancer
4.1. Clinical Trials
4.2. Pre-Clinical Data
Reference | Alteration | Implications |
---|---|---|
Aslam et al. [46], Lee et al. [47] | Decrease phosphorylation of RB, AKT and S6 following treatment | Combination therapies of CDK4/6 inhibitors and PI3K/AKT pathway inhibitors synergistic |
Sorokin et al. [49] | p53 mutations | Combination of palbociclib and binimetinib more effective in p53 wild-type cell |
Rambioni et al. [54] | p27 over-expression and phosphorylation | Palbociclib resistance reversed with addition of Src inhibitors |
Papacio et al. [55] | MYC activity | Cells with increased expression of MYC targets were more sensitive to palbociclib |
Thoma et al. [56] | Increased CDK4 activity in CD4+ T cells | Increased CDK4 activity due to p21 deletion impairs anti-tumor CD4+ T cells function |
Wen et al. [59] | YAP stabilization | CDK4/6 inhibition decreases activity of de-ubiquitinase DUB3 and leads to increased proteasome degradation of YAP1 |
5. Pancreatic and Biliary Cancers
5.1. Clinical Trials
5.2. Preclinical Data
Reference | Alteration | Implications |
---|---|---|
Pancreatic | ||
Willobee et al. [69], Goodwin et al. [70] | PI3K/AKT signaling, autophagy, DNA damage response | Blocking feedback activation of the KRAS/MEK/ERK pathway with binimetinib or ulixertinib synergized with CDK4/6 inhibitors |
Dhir et al. [72] | YAP1 | Inhibition of YAP1 activity synergized with CDK4/6 inhibition |
Cholangiocarcinoma | ||
Menapree et al. [79] | cIAP1 and cIAP2 induction | Palbociclib synergized with the SMAC mimetic drug LCL161 |
Bai et al. [80] | ERK and p38 kinases activity | Palbociclib synergized with ERK and p38 inhibitor hinokitiol |
6. Hepatocellular Carcinoma
6.1. Clinical Data
6.2. Pre-Clinical Data
7. Discussion
7.1. Alternative E2F1 Targets
7.2. Immune Synergy
7.3. Non-Canonical CDK4/6 Targets
7.4. Limitations of Pre-Clinical Models
7.5. Lessons from Previous Clinical Trials and Future Directions
Funding
Conflicts of Interest
Abbreviation
CDK4 | Cyclin dependent kinase 4 |
CDK6 | Cyclin dependent kinase 6 |
E2F1 | E2F transcription factor 1 |
RAS | Rat sarcoma oncogene |
RAF | Rapidly accelerated fibrosarcoma oncogene |
MEK | Mitogen activated protein kinase kinase |
PI3K | Phosphatidyl-inositol 3 kinase |
AKT | AKT serine/threonine kinase 1 |
CCND1 | Cyclin D1 gene |
eIF4E | Eukaryotic translation initiation factor 4E |
BRD4 | Bromodomain |
Bax | BCL2 associated X protein |
YAP | Yes associated protein |
TAZ | Transcription co-activator with PDZ binding motif |
TEAD | TEA domain family 1 |
LATS2 | Large tumor suppressor kinase 2 |
PAX6 | Paired box family transcription factor 6 |
MLH1 | MutL homolog 1 |
MSH2 | MutS homolog 2 |
PFS | Progression-free survival |
OS | Overall survival |
DCR | Disease control rate |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Maio, M.; Ascierto, P.A.; Manzyuk, L.; Motola-Kuba, D.; Penel, N.; Cassier, P.A.; Bariani, G.M.; De Jesus Acosta, A.; Doi, T.; Longo, F.; et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: Updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 2022, 33, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Bang, Y.J.; Iwasa, S.; Sugimoto, N.; Ryu, M.H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. DESTINY-Gastric01 Investigators. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benson, A.B.; Venook, A.P.; Adam, M.; Chang, G.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, e240029. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Pellarin, I.; Dall’Acqua, A.; Favero, A.; Segatto, I.; Rossi, V.; Crestan, N.; Karimbayli, J.; Belletti, B.; Baldassarre, G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct. Target. Ther. 2025, 10, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavalu, S.; Abdelhamid, A.M.; Saber, S.; Elmorsy, E.A.; Hamad, R.S.; Abdel-Reheim, M.A.; Yahya, G.; Salama, M.M. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J. 2024, 38, e23734. [Google Scholar] [CrossRef] [PubMed]
- Abdelmalak, M.; Singh, R.; Anwer, M.; Ivanchenko, P.; Randhawa, A.; Ahmed, M.; Ashton, A.W.; Du, Y.; Jiao, X.; Pestell, R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers 2022, 14, 5388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, J.; Ouyang, Z. Targeting CDK4/6 for Anticancer Therapy. Biomedicines 2022, 10, 685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, M.; Li, H.; Zhang, J. RB functions as a key regulator of senescence and tumor suppression. Semin. Cancer Biol. 2024, 109, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M.; Sotillo, R.; Santamaría, D.; Galán, J.; Cerezo, A.; Ortega, S.; Dubus, P.; Barbacid, M. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004, 118, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.J.; Park, J.; Asprer, K.J.; Doan, A.H. Updated Review Article: Cyclin-Dependent Kinase 4/6 Inhibitor Impact, FDA Approval, and Resistance Pathways. J. Pharm. Technol. 2023, 39, 298–308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- George, M.A.; Qureshi, S.; Omene, C.; Toppmeyer, D.L.; Ganesan, S. Clinical and Pharmacologic Differences of CDK4/6 Inhibitors in Breast Cancer. Front. Oncol. 2021, 11, 693104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magge, T.; Rajendran, S.; Brufsky, A.M.; Foldi, J. CDK4/6 inhibitors: The Devil is in the Detail. Curr. Oncol. Rep. 2024, 26, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.S.; Mahtani, K.R.; Aronson, J.K. Summarising good practice guidelines for data extraction for systematic reviews and meta-analysis. BMJ Evid. Based Med. 2021, 26, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Karasic, T.B.; O’Hara, M.H.; Teitelbaum, U.R.; Damjanov, N.; Giantonio, B.J.; d’Entremont, T.S.; Gallagher, M.; Zhang, P.J.; O’Dwyer, P.J. Phase II Trial of Palbociclib in Patients with Advanced Esophageal or Gastric Cancer. Oncologist 2020, 25, e1864–e1868. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doi, T.; Hewes, B.; Kakizume, T.; Tajima, T.; Ishikawa, N.; Yamada, Y. Phase I study of single-agent ribociclib in Japanese patients with advanced solid tumors. Cancer Sci. 2018, 109, 193–198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Min, A.; Kim, J.E.; Kim, Y.J.; Lim, J.M.; Kim, S.; Kim, J.W.; Lee, K.H.; Kim, T.Y.; Oh, D.Y.; Bang, Y.J.; et al. Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gastric cancer cells. Cancer Lett. 2018, 430, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Bandla, S.; Reveiller, M.; Toia, L.; Zhou, Z.; Gooding, W.E.; Kalatskaya, I.; Stein, L.; D’Souza, M.; Litle, V.R.; et al. Early G₁ cyclin-dependent kinases as prognostic markers and potential therapeutic targets in esophageal adenocarcinoma. Clin. Cancer Res. 2011, 17, 4513–4522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosovec, J.E.; Zaidi, A.H.; Omstead, A.N.; Matsui, D.; Biedka, M.J.; Cox, E.J.; Campbell, P.T.; Biederman, R.W.W.; Kelly, R.J.; Jobe, B.A. CDK4/6 dual inhibitor abemaciclib demonstrates compelling preclinical activity against esophageal adenocarcinoma: A novel therapeutic option for a deadly disease. Oncotarget 2017, 8, 100421–100432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bae, H.J.; Kang, S.K.; Kwon, W.S.; Jeong, I.; Park, S.; Kim, T.S.; Kim, K.H.; Kim, H.; Jeong, H.C.; Chung, H.C.; et al. p16 methylation is a potential predictive marker for abemaciclib sensitivity in gastric cancer. Biochem. Pharmacol. 2021, 183, 114320. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, X.; Gu, L.; Zhou, J.; Deng, D. P16 methylation increases the sensitivity of cancer cells to the CDK4/6 inhibitor palbociclib. PLoS ONE 2019, 14, e0223084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zha, H.L.; Chen, W.; Shi, W.; Liao, Y.Y. Inhibition of Eukaryotic Initiating Factor eIF4E Overcomes Abemaciclib Resistance in Gastric Cancer. Curr. Med. Sci. 2023, 43, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Xu, H.; Zhou, W.; Pan, Y. The BRD4 inhibitor JQ1 augments the antitumor efficacy of abemaciclib in preclinical models of gastric carcinoma. J. Exp. Clin. Cancer Res. 2023, 42, 44, Erratum in J. Exp. Clin. Cancer Res. 2024, 43, 199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bi, H.; Shang, J.; Zou, X.; Xu, J.; Han, Y. Palbociclib induces cell senescence and apoptosis of gastric cancer cells by inhibiting the Notch pathway. Oncol. Lett. 2021, 22, 603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valenzuela, C.A.; Vargas, L.; Martinez, V.; Bravo, S.; Brown, N.E. Palbociclib-induced autophagy and senescence in gastric cancer cells. Exp. Cell Res. 2017, 360, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Fry, E.A.; Frazier, D.P. Transcription factors that interact with p53 and Mdm2. Int. J. Cancer 2016, 138, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Z.; Cao, J.X.; Li, S.Y.; An, G.S.; Ni, J.H.; Jia, H.T. p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp. Cell Res. 2013, 319, 3104–3115. [Google Scholar] [CrossRef] [PubMed]
- Fogal, V.; Hsieh, J.K.; Royer, C.; Zhong, S.; Lu, X. Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J. 2005, 24, 2768–2782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, H.; Li, G.; Kan, L.; Yang, M.; Liu, Y.; Miu, X.; Shi, L.; Yang, Z.; Zheng, X.; Chen, H.; et al. Synergistic induction of autophagy in gastric cancer by targeting CDK4/6 and MEK through AMPK/mTOR pathway. Heliyon 2024, 10, e30475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Wu, Z.; Zhang, Z.; Goss, L.; McFarland, J.; Nagaraja, A.; Xie, Y.; Gu, S.; Peng, K.; Zeng, Y.; et al. Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut 2022, 71, 665–675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mizuno, T.; Murakami, H.; Fujii, M.; Ishiguro, F.; Tanaka, I.; Kondo, Y.; Akatsuka, S.; Toyokuni, S.; Yokoi, K.; Osada, H.; et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene 2012, 31, 5117–5122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, L.J.; Huang, L.L.; Yao, S.; Lin, N.; Li, P.; Xu, H.W.; Wu, X.W.; Xu, J.L.; Lu, Y.; et al. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin. Transl. Med. 2021, 11, e503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voutsadakis, I.A. Gastric Adenocarcinomas with CDX2 Induction Show Higher Frequency of TP53 and KMT2B Mutations and MYC Amplifications but Similar Survival Compared with Cancers with No CDX2 Induction. J. Clin. Med. 2024, 13, 7635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, H.; Chen, Y.; Wan, Y.; Liu, T.; Wang, J.; Zhang, Y.; Wei, L.; Hu, Q.; Xu, B.; Chernov, M.; et al. Identification of TAZ-Dependent Breast Cancer Vulnerabilities Using a Chemical Genomics Screening Approach. Front. Cell Dev. Biol. 2021, 9, 673374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papadimitriou, M.C.; Pazaiti, A.; Iliakopoulos, K.; Markouli, M.; Michalaki, V.; Papadimitriou, C.A. Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119346. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.R.; Cassier, P.A.; Gerecitano, J.F.; Witteveen, P.O.; Chugh, R.; Ribrag, V.; Chakraborty, A.; Matano, A.; Dobson, J.R.; Crystal, A.S.; et al. A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas. Clin. Cancer Res. 2016, 22, 5696–5705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sorah, J.D.; Moore, D.T.; Reilley, M.J.; Salem, M.E.; Triglianos, T.; Sanoff, H.K.; McRee, A.J.; Lee, M.S. Phase II Single-Arm Study of Palbociclib and Cetuximab Rechallenge in Patients with KRAS/NRAS/BRAF Wild-Type Colorectal Cancer. Oncologist 2022, 27, 1006-e930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weitz, J.; Nishizaki, D.; Liau, J.; Patel, J.; Ng, I.; Sun, S.; Ramms, D.; Zou, J.; Wishart, B.; Rull, J.; et al. Cyclin-Dependent Kinase 4/6 Inhibition as a Novel Therapy for Peritoneal Mucinous Carcinomatosis With GNAS Mutations. J. Clin. Oncol. 2025, 43, 705–715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiorean, E.G.; Picozzi, V.; Li, C.P.; Peeters, M.; Maurel, J.; Singh, J.; Golan, T.; Blanc, J.F.; Chapman, S.C.; Hussain, A.M.; et al. Efficacy and safety of abemaciclib alone and with PI3K/mTOR inhibitor LY3023414 or galunisertib versus chemotherapy in previously treated metastatic pancreatic adenocarcinoma: A randomized controlled trial. Cancer Med. 2023, 12, 20353–20364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, H.; Ge, Y.; You, T.; Li, X.; Wang, Y.; Cheng, Y.; Bai, C. A real-world analysis of trametinib in combination with hydroxychloroquine or CDK4/6 inhibitor as third- or later-line therapy in metastatic pancreatic adenocarcinoma. BMC Cancer 2023, 23, 958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Baghdadi, T.; Halabi, S.; Garrett-Mayer, E.; Mangat, P.K.; Ahn, E.R.; Sahai, V.; Alvarez, R.H.; Kim, E.S.; Yost, K.J.; Rygiel, A.L.; et al. Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Foote, M.B.; Walch, H.; Chatila, W.; Vakiani, E.; Chandler, C.; Steinruecke, F.; Nash, G.M.; Stadler, Z.; Chung, S.; Yaeger, R.; et al. Molecular Classification of Appendiceal Adenocarcinoma. J. Clin. Oncol. 2023, 41, 1553–1564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aslam, R.; Richards, C.E.; Fay, J.; Hudson, L.; Workman, J.; Lee, C.L.; Murphy, A.; O’Neill, B.; Toomey, S.; Hennessy, B.T. Synergistic Effects of the Combination of Alpelisib (PI3K Inhibitor) and Ribociclib (CDK4/6 Inhibitor) in Preclinical Colorectal Cancer Models. Int. J. Mol. Sci. 2024, 25, 13264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.L.; Cremona, M.; Farrelly, A.; Workman, J.A.; Kennedy, S.; Aslam, R.; Carr, A.; Madden, S.; O’Neill, B.; Hennessy, B.T.; et al. Preclinical evaluation of the CDK4/6 inhibitor palbociclib in combination with a PI3K or MEK inhibitor in colorectal cancer. Cancer Biol. Ther. 2023, 24, 2223388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, S.H.; Lee, S.Y.; Hong, J.Y.; Lee, J.; Kim, S.T. CDK4/6 inhibition to resensitize BRAF/EGFR inhibitor in patient-derived BRAF/PTEN-mutant colon cancer cells. Transl. Cancer Res. 2024, 13, 3695–3703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sorokin, A.V.; Kanikarla Marie, P.; Bitner, L.; Syed, M.; Woods, M.; Manyam, G.; Kwong, L.N.; Johnson, B.; Morris, V.K.; Jones, P.; et al. Targeting RAS Mutant Colorectal Cancer with Dual Inhibition of MEK and CDK4/6. Cancer Res. 2022, 82, 3335–3344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pereira, B.; Chin, S.F.; Rueda, O.M.; Vollan, H.K.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.J.; et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.I.; Huang, Y.K.; Lee, H.M.; Chen, J.H.; Su, Y.C.; Lin, P.M. Synergistic and Antagonistic Antiproliferative Effects of Ribociclib (Lee011) and Irinotecan (SN38) on Colorectal Cancer Cells. Anticancer. Res. 2023, 43, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.M.; Lee, H.M.; Huang, C.I.; Tai, T.S.; Chen, J.H.; Chen, C.I.; Su, Y.C. Synergistic Antiproliferative Effect of Ribociclib (LEE011) and 5-Fluorouracil on Human Colorectal Cancer. Anticancer. Res. 2020, 40, 6265–6271. [Google Scholar] [CrossRef] [PubMed]
- Rampioni Vinciguerra, G.L.; Dall’Acqua, A.; Segatto, I.; Mattevi, M.C.; Russo, F.; Favero, A.; Cirombella, R.; Mungo, G.; Viotto, D.; Karimbayli, J.; et al. p27kip1 expression and phosphorylation dictate Palbociclib sensitivity in KRAS-mutated colorectal cancer. Cell Death Dis. 2021, 12, 951. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papaccio, F.; García-Mico, B.; Gimeno-Valiente, F.; Cabeza-Segura, M.; Gambardella, V.; Gutiérrez-Bravo, M.F.; Alfaro-Cervelló, C.; Martinez-Ciarpaglini, C.; Rentero-Garrido, P.; Zúñiga-Trejos, S.; et al. Proteotranscriptomic analysis of advanced colorectal cancer patient derived organoids for drug sensitivity prediction. J. Exp. Clin. Cancer Res. 2023, 42, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thoma, O.M.; Naschberger, E.; Kubánková, M.; Larafa, I.; Kramer, V.; Menchicchi, B.; Merkel, S.; Britzen-Laurent, N.; Jefremow, A.; Grützmann, R.; et al. p21 Prevents the Exhaustion of CD4+ T Cells Within the Antitumor Immune Response Against Colorectal Cancer. Gastroenterology 2024, 166, 284–297.e11. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.Y.; Lee, I.P.; Han, N.R.; Kim, M.; Min, Y.K.; Lee, S.Y.; Yun, S.H.; Kim, S.I.; Park, T.; Chung, H.; et al. Additive Effect of CD73 Inhibitor in Colorectal Cancer Treatment With CDK4/6 Inhibitor Through Regulation of PD-L1. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 769–788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salewski, I.; Henne, J.; Engster, L.; Krone, P.; Schneider, B.; Redwanz, C.; Lemcke, H.; Henze, L.; Junghanss, C.; Maletzki, C. CDK4/6 blockade provides an alternative approach for treatment of mismatch-repair deficient tumors. Oncoimmunology 2022, 11, 2094583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wen, Y.; Yang, X.; Li, S.; Huang, L.; Chen, J.; Tan, L.; Ma, X.; Zhu, Y.; Li, Z.; Shan, C.; et al. Targeting CDK4/6 suppresses colorectal cancer by destabilizing YAP1. MedComm 2025, 6, e70103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silvis, M.R.; Silva, D.; Rohweder, R.; Schuman, S.; Gudipaty, S.; Truong, A.; Yap, J.; Affolter, K.; McMahon, M.; Kinsey, C. MYC-mediated resistance to trametinib and HCQ in PDAC is overcome by CDK4/6 and lysosomal inhibition. J. Exp. Med. 2023, 220, e20221524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fassl, A.; Brain, C.; Abu-Remaileh, M.; Stukan, I.; Butter, D.; Stepien, P.; Feit, A.S.; Bergholz, J.; Michowski, W.; Otto, T.; et al. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci. Adv. 2020, 6, eabb2210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Llanos, S.; Megias, D.; Blanco-Aparicio, C.; Hernández-Encinas, E.; Rovira, M.; Pietrocola, F.; Serrano, M. Lysosomal trapping of palbociclib and its functional implications. Oncogene 2019, 38, 3886–3902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uehara, Y.; Ikeda, S.; Kim, K.H.; Lim, H.J.; Adashek, J.J.; Persha, H.E.; Okamura, R.; Lee, S.; Sicklick, J.K.; Kato, S.; et al. Targeting the FGF/FGFR axis and its co-alteration allies. ESMO Open 2022, 7, 100647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, K.; Huang, Z.; Zhao, L.; Zhao, H. Significant Response to Palbociclib Plus Lenvatinib as Second-line Treatment for CDKN2A/2B Deletion Intrahepatic Cholangiocarcinoma: A Case Report. J. Clin. Transl. Hepatol. 2025, 13, 169–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aydın, E.; Tokat, Ü.M.; Özgü, E.; Adibi, A.; Tutar, O.; Kurzrock, R.; Demiray, M. Navigating uncharted territory: A case report and literature review on the remarkable response to personalized crizotinib containing combinational therapy in a pazopanib refractory patient with novel alterations. Ther. Adv. Med. Oncol. 2024, 16, 17588359241247023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voutsadakis, I.A.; Digklia, A. Pancreatic adenocarcinomas without KRAS, TP53, CDKN2A and SMAD4 mutations and CDKN2A/CDKN2B copy number alterations: A review of the genomic landscape to unveil therapeutic avenues. Chin. Clin. Oncol. 2023, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Voutsadakis, I.A. Mutations of p53 associated with pancreatic cancer and therapeutic implications. Ann. Hepato. Pancreat. Surg. 2021, 25, 315–327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mortoglou, M.; Miralles, F.; Mould, R.R.; Sengupta, D.; Uysal-Onganer, P. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur. J. Cell Biol. 2023, 102, 151318. [Google Scholar] [CrossRef] [PubMed]
- Willobee, B.A.; Gaidarski, A.A.; Dosch, A.R.; Castellanos, J.A.; Dai, X.; Mehra, S.; Messaggio, F.; Srinivasan, S.; VanSaun, M.N.; Nagathihalli, N.S.; et al. Combined Blockade of MEK and CDK4/6 Pathways Induces Senescence to Improve Survival in Pancreatic Ductal Adenocarcinoma. Mol. Cancer Ther. 2021, 20, 1246–1256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goodwin, C.M.; Waters, A.M.; Klomp, J.E.; Javaid, S.; Bryant, K.L.; Stalnecker, C.A.; Drizyte-Miller, K.; Papke, B.; Yang, R.; Amparo, A.M.; et al. Combination Therapies with CDK4/6 Inhibitors to Treat KRAS-Mutant Pancreatic Cancer. Cancer Res. 2023, 83, 141–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhutkar, S.; Yadav, A.; Patel, H.; Barot, S.; Patel, K.; Dukhande, V.V. Synergistic Efficacy of CDK4/6 Inhibitor Abemaciclib and HDAC Inhibitor Panobinostat in Pancreatic Cancer Cells. Cancers 2024, 16, 2713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhir, T.; Schultz, C.W.; Jain, A.; Brown, S.Z.; Haber, A.; Goetz, A.; Xi, C.; Su, G.H.; Xu, L.; Posey, J.; et al. Abemaciclib Is Effective Against Pancreatic Cancer Cells and Synergizes with HuR and YAP1 Inhibition. Mol. Cancer Res. 2019, 17, 2029–2041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arora, M.; Bogenberger, J.M.; Abdelrahman, A.M.; Yonkus, J.; Alva-Ruiz, R.; Leiting, J.L.; Chen, X.; Serrano Uson Junior, P.L.; Dumbauld, C.R.; Baker, A.T.; et al. Synergistic combination of cytotoxic chemotherapy and cyclin-dependent kinase 4/6 inhibitors in biliary tract cancers. Hepatology 2022, 75, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, P.; Lee, K.Y.; Clark, D.; Lau, N.; Lertsuwan, J.; Sawasdichai, A.; Satayavivad, J.; Oltean, S.; Afford, S.; Gaston, K.; et al. A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition. Cancer Res. 2020, 80, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, H.; Xia, Z.; Xia, T.; Du, G.; Franziska, S.D.; Li, X.; Zhai, X.; Jin, B. HMGA1 augments palbociclib efficacy via PI3K/mTOR signaling in intrahepatic cholangiocarcinoma. Biomark. Res. 2023, 11, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, X.; Liu, X.; Wang, H.; Wang, J.; Qiao, Y.; Cigliano, A.; Utpatel, K.; Ribback, S.; Pilo, M.G.; Serra, M.; et al. Combined CDK4/6 and Pan-mTOR Inhibition Is Synergistic Against Intrahepatic Cholangiocarcinoma. Clin. Cancer Res. 2019, 25, 403–413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malumbres, M. CDK4/6 Inhibitors: What Is the Best Cocktail? Clin. Cancer Res. 2019, 25, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Xu, H.; Wang, P.; Wang, J.; Affo, S.; Wang, H.; Xu, M.; Liang, B.; Che, L.; Qiu, W.; et al. Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. J. Hepatol. 2021, 75, 888–899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menapree, P.; Duangthim, N.; Sae-Fung, A.; Sonkaew, S.; Jitkaew, S. CDK4/6 inhibitors upregulate cIAP1/2, and Smac mimetic LCL161 enhances their antitumor effects in cholangiocarcinoma cells. Sci. Rep. 2025, 15, 6826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, P.; Ge, C.; Yang, H.; Chen, H.; Wan, L.; Zhang, Y.; Zhang, B.; Zeng, Q.; Fan, Z.; Pei, X.; et al. Screening a redox library identifies the anti-tumor drug Hinokitiol for treating intrahepatic cholangiocarcinoma. Front. Biosci. 2022, 27, 18. [Google Scholar] [CrossRef] [PubMed]
- Limousin, W.; Laurent-Puig, P.; Ziol, M.; Ganne-Carrié, N.; Nahon, P.; Ait-Omar, A.; Seror, O.; Sidali, S.; Campani, C.; Blanc, P.; et al. Molecular-based targeted therapies in patients with hepatocellular carcinoma and hepato-cholangiocarcinoma refractory to atezolizumab/bevacizumab. J. Hepatol. 2023, 79, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Reiter, F.P.; Denk, G.; Ziesch, A.; Ofner, A.; Wimmer, R.; Hohenester, S.; Schiergens, T.S.; Spampatti, M.; Ye, L.; Itzel, T.; et al. Predictors of ribociclib-mediated antitumour effects in native and sorafenib-resistant human hepatocellular carcinoma cells. Cell. Oncol. 2019, 42, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Digiacomo, G.; Fumarola, C.; La Monica, S.; Bonelli, M.; Cavazzoni, A.; Galetti, M.; Terenziani, R.; Eltayeb, K.; Volta, F.; Zoppi, S.; et al. CDK4/6 inhibitors improve the anti-tumor efficacy of lenvatinib in hepatocarcinoma cells. Front. Oncol. 2022, 12, 942341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bollard, J.; Miguela, V.; Ruiz de Galarreta, M.; Venkatesh, A.; Bian, C.B.; Roberto, M.P.; Tovar, V.; Sia, D.; Molina-Sánchez, P.; Nguyen, C.B.; et al. Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut 2017, 66, 1286–1296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheng, J.; Kohno, S.; Okada, N.; Okahashi, N.; Teranishi, K.; Matsuda, F.; Shimizu, H.; Linn, P.; Nagatani, N.; Yamamura, M.; et al. Treatment of Retinoblastoma 1-Intact Hepatocellular Carcinoma With Cyclin-Dependent Kinase 4/6 Inhibitor Combination Therapy. Hepatology 2021, 74, 1971–1993. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.S.; Chen, Y.L.; Hung, M.H.; Chu, P.Y.; Tsai, M.H.; Chen, L.J.; Hsiao, Y.J.; Shih, C.T.; Chang, M.J.; Chao, T.I.; et al. Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner. Mol. Oncol. 2017, 11, 1035–1049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Liao, P.; Zeng, S.X.; Lu, H. Co-targeting p53-R249S and CDK4 synergistically suppresses survival of hepatocellular carcinoma cells. Cancer Biol. Ther. 2020, 21, 269–277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, D.W.; Kai, A.K.; Ng, I.O. TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma. Front. Med. 2015, 9, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, S.A.; Bardia, A.; Quiroga, V.; Park, Y.H.; Blancas, I.; Alonso-Romero, J.L.; Vasiliev, A.; Adamchuk, H.; Salgado, M.; A Yardley, D.; et al. Neoadjuvant palbociclib plus either giredestrant or anastrozole in oestrogen receptor-positive, HER2-negative, early breast cancer (coopERA Breast Cancer): An open-label, randomised, controlled, phase 2 study. Lancet Oncol. 2023, 24, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Kumarasamy, V.; Vail, P.; Nambiar, R.; Witkiewicz, A.K.; Knudsen, E.S. Functional Determinants of Cell Cycle Plasticity and Sensitivity to CDK4/6 Inhibition. Cancer Res. 2021, 81, 1347–1360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poppy Roworth, A.; Ghari, F.; La Thangue, N.B. To live or let die—Complexity within the E2F1 pathway. Mol. Cell Oncol. 2015, 2, e970480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanelle, J.; Stiewe, T.; Theseling, C.C.; Peter, M.; Pützer, B.M. Gene expression changes in response to E2F1 activation. Nucleic Acids Res. 2002, 30, 1859–1867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Irwin, M.; Marin, M.C.; Phillips, A.C.; Seelan, R.S.; Smith, D.I.; Liu, W.; Flores, E.R.; Tsai, K.Y.; Jacks, T.; Vousden, K.H.; et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000, 407, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, T.; Zhao, B.; Sun, H.; Dong, Y.; Ma, Y.; Li, Z.; Wu, Y.; Wang, K.; Guan, X.; et al. KRASG12D-driven pentose phosphate pathway remodeling imparts a targetable vulnerability synergizing with MRTX1133 for durable remissions in PDAC. Cell Rep. Med. 2025, 6, 101966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roworth, A.P.; Carr, S.M.; Liu, G.; Barczak, W.; Miller, R.L.; Munro, S.; Kanapin, A.; Samsonova, A.; La Thangue, N.B. Arginine methylation expands the regulatory mechanisms and extends the genomic landscape under E2F control. Sci. Adv. 2019, 5, eaaw4640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barczak, W.; Carr, S.M.; Liu, G.; Munro, S.; Nicastri, A.; Lee, L.N.; Hutchings, C.; Ternette, N.; Klenerman, P.; Kanapin, A.; et al. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun. 2023, 14, 1078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, X.; Yin, G.; Chen, S.; Tacke, F.; Guillot, A.; Liu, H. CDK4/6 inhibition enhances T-cell immunotherapy on hepatocellular carcinoma cells by rejuvenating immunogenicity. Cancer Cell Int. 2024, 24, 215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lelliott, E.J.; Kong, I.Y.; Zethoven, M.; Ramsbottom, K.M.; Martelotto, L.G.; Meyran, D.; Zhu, J.J.; Costacurta, M.; Kirby, L.; Sandow, J.J.; et al. CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory. Cancer Discov. 2021, 11, 2582–2601. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, E.S.; Jenkins, R.W.; Li, S.; Dries, R.; Yates, K.; Chhabra, S.; Huang, W.; Liu, H.; Aref, A.R.; et al. CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discov. 2018, 8, 216–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, F.; Fang, Y.; Cheng, C.; Zhong, X.; Zheng, W.; Lan, S.; Peng, Q.; Cai, X.; Cao, T.; Zhong, C.; et al. CDK4 as a Prognostic Marker of Hepatocellular Carcinoma and CDK4 Inhibitors as Potential Therapeutics. Curr. Med. Chem. 2025, 32, 343–358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hemida, A.S.; Tantawy, M.S. Implication of TRPM8, CD47, and CDK4 expressions in hepatocellular carcinoma progression. J. Immunoass. Immunochem. 2025, 46, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.Y.; Chan, C.Y.K.; Xue, H.D.G.; Goh, C.C.; Cheu, J.W.S.; Tse, A.P.W.; Zhang, M.S.; Zhang, Y.; Wong, C.C.L. Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer. JCI Insight 2024, 9, e170532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, M.; Chen, W.; Sun, S.; Lu, Y.; Wu, G.; Xu, H.; Yang, H.; Li, C.; He, W.; Xu, M.; et al. CDK4/6 inhibitor PD-0332991 suppresses hepatocarcinogenesis by inducing senescence of hepatic tumor-initiating cells. J. Adv. Res. 2024, S2090-1232(24)00374-6. [Google Scholar]
- Anders, L.; Ke, N.; Hydbring, P.; Choi, Y.J.; Widlund, H.R.; Chick, J.M.; Zhai, H.; Vidal, M.; Gygi, S.P.; Braun, P.; et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011, 20, 620–634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsuura, I.; Denissova, N.G.; Wang, G.; He, D.; Long, J.; Liu, F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004, 430, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Teh, J.L.F.; Aplin, A.E. Arrested Developments: CDK4/6 Inhibitor Resistance and Alterations in the Tumor Immune Microenvironment. Clin. Cancer Res. 2019, 25, 921–927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, X.; Litchfield, L.M.; Webster, Y.; Chio, L.C.; Wong, S.S.; Stewart, T.R.; Dowless, M.; Dempsey, J.; Zeng, Y.; Torres, R.; et al. Genomic Aberrations that Activate D-type Cyclins Are Associated with Enhanced Sensitivity to the CDK4 and CDK6 Inhibitor Abemaciclib. Cancer Cell 2017, 32, 761–776.e6. [Google Scholar] [CrossRef] [PubMed]
Reference | Alteration | Implications |
---|---|---|
Reiter et al. [82] | Protein expressions of RB and p16 | Higher protein expression of RB and low expression of p16 associated with ribociclib sensitivity |
Bollard et al. [84] | RB loss | Palbociclib resistance |
Sheng et al. [85] | Mutated non-phosporylatable RB | Palbociclib sensitivity |
Sheng et al. [85] | NF-κB activation | Palbociclib resistance reversed by kinase IKKα/β inhibitor |
Wang et al. [87] | p53 mutation R249S | Up-regulation of MYC activity is reversed by palbociclib and p53 modulator drug |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voutsadakis, I.A. Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward. Curr. Issues Mol. Biol. 2025, 47, 454. https://doi.org/10.3390/cimb47060454
Voutsadakis IA. Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward. Current Issues in Molecular Biology. 2025; 47(6):454. https://doi.org/10.3390/cimb47060454
Chicago/Turabian StyleVoutsadakis, Ioannis A. 2025. "Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward" Current Issues in Molecular Biology 47, no. 6: 454. https://doi.org/10.3390/cimb47060454
APA StyleVoutsadakis, I. A. (2025). Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward. Current Issues in Molecular Biology, 47(6), 454. https://doi.org/10.3390/cimb47060454