Decoding Quantitative Traits in Yaks: Genomic Insights for Improved Breeding Strategies
Abstract
:1. Introduction
2. Phenotypic Measurements
2.1. Normal Traits
2.1.1. Body Size Measurement
2.1.2. Production Performance Measurement
2.2. Specific Traits
2.2.1. Multiple Ribs
2.2.2. High-Altitude Adaptation
3. Sample Collection Method and Reference Population Construction
3.1. Sample Collection Method
3.2. Reference Population Construction
4. Genomic Sequencing and Gene Chip Technology
4.1. Development of the Yak Reference Genome
4.2. Transcriptome Sequencing and Single-Cell Sequencing in Yak Research
4.3. Gene Chip Genotyping
5. Prediction Models and Heritability Estimation
5.1. Prediction Models
5.2. Heritability Estimation
6. Application of Molecular and Genomic Technology in Yak Breeding
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GS | Genomic Selection |
GP | Genomic Prediction |
MAS | Marker-Assisted Selection |
mEBV | Marker-Estimated Breeding Values |
GEBV | Genomic Estimated Breeding Values |
gBLUP | Genome Best Linear Unbiased Prediction |
MtGBLUP | Multi-trait Genomic Best Linear Unbiased Prediction |
BIC | Bayesian Information Criterion |
SNP | Single Nucleotide Polymorphism |
BW | Body Weight |
CG | Chest Girth |
BL | Body Length |
h2 | heritability |
WH | Wither Height |
GWAS | Genome-Wide Association Study |
SVs | Structural Variants |
FST | Fixation Index |
WH18W | Withers Height at 18 weeks |
BL12W | Body Length at 12 weeks |
CG2Y | Chest Girth at 2 years |
LYM | Lymphocyte Count |
OTHR | Medium White Blood Cell Count |
PDW | Platelet Distribution Width |
References
- Ma, Z.-J.; Zhong, J.-C.; Han, J.-L.; Xu, J.-T.; Liu, Z.-N.; Bai, W.-L. Research progress on molecular genetic diversity of the yak (Bos grunniens): Research progress on molecular genetic diversity of the yak (Bos grunniens). Hereditas 2013, 35, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Shrestha, L.; Bisht, N.; Wu, N.; Ismail, M.; Dorji, T.; Dangol, G.; Long, R. Ethnic and Cultural Diversity amongst Yak Herding Communities in the Asian Highlands. Sustainability 2020, 12, 957. [Google Scholar] [CrossRef]
- Wangdi, J. Yak herding as a livelihood teetering on the brink of extinction: A case study from ura village in bhutan. Nomadic Peoples 2025, 29, 58–69. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Lenstra, J.A.; Zheng, Z.; Wu, X.; Yang, J.; Li, B.; Yang, Y.; Qiu, Q.; Liu, H.; et al. Evolutionary origin of genomic structural variations in domestic yaks. Nat. Commun. 2023, 14, 5617. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, R.; Li, K. Future livestock breeding: Precision breeding based on multi-omics information and population personalization. J. Integr. Agric. 2017, 16, 2784–2791. [Google Scholar] [CrossRef]
- Shah, A.M.; Bano, I.; Qazi, I.H.; Matra, M.; Wanapat, M. “The Yak”—A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front. Vet. Sci. 2023, 10, 1086985. [Google Scholar] [CrossRef]
- Wang, S.; Pan, Z.; Zhang, Q.; Xie, Z.; Liu, H.; Li, Q. Differential mRNA Expression and Promoter Methylation Status of SYCP3 Gene in Testes of Yaks and Cattle-Yaks. Reprod. Domest. Anim. 2012, 47, 455–462. [Google Scholar] [CrossRef]
- Luo, X.-L.; Song, H.-F.; Guan, J.-Q. Investigation on mechanism of sterility of male hybrids between yak and cattle. J. Appl. Anim. Res. 2014, 42, 395–399. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Sharma, P.; Doultani, S.; Hadiya, K.K.; George, L.; Highland, H. Overview of Marker-assisted Selection in Animal Breeding. J. Adv. Biol. Biotechnol. 2024, 27, 303–318. [Google Scholar] [CrossRef]
- Mehra, V.K.; Kumar, S. Genetic profiling and in silico sequence analysis of CSN2 (β-casein) and CSN3 (κ-casein) genes in the indian buffalo (Bubalus bubalis). bioRxiv 2023. [Google Scholar] [CrossRef]
- Tiwari, M.; Sodhi, M.; Sharma, M.; Sharma, V.; Mukesh, M. Hypoxia related genes modulate in similar fashion in skin fibroblast cells of yak (Bos grunniens) adapted to high altitude and native cows (Bos indicus) adapted to tropical climate during hypoxia stress. Int. J. Biometeorol. 2024, 68, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, S.; Ciani, E.; Sardina, M.T.; Sottile, G.; Pilla, F.; Portolano, B. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Anim. Genet. 2018, 49, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Wiedemar, N.; Tetens, J.; Jagannathan, V.; Menoud, A.; Neuenschwander, S.; Bruggmann, R.; Thaller, G.; Drögemüller, C. Independent Polled Mutations Leading to Complex Gene Expression Differences in Cattle. PLoS ONE 2014, 9, e93435. [Google Scholar] [CrossRef]
- Chu, M.; Wu, X.; Liang, C.; Pei, J.; Ding, X.; Guo, X.; Bao, P.; Yan, P. The complete sequence of mitochondrial genome of polled yak (Bos grunniens). Mitochondrial DNA Part A 2016, 27, 2032–2033. [Google Scholar] [CrossRef]
- De Vienne, D. What is a phenotype? History and new developments of the concept. Genetica 2022, 150, 153–158. [Google Scholar] [CrossRef]
- Aggarwal, R.A.K.; Kour, A.; Gandhi, R.S.; Niranjan, S.K.; Paul, V.; Bhutia, T.L.; Bhutia, K.D. Characterization of a unique Sikkimese yak population of India: A multivariate approach. Trop. Anim. Health Prod. 2023, 55, 208. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qin, J.; Liu, Y.; Chai, Z.; Peng, W.; Kangzhu, Y.; Zhong, J.; Wang, J. Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information. Animals 2023, 13, 1470. [Google Scholar] [CrossRef]
- Yan, Q.; Ding, L.; Wei, H.; Wang, X.; Jiang, C.; Degen, A. Body weight estimation of yaks using body measurements from image analysis. Measurement 2019, 140, 76–80. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; He, J.; Chen, Z.; Li, D.; Ma, C.; Ba, Y.; Baima, Q.; Li, X.; Song, R. Research on Yak Body Ruler and Weight Measurement Method Based on Deep Learning and Binocular Vision—[v2]. Available online: https://www.preprints.org/manuscript/202112.0349/v2 (accessed on 4 January 2024).
- Zhang, Y.; Sun, Z.; Zhang, C.; Yin, S.; Wang, W.; Song, R. Body Weight Estimation of Yak Based on Cloud Edge Computing. J. Wirel. Com Netw. 2021, 2021, 6. [Google Scholar] [CrossRef]
- Han, J.; Richard, C.; Hanotte, O.H.; McVeigh, C.; Rege, J.E.O. Yak Production in Central Asian highlands: Proceedings of the Third International Congress on Yak Held in Lhasa, P.R. China, 4–9 September 2000; International Livestock Research Institute: Nairobi, Kenya, 2002. [Google Scholar]
- Fan, J.; Yu, Y.; Han, X.; He, H.; Luo, Y.; Yu, S.; Cui, Y.; Xu, G.; Wang, L.; Pan, Y. The expression of hypoxia-inducible factor-1 alpha in primary reproductive organs of the female yak (Bos grunniens) at different reproductive stages. Reprod. Domest. Anim. 2020, 55, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Chen, S.; Long, R.; Yang, J.; Lu, J.; Zang, R.; Zhang, T.; Abudureyimu, A.; Liu, J.; Zhang, G.; et al. Protein and mRNA expression of follicle-stimulating hormone receptor and luteinizing hormone receptor during the oestrus in the yak (Bos grunniens). Reprod. Domest. Anim. 2017, 52, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Huang, Y.; Shu, S.; Wang, G.; Fu, C.; Huang, R.; Zhang, J.; Su, H.; He, Y.; Lei, C.; et al. Transcriptomics and metabolomics of blood, urine and ovarian follicular fluid of yak at induced estrus stage. BMC Genom. 2024, 25, 201. [Google Scholar] [CrossRef]
- Lan, D.; Xiong, X.; Mipam, T.-D.; Fu, C.; Li, Q.; Ai, Y.; Hou, D.; Chai, Z.; Zhong, J.; Li, J. Genetic Diversity, Molecular Phylogeny, and Selection Evidence of Jinchuan Yak Revealed by Whole-Genome Resequencing. G3 GenesGenomesGenetics 2018, 8, 945–952. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, H.; Luo, X.; Ai, Y.; Jiang, M.; Wen, Y. Insight into unique somitogenesis of yak (Bos grunniens) with one additional thoracic vertebra. BMC Genom. 2020, 21, 201. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.R.; Eamens, G.J.; Arthur, P.F.; Barchia, I.M.; James, K.J.; Taylor, R.D. Differential growth and development of pigs as assessed by X-ray computed tomography1,2. J. Anim. Sci. 2009, 87, 1648–1658. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, D.; Wang, L.; Hao, J.; Wang, J.; Zhou, X.; Wang, W.; Qiu, Q.; Huang, X.; Zhou, J.; et al. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals. Curr. Biol. 2016, 26, 1873–1879. [Google Scholar] [CrossRef]
- Lan, D.; Xiong, X.; Ji, W.; Li, J.; Mipam, T.-D.; Ai, Y.; Chai, Z. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs. Genetica 2018, 146, 151–160. [Google Scholar] [CrossRef]
- He, L. Yak’s Resilience and Adaptation to High-Altitude Stress. Pak. J. Zool. 2024, 1–13. [Google Scholar] [CrossRef]
- Jing, X.; Ding, L.; Zhou, J.; Huang, X.; Degen, A.; Long, R. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Wang, R.; Bai, B.; Huang, Y.; Degen, A.; Mi, J.; Xue, Y.; Hao, L. Yaks Are Dependent on Gut Microbiota for Survival in the Environment of the Qinghai Tibet Plateau. Microorganisms 2024, 12, 1122. [Google Scholar] [CrossRef]
- Wu, X.; Ding, X.; Chu, M.; Guo, X.; Bao, P.; Liang, C.; Yan, P. Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak (Bos grunniens). J. Integr. Agric. 2015, 14, 741–748. [Google Scholar] [CrossRef]
- Ayalew, W.; Chu, M.; Liang, C.; Wu, X.; Yan, P. Adaptation Mechanisms of Yak (Bos grunniens) to High-Altitude Environmental Stress. Animals 2021, 11, 2344. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, J.; Dou, J.; Yan, B.; Ren, Q.; Tang, B.; Wang, K.; Qiu, Q. The sequence and de novo assembly of the wild yak genome. Sci. Data 2020, 7, 66. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Liu, X.; Du, X.; Zhang, K.; Zhang, Y.; Song, Y.; Zi, Y.; Qiu, Q.; Lenstra, J.A.; et al. Structural Variants Selected during Yak Domestication Inferred from Long-Read Whole-Genome Sequencing. Mol. Biol. Evol. 2021, 38, 3676–3680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zha, X.; Ma, X.; La, Y.; Guo, X.; Chu, M.; Bao, P.; Yan, P.; Wu, X.; Liang, C. Polymorphisms of ITGA9 Gene and Their Correlation with Milk Quality Traits in Yak (Bos grunniens). Foods 2024, 13, 1613. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, X.; Zhu, C.; Mi, B.; Cui, C.; Chen, S.; Zhao, Z.; Zhao, F.; Liu, X.; Wang, J.; et al. Mutations in the FOXO3 Gene and Their Effects on Meat Traits in Gannan Yaks. Int. J. Mol. Sci. 2024, 25, 1948. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zhu, C.; Zhou, R.; Ruo, Z.; Zhao, Z.; Liu, X.; Li, S.; Zhao, F.; Wang, J.; et al. Variation in the HSL Gene and Its Association with Carcass and Meat Quality Traits in Yak. Animals 2023, 13, 3720. [Google Scholar] [CrossRef]
- Wu, S.; Liu, X.; Liu, Y.; Wang, S.; Peng, W.; Zhang, M.; Yue, B.; Wang, H.; Wang, J.; Zhong, J.; et al. Identification of RNA Editing Sites Reveals Functional Modifications with the Addition of Methionine to the Daily Rations of Yaks. Animals 2025, 15, 171. [Google Scholar] [CrossRef]
- Xin, J.-W.; Chai, Z.-X.; Zhang, C.-F.; Zhang, Q.; Zhu, Y.; Cao, H.-W.; Ji, Q.-M.; Zhong, J.-C. Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Sci. Rep. 2019, 9, 7558. [Google Scholar] [CrossRef]
- Ge, Q.; Guo, Y.; Zheng, W.; Zhao, S.; Cai, Y.; Qi, X. Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes. Sci. Rep. 2021, 11, 7786. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Wang, Y.-F.; Li, S.; Wu, S.-X.; Yan, R.-G.; Zhang, Y.-W.; Wan, R.-D.; He, Z.; Song, R.-D.; et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nat. Commun. 2022, 13, 4887. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; He, J.; Cui, Y.; Yu, S.; Zhang, H.; Wei, P.; Zhang, Q. The HIF-1α/EGF/EGFR Signaling Pathway Facilitates the Proliferation of Yak Alveolar Type II Epithelial Cells in Hypoxic Conditions. Int. J. Mol. Sci. 2024, 25, 1442. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhong, J.; Wang, J.; Chai, Z.; Zhang, C.; Xin, J.; Wang, J.; Cai, X.; Wu, Z.; Ji, Q. Whole-Transcriptome Analysis of Yak and Cattle Heart Tissues Reveals Regulatory Pathways Associated With High-Altitude Adaptation. Front. Genet. 2021, 12, 579800. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, Q.; He, Y.; Yang, L.; Zhang, X.; Shi, P.; Yang, L.; Liu, Z.; Zhang, F.; Liu, F.; et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol. Evol. 2018, 11, 72–85. [Google Scholar] [CrossRef]
- Favier, F.B.; Britto, F.A.; Freyssenet, D.G.; Bigard, X.A.; Benoit, H. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: Molecular insights into muscle physiology. Cell. Mol. Life Sci. 2015, 72, 4681–4696. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-S.; Kim, D.; Rhee, J.; Seo, J.-Y.; Park, I.; Kim, J.-H.; Lee, D.; Lee, W.; Kim, Y.L.; Yoo, K.; et al. Baf155 regulates skeletal muscle metabolism via HIF-1a signaling. PLOS Biol. 2023, 21, e3002192. [Google Scholar] [CrossRef]
- Jia, C.; Wang, H.; Li, C.; Wu, X.; Zan, L.; Ding, X.; Guo, X.; Bao, P.; Pei, J.; Chu, M.; et al. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genom. 2019, 20, 376. [Google Scholar] [CrossRef]
- Wu, S.-X.; Wang, G.-W.; Fang, Y.-G.; Chen, Y.-W.; Jin, Y.-Y.; Liu, X.-T.; Jia, G.-X.; Yang, Q.-E. Transcriptome analysis reveals dysregulated gene expression networks in Sertoli cells of cattle-yak hybrids. Theriogenology 2023, 203, 33–42. [Google Scholar] [CrossRef]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Luo, J.; Wang, F.; Xu, D.; Ahmed, Z.; Chen, S.; Li, R.; Ma, Z. Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in Qinghai, China. Front. Genet. 2023, 13, 1034094. [Google Scholar] [CrossRef] [PubMed]
- Cheviron, Z.A.; Brumfield, R.T. Genomic insights into adaptation to high-altitude environments. Heredity 2012, 108, 354–361. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. BLUPF90 and related programs (BGF90). In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Momen, M.; Mehrgardi, A.A.; Sheikhi, A.; Kranis, A.; Tusell, L.; Morota, G.; Rosa, G.J.M.; Gianola, D. Predictive ability of genome-assisted statistical models under various forms of gene action. Sci. Rep. 2018, 8, 12309. [Google Scholar] [CrossRef]
- Bellot, P.; de Los Campos, G.; Pérez-Enciso, M. Can Deep Learning Improve Genomic Prediction of Complex Human Traits? Genetics 2018, 210, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Yue, B.; Wang, H.; Li, X.; Peng, W.; Jiang, M.; Zhong, J.; Kangzhu, Y.; Wang, J. Comparison of predictive ability of single-trait and multitrait genomic selection models for body growth traits in Maiwa yaks. Animal 2024, 18, 101350. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhang, Z.; Li, X.; Wang, S.; Wu, X.; Sun, D.; Yu, Y.; Liu, J.; Wang, Y.; Zhang, Y.; et al. Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. J. Dairy Sci. 2013, 96, 5315–5323. [Google Scholar] [CrossRef]
- Reverter, A.; Porto-Neto, L.; Hine, B.C.; Alexandre, P.A.; Samaraweera, M.; Byrne, A.I.; Ingham, A.B.; Duff, C.J. On the value of adding commercial data into the reference population of the Angus SteerSELECT genomic tool. Anim. Prod. Sci. 2023, 63, 947–956. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qin, J.; Liu, Y.; Wang, S.; Wu, S.; Zhang, M.; Zhong, J.; Wang, J. GbyE: An integrated tool for genome widely association study and genome selection based on genetic by environmental interaction. BMC Genom. 2024, 25, 386. [Google Scholar] [CrossRef]
- Jiang, N.; Luo, C.; Shao, M.; Zheng, Z.; Ullah, S.; Ullah, Q.; Sun, G.; Luosang, D.-Z.; Mushtaq, R.; Ma, Y.; et al. Advancing Yak Breeding in China: Harnessing Genetic Resources and Marker-Assisted Selection for Improved Production Traits. Pak. J. Zool. 2025, 57, 461–476. [Google Scholar] [CrossRef]
- Medugorac, I.; Seichter, D.; Graf, A.; Russ, I.; Blum, H.; Göpel, K.H.; Rothammer, S.; Förster, M.; Krebs, S. Bovine Polledness—An Autosomal Dominant Trait with Allelic Heterogeneity. PLoS ONE 2012, 7, e39477. [Google Scholar] [CrossRef] [PubMed]
- Rothammer, S.; Capitan, A.; Mullaart, E.; Seichter, D.; Russ, I.; Medugorac, I. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet. Sel. Evol. 2014, 46, 44. [Google Scholar] [CrossRef]
- Utsunomiya, Y.T.; Torrecilha, R.B.P.; Milanesi, M.; Paulan, S.D.C.; Utsunomiya, A.T.H.; Garcia, J.F. Hornless Nellore cattle (Bos indicus) carrying a novel 110 kbp duplication variant of the polled locus. Anim. Genet. 2019, 50, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Medugorac, I.; Graf, A.; Grohs, C.; Rothammer, S.; Zagdsuren, Y.; Gladyr, E.; Zinovieva, N.; Barbieri, J.; Seichter, D.; Russ, I.; et al. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat. Genet. 2017, 49, 470–475. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Wang, N.; Li, Z.; Heller, R.; Liu, R.; Zhao, Y.; Han, J.; Pan, X.; Zheng, Z.; et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 2019, 364, eaav6335. [Google Scholar] [CrossRef]
- Huang, C.; Ge, F.; Ren, W.; Zhang, Y.; Wu, X.; Zhang, Q.; Ma, X.; Bao, P.; Guo, X.; Chu, M.; et al. Copy number variation of the HPGDS gene in the Ashidan yak and its associations with growth traits. Gene 2021, 772, 145382. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Liu, M.; Dai, R.; Wu, X.; Ma, X.; Chu, M.; Bao, P.; Pei, J.; Guo, X.; et al. Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals 2022, 12, 3074. [Google Scholar] [CrossRef]
- Zhang, J.; Zha, X.; Yang, G.; Ma, X.; La, Y.; Wu, X.; Guo, X.; Chu, M.; Bao, P.; Yan, P.; et al. Polymorphisms of TXK and PLCE1 Genes and Their Correlation Analysis with Growth Traits in Ashidan Yaks. Animals 2024, 14, 3506. [Google Scholar] [CrossRef]
- Fu, D.; Ma, X.; Jia, C.; Chu, M.; Lei, Q.; Wen, Z.; Wu, X.; Pei, J.; Bao, P.; Ding, X.; et al. A Study of Genomic Prediction of 12 Important Traits in the Domesticated Yak (Bos grunniens). Animals 2019, 9, 927. [Google Scholar] [CrossRef]
- Ge, F.; Jia, C.; Bao, P.; Wu, X.; Liang, C.; Yan, P. Accuracies of Genomic Prediction for Growth Traits at Weaning and Yearling Ages in Yak. Animals 2020, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Enciso, M.; Zingaretti, L.M. A Guide on Deep Learning for Complex Trait Genomic Prediction. Genes 2019, 10, 553. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, W.S.; Rashid, M. A review of deep learning applications in human genomics using next-generation sequencing data. Hum. Genom. 2022, 16, 26. [Google Scholar] [CrossRef] [PubMed]
Species | Trait | gBLUP | MtGBLUP | BayesA | BayesB | BayesCπ | Bayes Lasso | Heritability (h2) |
---|---|---|---|---|---|---|---|---|
BL6w | 0.265 | NA | 0.274 | 0.317 | NA | 0.293 | 0.560 | |
BW6w | 0.277 | NA | 0.289 | 0.328 | NA | 0.227 | 0.350 | |
WH6w | 0.391 | NA | 0.338 | 0.355 | NA | 0.379 | 0.570 | |
CG6w | 0.234 | NA | 0.322 | 0.331 | NA | 0.287 | 0.390 | |
Ashidan yak | BL12w | 0.166 | NA | 0.166 | 0.155 | NA | 0.163 | 0.070 |
BW12w | 0.198 | NA | 0.192 | 0.212 | NA | 0.329 | 0.240 | |
WH12w | 0.239 | NA | 0.168 | 0.177 | NA | 0.281 | 0.220 | |
CG12w | 0.220 | NA | 0.220 | 0.326 | NA | 0.220 | 0.250 | |
BL18w | 0.212 | NA | NA | 0.225 | 0.237 | NA | 0.366 | |
BW18w | 0.246 | NA | NA | 0.247 | 0.264 | NA | 0.508 | |
WH18w | 0.185 | NA | NA | 0.191 | 0.196 | NA | 0.589 | |
Domesticated yak | CG18w | 0.043 | NA | NA | 0.044 | 0.046 | NA | 0.345 |
LYM18w | 0.281 | NA | NA | 0.297 | 0.319 | NA | 0.464 | |
OTHR18w | 0.197 | NA | NA | 0.197 | 0.205 | NA | 0.461 | |
PDW18w | 0.228 | NA | NA | 0.238 | 0.246 | NA | 0.533 | |
CG2Y | 0.183 | 0.496 | NA | NA | NA | NA | NA | |
Maiwa yak | CG3Y | 0.102 | 0.444 | NA | NA | NA | NA | NA |
CG4Y | 0.067 | 0.531 | NA | NA | NA | NA | NA | |
CG5Y | 0.018 | 0.414 | NA | NA | NA | NA | NA | |
CG6Y | −0.065 | 0.450 | NA | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Yu, Y.; Yan, X.; Lan, D.; Wang, J. Decoding Quantitative Traits in Yaks: Genomic Insights for Improved Breeding Strategies. Curr. Issues Mol. Biol. 2025, 47, 350. https://doi.org/10.3390/cimb47050350
Fu Y, Yu Y, Yan X, Lan D, Wang J. Decoding Quantitative Traits in Yaks: Genomic Insights for Improved Breeding Strategies. Current Issues in Molecular Biology. 2025; 47(5):350. https://doi.org/10.3390/cimb47050350
Chicago/Turabian StyleFu, Yujiao, Yuanyuan Yu, Xinjia Yan, Daoliang Lan, and Jiabo Wang. 2025. "Decoding Quantitative Traits in Yaks: Genomic Insights for Improved Breeding Strategies" Current Issues in Molecular Biology 47, no. 5: 350. https://doi.org/10.3390/cimb47050350
APA StyleFu, Y., Yu, Y., Yan, X., Lan, D., & Wang, J. (2025). Decoding Quantitative Traits in Yaks: Genomic Insights for Improved Breeding Strategies. Current Issues in Molecular Biology, 47(5), 350. https://doi.org/10.3390/cimb47050350