The Superoxide Dismutase Family in Balloon Flower (Platycodon grandiflorus): Phylogenetic Relationships, Structural Characteristics, and Expression Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Characterization of the PlgSOD Gene Family
2.2. Analysis of Tissue-Specific Expression Patterns
3. Results and Discussion
3.1. Identification of PlgSODs
3.2. Analysis of Tissue Expression and Transcriptional Regulation of PlgSODs
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues de Queiroz, A.; Hines, C.; Brown, J.; Sahay, S.; Vijayan, J.; Stone, J.M.; Bickford, N.; Wuellner, M.; Glowacka, K.; Buan, N.R.; et al. The effects of exogenously applied antioxidants on plant growth and resilience. Phytochem. Rev. 2023, 22, 407–447. [Google Scholar] [CrossRef]
- Ji, H.S.; Bang, S.G.; Ahn, M.A.; Kim, G.; Kim, E.; Eom, S.H.; Hyun, T.K. Molecular Cloning and Functional Characterization of Heat Stress-Responsive Superoxide Dismutases in Garlic (Allium sativum L.). Antioxidants 2021, 10, 815. [Google Scholar] [CrossRef] [PubMed]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Yadav, S.; Hasanuzzaman, M.; Fujita, M.; Mishra, P.; Sabat, S.C.; Tuteja, N. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. Int. 2015, 22, 10375–10394. [Google Scholar] [CrossRef]
- Xi, D.M.; Liu, W.S.; Yang, G.D.; Wu, C.A.; Zheng, C.C. Seed-specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth. Plant Biotech. J. 2010, 8, 796. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Dogra, V.; Gill, T.; Ahuja, P.S.; Sreenivasulu, Y. Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS ONE 2014, 9, e110302. [Google Scholar] [CrossRef]
- Lin, K.H.; Sei, S.C.; Su, Y.H.; Chiang, C.M. Overexpression of the Arabidopsis and winter squash superoxide dismutase genes enhances chilling tolerance via ABA-sensitive transcriptional regulation in transgenic Arabidopsis. Plant Signal Behav. 2019, 14, 1685728. [Google Scholar] [CrossRef]
- Kim, J.; Kang, S.H.; Park, S.G.; Yang, T.J.; Lee, Y.; Kim, O.T.; Chung, O.; Lee, J.; Choi, J.P.; Kwon, S.J.; et al. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. Hortic. Res. 2020, 7, 112. [Google Scholar] [CrossRef]
- Hyun, T.K. Unveiling the anticancer potential of platycodin D. Excli J. 2024, 23, 1232–1233. [Google Scholar]
- Lee, D.J.; Choi, J.W.; Kang, J.N.; Lee, S.M.; Park, G.H.; Kim, C.K. Chromosome-Scale Genome Assembly and Triterpenoid Saponin Biosynthesis in Korean Bellflower (Platycodon grandiflorum). Int. J. Mol. Sci. 2023, 24, 6534. [Google Scholar] [CrossRef]
- Ahn, M.-A.; Son, G.H.; Hyun, T.K. Histone deacetylase family in balloon flower (Platycodon grandiflorus): Genome-wide identification and expression analysis under waterlogging stress. J. Plant Biotechnol. 2023, 50, 232–238. [Google Scholar] [CrossRef]
- González-Díaz, H.; Pérez-castillo, Y.; Podda, G.; Uriarte, E. Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices. J. Comput. Chem. 2007, 28, 1990–1995. [Google Scholar] [CrossRef]
- McRee, D.E.; Redford, S.M.; Getzoff, E.D.; Lepock, J.R.; Hallewell, R.A.; Tainer, J.A. Changes in crystallographic structure and thermostability of a Cu,Zn superoxide dismutase mutant resulting from the removal of a buried cysteine. J. Biol. Chem. 1990, 265, 14234–14241. [Google Scholar] [CrossRef]
- Ken, C.F.; Lin, C.T.; Wen, Y.D.; Wu, J.L. Replacement of buried cysteine from zebrafish Cu/Zn superoxide dismutase and enhancement of its stability via site-directed mutagenesis. Mar. Biotechnol. 2007, 9, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi di Patti, M.C.; Carrì, M.T.; Gabbianelli, R.; Da Gai, R.; Volpe, C.; Giartosio, A.; Rotilio, G.; Battistoni, A. A free cysteine residue at the dimer interface decreases conformational stability of Xenopus laevis copper,zinc superoxide dismutase. Arch. Biochem. Biophys. 2000, 377, 284–289. [Google Scholar] [CrossRef]
- Kumar, A.; Dutt, S.; Bagler, G.; Ahuja, P.S.; Kumar, S. Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50 °C, which also tolerates autoclaving. Sci. Rep. 2012, 2, 387. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wei, B.; Che, C.; Gong, Z.; Jiang, Y.; Si, M.; Zhang, J.; Yang, G. Enhanced stability of manganese superoxide dismutase by amino acid replacement designed via molecular dynamics simulation. Int. J. Biol. Macromol. 2019, 128, 297–303. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Fink, R.C.; Scandalios, J.G. Molecular evolution and structure--function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys. 2002, 399, 19–36. [Google Scholar] [CrossRef]
- Zheng, L.; Assane Hamidou, A.; Zhao, X.; Ouyang, Z.; Lin, H.; Li, J.; Zhang, X.; Luo, K.; Chen, Y. Superoxide dismutase gene family in cassava revealed their involvement in environmental stress via genome-wide analysis. iScience 2023, 26, 107801. [Google Scholar] [CrossRef]
- Song, J.; Zeng, L.; Chen, R.; Wang, Y.; Zhou, Y. In silico identification and expression analysis of superoxide dismutase (SOD) gene family in Medicago truncatula. 3 Biotech 2018, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Filiz, E.; Tombuloğlu, H. Genome-wide distribution of superoxide dismutase (SOD) gene families in Sorghum bicolor. Turkish J. Biol. 2015, 39, 49–59. [Google Scholar] [CrossRef]
- Feng, K.; Yu, J.; Cheng, Y.; Ruan, M.; Wang, R.; Ye, Q.; Zhou, G.; Li, Z.; Yao, Z.; Yang, Y.; et al. The SOD gene family in tomato: Identification, phylogenetic relationships, and expression patterns. Front. Plant Sci. 2016, 7, 1279. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hu, L.; Wu, H.; Jiang, L.; Liu, S. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genom. 2017, 2017, 7243973. [Google Scholar] [CrossRef] [PubMed]
- Abreu, I.A.; Cabelli, D.E. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 2010, 1804, 263–274. [Google Scholar] [CrossRef]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon-intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Shang, J.; Hu, X.; Yu, H.; Wu, H.; Lv, W.; Zhao, Y. Genome-wide analysis of the maize superoxide dismutase (SOD) gene family reveals important roles in drought and salt responses. Genet. Mol. Biol. 2021, 44, e20210035. [Google Scholar] [CrossRef]
- Yu, S.; Wang, C.; Wang, Q.; Sun, Q.; Zhang, Y.; Dong, J.; Yin, Y.; Zhang, S.; Yu, G. Identification and Analysis of SOD Family Genes in Peanut (Arachis hypogaea L.) and Their Potential Roles in Stress Responses. Agronomy 2023, 13, 1959. [Google Scholar] [CrossRef]
- Yu, W.; Kong, G.; Chao, J.; Yin, T.; Tian, H.; Ya, H.; He, L.; Zhang, H. Genome-wide identification of the rubber tree superoxide dismutase (SOD) gene family and analysis of its expression under abiotic stress. PeerJ 2022, 10, e14251. [Google Scholar] [CrossRef]
- Wei, M.; Li, H.; Wang, Q.; Liu, R.; Yang, L.; Li, Q. Genome-wide identification and expression profiling of B3 transcription factor genes in Populus alba × Populus glandulosa. Front. Plant Sci. 2023, 14, 1193065. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, S.; Gao, Y.; Yang, J. Characterization of Dof Transcription Factors and Their Responses to Osmotic Stress in Poplar (Populus trichocarpa). PLoS ONE 2017, 12, e0170210. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Ding, W.; Wu, X.; Wang, L.; Yang, X.; Yue, Y. Insights Into the MYB-Related Transcription Factors Involved in Regulating Floral Aroma Synthesis in Sweet Osmanthus. Front. Plant Sci. 2022, 13, 765213. [Google Scholar] [CrossRef] [PubMed]
Name | Accession Number | Arabidopsis SOD (% Identity) | Gene (bp) | Amino Acids | pI | MW (kDa) | Instability Index | GRAVY | Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|
PlgSOD1 | Pg_chr01_12590T | AT5G51100 (63%) | 3329 | 298 | 5.73 | 33.79 | 41.98 | −0.512 | Chloroplast |
PlgSOD2 | Pg_chr01_13570T | AT3G10920 (80%) | 5035 | 228 | 7.9 | 25.25 | 37.26 | −0.341 | Mitochondria |
PlgSOD3 | Pg_chr04_37450T | AT5G23310 (72%) | 8936 | 260 | 7.72 | 29.82 | 38.11 | −0.409 | Chloroplast |
PlgSOD4 | Pg_chr04_04620T | AT1G12520 (69%) | 4802 | 321 | 6.01 | 33.88 | 33.77 | 0.004 | Chloroplast |
PlgSOD5 | Pg_chr05_22460T | AT1G08830 (58%) | 4340 | 284 | 5.51 | 31.29 | 36.81 | −0.169 | Chloroplast |
PlgSOD6 | Pg_chr06_29440T | AT2G28190 (72%) | 8274 | 221 | 5.95 | 22.35 | 26.29 | 0.120 | Chloroplast |
PlgSOD7 | Pg_chr09_16970T | AT1G08830 (80%) | 5162 | 198 | 5.31 | 20.48 | 25.10 | 0.195 | Chloroplast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, T.K. The Superoxide Dismutase Family in Balloon Flower (Platycodon grandiflorus): Phylogenetic Relationships, Structural Characteristics, and Expression Patterns. Curr. Issues Mol. Biol. 2025, 47, 351. https://doi.org/10.3390/cimb47050351
Hyun TK. The Superoxide Dismutase Family in Balloon Flower (Platycodon grandiflorus): Phylogenetic Relationships, Structural Characteristics, and Expression Patterns. Current Issues in Molecular Biology. 2025; 47(5):351. https://doi.org/10.3390/cimb47050351
Chicago/Turabian StyleHyun, Tae Kyung. 2025. "The Superoxide Dismutase Family in Balloon Flower (Platycodon grandiflorus): Phylogenetic Relationships, Structural Characteristics, and Expression Patterns" Current Issues in Molecular Biology 47, no. 5: 351. https://doi.org/10.3390/cimb47050351
APA StyleHyun, T. K. (2025). The Superoxide Dismutase Family in Balloon Flower (Platycodon grandiflorus): Phylogenetic Relationships, Structural Characteristics, and Expression Patterns. Current Issues in Molecular Biology, 47(5), 351. https://doi.org/10.3390/cimb47050351