Different Species of Bats: Genomics, Transcriptome, and Immune Repertoire
Abstract
:1. Introduction
Suborder | Family | Species | Accession Number | Samples | Reference |
---|---|---|---|---|---|
Microchiroptera | Phyllostomidae | Artibeus jamaicensis | PRJNA490553 | liver | [22] |
PRJNA305413 | kidney, liver, and spleen | [23] | |||
PRJNA172870 | lung, kidney, and spleen | [13] | |||
PRJNA929543 | wings | [24] | |||
Carollia brevicauda | PRJNA563501 | vomeronasal | [25] | ||
Carollia perspicillata | PRJNA563501 | vomeronasal | [25] | ||
PRJNA291081 | limbs | [26] | |||
Desmodus rotundus | PRJNA139591 | ganglia | [27] | ||
PRJNA563501 | vomeronasal | [25] | |||
PRJNA531931 | principal and accessory submaxillary glands | [28] | |||
PRJNA451361 | salivary glands | [29] | |||
PRJNA174817 | principal submaxillary gland | [30] | |||
Phyllostomus hastatus | PRJNA563501 | vomeronasal | [25] | ||
Phyllostomus discolor | PRJNA572574 | muscle | [31] | ||
PRJNA291690 | brain | [32] | |||
Erophylla sezekorni | PRJNA929543 | wings | [24] | ||
Vespertilionidae | Eptesicus fuscus | PRJNA300284 | liver and spleen | [22] | |
PRJNA591156 | wings | [33] | |||
Myotis myotis | PRJNA949638 | olfactory nerve-derived cell | [34] | ||
PRJNA591156 | wings | [33] | |||
PRJNA572574 | muscle | [31] | |||
PRJNA503704 | blood | [35] | |||
PRJNA277738 | wing skin | [36] | |||
PRJNA267654 | blood | [37] | |||
Myotis lucifugus | PRJNA300284 | liver and spleen | [22] | ||
PRJNA826885 | primary embryonic fibroblast cells | [38] | |||
PRJNA591156 | wings | [33] | |||
PRJNA451361 | salivary glands | [29] | |||
PRJNA277738 | wing skin | [36] | |||
PRJNA246229 | wing | [33] | |||
PRJNA218522 | submandibular gland | [39] | |||
Myotis brandtii | PRJNA300284 | liver and spleen | [22] | ||
GSE42297 | liver, kidney, and brain | [40] | |||
Myotis ricketti | PRJNA290538 | brain | [41] | ||
PRJNA640936 | cochlear | [42] | |||
PRJNA198831 | inner ear | [43] | |||
PRJNA142913 | brain and adipose | [44] | |||
Myotis pilosus | PRJNA902548 | cochlea, brain, muscle, liver, and heart | [45] | ||
PRJNA290538 | brain | [41] | |||
Myotis velifer | PRJNA625724 | embryonic fibroblasts | [46] | ||
Myotis daubentonii | PRJNA496612 | kidney cell | [47] | ||
Myotis laniger | PRJNA175507 | brain | - | ||
PRJNA255191 | - | - | |||
Myotis davidii | PRJNA300284 | liver and spleen | [48] | ||
PRJNA172130 | - | [49] | |||
Murina leucogaster | PRJNA290538 | brain | [41] | ||
Miniopterus schreibersii | PRJNA218524 | forelimb | [50] | ||
Miniopterus natalensis | PRJNA270639 | forelimbs | [51] | ||
Miniopterus fuliginosus | PRJNA175507 | brain | - | ||
Scotophilus kuhlii | PRJNA290538 | brain | [41] | ||
Pipistrellus kuhlii | PRJNA572574 | muscle | [31] | ||
Megadermatidae | Megaderma lyra | PRJNA290538 | brain | [41] | |
Molossidae | Tadarida brasiliensis | PRJNA184055 | liver, kidney, and brain | [52] | |
Tadarida teniotis | PRJNA290538 | brain | [41] | ||
Molossus molossus | PRJNA572574 | muscle | [31] | ||
Rhinolophidae | Rhinolophus ferrumequinum | PRJNA300284 | liver and spleen | [48] | |
PRJNA572574 | muscle | [31] | |||
Rhinopoma hardwickei | PRJNA290538 | brain | [41] | ||
Rhinolophus pusillus | PRJNA290538 | brain | [41] | ||
PRJNA972471 | liver | [53] | |||
Rhinolophus affinis | PRJNA640936 | cochlear | [42] | ||
PRJNA644044 | cochleae | [54] | |||
Emballonuridae | Taphozous melanopogon | PRJNA290538 | brain | [41] | |
Hipposideridae | Aselliscus stoliczkanus | PRJNA290538 | brain | [41] | |
Hipposideros pratti | PRJNA290538 | brain | [41] | ||
Hipposideros armiger | PRJNA300284 | liver and spleen | [48] | ||
PRJNA900132 | cochlea, brain, heart, liver, and muscle | [55] | |||
Megachiroptera | Pteropodidae | Cynopterus sphinx | PRJNA290538 | brain | [41] |
PRJNA198831 | inner ear | [43] | |||
Eonycteris spelaea | PRJNA847556 | lung | [56] | ||
PRJNA427241 | lung and kidney | [14] | |||
PRJNA530519 | spleen | [57] | |||
Pteropus vampyrus | PRJNA300284 | liver and spleen | [48] | ||
Pteropus alecto | PRJNA397372 | IFN-stimulated cells | [58] | ||
PRJNA531095 | spleen | [57] | |||
PRJNA172130 | - | [49] | |||
Pteronotus quadridens | PRJNA929543 | embryo | [24] | ||
Rousettus aegyptiacus | PRJNA300284 | liver and spleen | [48] | ||
PRJNA902735 | PBMC | [59] | |||
PRJNA762341 | PBMC | [60] | |||
PRJNA640284 | blood, kidney, liver, and spleen | [61] | |||
PRJNA572574 | muscle | [31] | |||
Rousettus leschenaultii | PRJNA290538 | brain | [41] |
Family | Species | Chain | V Genes | D Genes | J Genes | C Genes | Reference | |
---|---|---|---|---|---|---|---|---|
TR LOCUS | Phyllostominae | Phyllostomus discolor | TRB | 100 | 2 | 13 | 2 | [17] |
Rhinolophinae | Rhinolophus ferrumequinum | TRA | 81 | 0 | 60 | 0 | [17] | |
TRD | 18 | 1 | 4 | 1 | [17] | |||
TRB | 29 | 2 | 15 | 2 | [17] | |||
TRG | 14 | 0 | 6 | 2 | [17] | |||
Vespertilionidae | Pipistrellus pipistrellus | TRB | 45 | 2 | 13 | 2 | [18] | |
Multiple (10) | Multiple (14) | ALL TR locus | - | - | - | 72 | [62] | |
IG LOCUS | Phyllostominae | Phyllostomus discolor | IGH | 81 | 16 | 7 | IGHM, IGHE, IGHG, IGHA | [19] |
Rhinolophinae | Rhinolophus ferrumequinum | IGH | 41 | 4 | 6 | IGHM, IGHE, IGHG, IGHA | [19] | |
Vespertilionidae | Pipistrellus pipistrellus | IGH | 57 | 7 | 6 | IGHM, IGHE, IGHG, IGHA | [19] | |
Pteropodinae | Rousettus aegyptiacus | IGH | 58 | 8 | 3 | IGHM, IGHE, IGHG, IGHA | [63] | |
Molossidae | Eumops perotis (Only Functional) | IGH | 10 | 8 | 3 | 5 | [64] | |
Vespertilionidae | Myotis lucifugus | IGH | >250 | - | - | - | [65] |
2. Genomics of Different Bat Species
2.1. Genetic Basis of Bat Immune Adaptations
2.2. Sensory Gene Adaptations in Bats: Hearing, Sight, and Smell
2.3. Flight, Metabolism, and Lifespan in Bats
3. Transcriptomes of Different Bats Species
3.1. Immune Transcriptomes Across Bat Species
3.2. Gene Expression in Bat Metabolism, Lifespan, and Hibernation
3.3. Audiovisual-Related Genes in Bats
3.4. A Transcript Analysis of Other Genes in Bats
4. The Immune Repertoire of Different Bat Species
4.1. Bat TCR Gene and Repertoire
4.2. Bat BCR Gene and Repertoire
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef]
- Power, R.A.; Parkhill, J.; de Oliveira, T. Microbial Genome-Wide Association Studies: Lessons from Human GWAS. Nat. Rev. Genet. 2017, 18, 41–50. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Cryan, P.M.; Hayman, D.T.S.; Plowright, R.K.; Streicker, D.G. Multiple Mortality Events in Bats: A Global Review. Mamm. Rev. 2016, 46, 175–190. [Google Scholar] [CrossRef]
- Fenton, M.B.; Simmons, N.B. Bats: A World of Science and Mystery; University of Chicago Press: Chicago, IL, USA, 2015; ISBN 978-0-226-06512-0. [Google Scholar]
- Teeling, E.C.; Vernes, S.C.; Dávalos, L.M.; Ray, D.A.; Gilbert, M.T.P.; Myers, E. Bat1K Consortium Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annu. Rev. Anim. Biosci. 2018, 6, 23–46. [Google Scholar] [CrossRef]
- Rhie, A.; McCarthy, S.A.; Fedrigo, O.; Damas, J.; Formenti, G.; Koren, S.; Uliano-Silva, M.; Chow, W.; Fungtammasan, A.; Kim, J.; et al. Towards Complete and Error-Free Genome Assemblies of All Vertebrate Species. Nature 2021, 592, 737–746. [Google Scholar] [CrossRef]
- Shaffer, H.B.; Toffelmier, E.; Corbett-Detig, R.B.; Escalona, M.; Erickson, B.; Fiedler, P.; Gold, M.; Harrigan, R.J.; Hodges, S.; Luckau, T.K.; et al. Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project. J. Hered. 2022, 113, 577–588. [Google Scholar] [CrossRef]
- Consortium, Z. A Comparative Genomics Multitool for Scientific Discovery and Conservation. Nature 2020, 587, 240–245. [Google Scholar] [CrossRef]
- Lindblad-Toh, K.; Garber, M.; Zuk, O.; Lin, M.F.; Parker, B.J.; Washietl, S.; Kheradpour, P.; Ernst, J.; Jordan, G.; Mauceli, E.; et al. A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals. Nature 2011, 478, 476–482. [Google Scholar] [CrossRef]
- DeRisi, J.L.; Iyer, V.R.; Brown, P.O. Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale. Science 1997, 278, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, M.; Liang, B.; Xu, A.; Zhang, S.; Wu, D. Cloning and Expression of PDK4, FOXO1A and DYRK1A from the Hibernating Greater Horseshoe Bat (Rhinolophus ferrumequinum). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.I.; Srivastava, A.; Chou, W.-C.; Liu, L.; Hawkinson, A.; Glenn, T.C.; Adams, R.; Schountz, T. Transcriptome Sequencing and Annotation for the Jamaican Fruit Bat (Artibeus jamaicensis). PLoS ONE 2012, 7, e48472. [Google Scholar] [CrossRef]
- Wen, M.; Ng, J.H.J.; Zhu, F.; Chionh, Y.T.; Chia, W.N.; Mendenhall, I.H.; Lee, B.P.-H.; Irving, A.T.; Wang, L.-F. Exploring the Genome and Transcriptome of the Cave Nectar Bat Eonycteris spelaea with PacBio Long-Read Sequencing. Gigascience 2018, 7, giy116. [Google Scholar] [CrossRef]
- Wang, X.; Ding, P.; Sun, C.; Wang, D.; Zhu, J.; Wu, W.; Wei, Y.; Xiang, R.; Ding, X.; Luo, L.; et al. Comparative Analysis of Single Cell Lung Atlas of Bat, Cat, Tiger, and Pangolin. Cell Biol. Toxicol. 2023, 39, 2431–2435. [Google Scholar] [CrossRef]
- Baker, M.L.; Tachedjian, M.; Wang, L.-F. Immunoglobulin Heavy Chain Diversity in Pteropid Bats: Evidence for a Diverse and Highly Specific Antigen Binding Repertoire. Immunogenetics 2010, 62, 173–184. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, L.; Liu, L.; Yao, X. TR Locus Annotation and Characteristics of Rhinolophus ferrumequinum. Front. Immunol. 2021, 12, 741408. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.; Zhou, D.; Wu, Y.; Wang, X.; Zhou, J.; Ma, Q.; Yao, X.; Ma, L. New Insights into the Germline Genes and CDR3 Repertoire of the TCRβ Chain in Chiroptera. Front. Immunol. 2023, 14, 1147859. [Google Scholar] [CrossRef]
- Ma, L.; Liu, L.; Li, J.; Zhou, H.; Xiao, J.; Ma, Q.; Yao, X. Landscape of IGH Germline Genes of Chiroptera and the Pattern of Rhinolophus affinis Bat IGH CDR3 Repertoire. Microbiol. Spectr. 2024, 12, e0376223. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Wang, H.; Yao, X. Different Species of Chiroptera: Immune Cells and Molecules. J. Med. Virol. 2024, 96, e29772. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Baker, M.L.; Kulcsar, K.; Misra, V.; Plowright, R.; Mossman, K. Novel Insights into Immune Systems of Bats. Front. Immunol. 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Santillán, D.D.; Machain-Williams, C.; Hernández-Montes, G.; Ortega, J. De Novo Transcriptome Assembly and Functional Annotation in Five Species of Bats. Sci. Rep. 2019, 9, 6222. [Google Scholar] [CrossRef]
- Gerrard, D.L.; Hawkinson, A.; Sherman, T.; Modahl, C.M.; Hume, G.; Campbell, C.L.; Schountz, T.; Frietze, S. Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats. mSphere 2017, 2, e00245-17. [Google Scholar] [CrossRef] [PubMed]
- Anthwal, N.; Urban, D.J.; Sadier, A.; Takenaka, R.; Spiro, S.; Simmons, N.; Behringer, R.R.; Cretekos, C.J.; Rasweiler, J.J.; Sears, K.E. Insights into the Formation and Diversification of a Novel Chiropteran Wing Membrane from Embryonic Development. BMC Biol. 2023, 21, 101. [Google Scholar] [CrossRef]
- Yohe, L.R.; Davies, K.T.J.; Rossiter, S.J.; Dávalos, L.M. Expressed Vomeronasal Type-1 Receptors (V1rs) in Bats Uncover Conserved Sequences Underlying Social Chemical Signaling. Genome Biol. Evol. 2019, 11, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Rivas-Astroza, M.; Deng, J.; Dowling, A.; Oboikovitz, P.; Cao, X.; Behringer, R.R.; Cretekos, C.J.; Rasweiler, J.J.; Zhong, S.; et al. Transcriptomic Insights into the Genetic Basis of Mammalian Limb Diversity. BMC Evol. Biol. 2017, 17, 86. [Google Scholar] [CrossRef]
- Gracheva, E.O.; Cordero-Morales, J.F.; González-Carcacía, J.A.; Ingolia, N.T.; Manno, C.; Aranguren, C.I.; Weissman, J.S.; Julius, D. Ganglion-Specific Splicing of TRPV1 Underlies Infrared Sensation in Vampire Bats. Nature 2011, 476, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.B.; Assumpção, T.C.F.; Ma, D.; Li, Y.; Vicente, E.C.; Uieda, W.; Ribeiro, J.M.C. The “Vampirome”: Transcriptome and Proteome Analysis of the Principal and Accessory Submaxillary Glands of the Vampire Bat Desmodus Rotundus, a Vector of Human Rabies. J. Proteom. 2013, 82, 288–319. [Google Scholar] [CrossRef] [PubMed]
- Vandewege, M.W.; Sotero-Caio, C.G.; Phillips, C.D. Positive Selection and Gene Expression Analyses from Salivary Glands Reveal Discrete Adaptations within the Ecologically Diverse Bat Family Phyllostomidae. Genome Biol. Evol. 2020, 12, 1419–1428. [Google Scholar] [CrossRef]
- Low, D.H.W.; Sunagar, K.; Undheim, E.A.B.; Ali, S.A.; Alagon, A.C.; Ruder, T.; Jackson, T.N.W.; Pineda Gonzalez, S.; King, G.F.; Jones, A.; et al. Dracula’s Children: Molecular Evolution of Vampire Bat Venom. J. Proteom. 2013, 89, 95–111. [Google Scholar] [CrossRef]
- Jebb, D.; Huang, Z.; Pippel, M.; Hughes, G.M.; Lavrichenko, K.; Devanna, P.; Winkler, S.; Jermiin, L.S.; Skirmuntt, E.C.; Katzourakis, A.; et al. Six Reference-Quality Genomes Reveal Evolution of Bat Adaptations. Nature 2020, 583, 578–584. [Google Scholar] [CrossRef]
- Rodenas-Cuadrado, P.; Chen, X.S.; Wiegrebe, L.; Firzlaff, U.; Vernes, S.C. A Novel Approach Identifies the First Transcriptome Networks in Bats: A New Genetic Model for Vocal Communication. BMC Genom. 2015, 16, 836. [Google Scholar] [CrossRef]
- Davy, C.M.; Donaldson, M.E.; Bandouchova, H.; Breit, A.M.; Dorville, N.A.S.; Dzal, Y.A.; Kovacova, V.; Kunkel, E.L.; Martínková, N.; Norquay, K.J.O.; et al. Transcriptional Host-Pathogen Responses of Pseudogymnoascus Destructans and Three Species of Bats with White-Nose Syndrome. Virulence 2020, 11, 781–794. [Google Scholar] [CrossRef]
- Harazim, M.; Perrot, J.; Varet, H.; Bourhy, H.; Lannoy, J.; Pikula, J.; Seidlová, V.; Dacheux, L.; Martínková, N. Transcriptomic Responses of Bat Cells to European Bat Lyssavirus 1 Infection under Conditions Simulating Euthermia and Hibernation. BMC Immunol. 2023, 24, 7. [Google Scholar] [CrossRef]
- Huang, Z.; Whelan, C.V.; Foley, N.M.; Jebb, D.; Touzalin, F.; Petit, E.J.; Puechmaille, S.J.; Teeling, E.C. Longitudinal Comparative Transcriptomics Reveals Unique Mechanisms Underlying Extended Healthspan in Bats. Nat. Ecol. Evol. 2019, 3, 1110–1120. [Google Scholar] [CrossRef]
- Field, K.A.; Johnson, J.S.; Lilley, T.M.; Reeder, S.M.; Rogers, E.J.; Behr, M.J.; Reeder, D.M. The White-Nose Syndrome Transcriptome: Activation of Anti-Fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis. PLoS Pathog. 2015, 11, e1005168. [Google Scholar] [CrossRef]
- Huang, Z.; Jebb, D.; Teeling, E.C. Blood miRNomes and Transcriptomes Reveal Novel Longevity Mechanisms in the Long-Lived Bat, Myotis myotis. BMC Genom. 2016, 17, 906. [Google Scholar] [CrossRef]
- Pasquesi, G.I.M.; Kelly, C.J.; Ordonez, A.D.; Chuong, E.B. Transcriptional Dynamics of Transposable Elements in the Type I IFN Response in Myotis Lucifugus Cells. Mob. DNA 2022, 13, 22. [Google Scholar] [CrossRef]
- Phillips, C.J.; Phillips, C.D.; Goecks, J.; Lessa, E.P.; Sotero-Caio, C.G.; Tandler, B.; Gannon, M.R.; Baker, R.J. Dietary and Flight Energetic Adaptations in a Salivary Gland Transcriptome of an Insectivorous Bat. PLoS ONE 2014, 9, e83512. [Google Scholar] [CrossRef]
- Seim, I.; Fang, X.; Xiong, Z.; Lobanov, A.V.; Huang, Z.; Ma, S.; Feng, Y.; Turanov, A.A.; Zhu, Y.; Lenz, T.L.; et al. Genome Analysis Reveals Insights into Physiology and Longevity of the Brandt’s Bat Myotis brandtii. Nat. Commun. 2013, 4, 2212. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Dong, D. Phylogenomic Analyses of Bat Subordinal Relationships Based on Transcriptome Data. Sci. Rep. 2016, 6, 27726. [Google Scholar] [CrossRef]
- Ma, L.; Sun, H.; Mao, X. Transcriptome Sequencing of Cochleae from Constant-Frequency and Frequency-Modulated Echolocating Bats. Sci. Data 2020, 7, 341. [Google Scholar] [CrossRef]
- Dong, D.; Lei, M.; Liu, Y.; Zhang, S. Comparative Inner Ear Transcriptome Analysis between the Rickett’s Big-Footed Bats (Myotis Ricketti) and the Greater Short-Nosed Fruit Bats (Cynopterus Sphinx). BMC Genom. 2013, 14, 916. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Geiser, F.; Lin, B.; Sun, H.; Chen, J.; Zhang, S. Down but Not Out: The Role of MicroRNAs in Hibernating Bats. PLoS ONE 2015, 10, e0135064. [Google Scholar] [CrossRef]
- Wang, X.; Bao, M.; Xu, N.; Sun, R.; Dai, W.; Sun, K.; Wang, H.; Feng, J. Full-Length Transcriptome of Myotis pilosus as a Reference Resource and Mining of Auditory and Immune Related Genes. Int. J. Mol. Sci. 2022, 24, 62. [Google Scholar] [CrossRef]
- Cosby, R.L.; Judd, J.; Zhang, R.; Zhong, A.; Garry, N.; Pritham, E.J.; Feschotte, C. Recurrent Evolution of Vertebrate Transcription Factors by Transposase Capture. Science 2021, 371, eabc6405. [Google Scholar] [CrossRef]
- Hölzer, M.; Schoen, A.; Wulle, J.; Müller, M.A.; Drosten, C.; Marz, M.; Weber, F. Virus- and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis Daubentonii. iScience 2019, 19, 647–661. [Google Scholar] [CrossRef]
- Lee, A.K.; Kulcsar, K.A.; Elliott, O.; Khiabanian, H.; Nagle, E.R.; Jones, M.E.B.; Amman, B.R.; Sanchez-Lockhart, M.; Towner, J.S.; Palacios, G.; et al. De Novo Transcriptome Reconstruction and Annotation of the Egyptian rousette Bat. BMC Genom. 2015, 16, 1033. [Google Scholar] [CrossRef]
- Zhang, G.; Cowled, C.; Shi, Z.; Huang, Z.; Bishop-Lilly, K.A.; Fang, X.; Wynne, J.W.; Xiong, Z.; Baker, M.L.; Zhao, W.; et al. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science 2013, 339, 456–460. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, M.; Wang, Y.; Cooper, K.L.; Zhu, T.; Dong, D.; Zhang, J.; Zhang, S. Unique Expression Patterns of Multiple Key Genes Associated with the Evolution of Mammalian Flight. Proc. Biol. Sci. 2014, 281, 20133133. [Google Scholar] [CrossRef] [PubMed]
- Eckalbar, W.L.; Schlebusch, S.A.; Mason, M.K.; Gill, Z.; Parker, A.V.; Booker, B.M.; Nishizaki, S.; Muswamba-Nday, C.; Terhune, E.; Nevonen, K.A.; et al. Transcriptomic and Epigenomic Characterization of the Developing Bat Wing. Nat. Genet. 2016, 48, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Fushan, A.A.; Turanov, A.A.; Lee, S.-G.; Kim, E.B.; Lobanov, A.V.; Yim, S.H.; Buffenstein, R.; Lee, S.-R.; Chang, K.-T.; Rhee, H.; et al. Gene Expression Defines Natural Changes in Mammalian Lifespan. Aging Cell 2015, 14, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Chen, Y.; Du, J.; Xiao, Y.; Guo, D.; Liu, S. Adapting to Stress: The Effects of Hibernation and Hibernacula Temperature on the Hepatic Transcriptome of Rhinolophus Pusillus. FASEB J. 2024, 38, e23462. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Wang, J.; Zhang, L.; Rossiter, S.J.; Mao, X. Echolocation Call Frequency Variation in Horseshoe Bats: Molecular Basis Revealed by Comparative Transcriptomics. Proc. Biol. Sci. 2020, 287, 20200875. [Google Scholar] [CrossRef]
- Bao, M.; Wang, X.; Sun, R.; Wang, Z.; Li, J.; Jiang, T.; Lin, A.; Wang, H.; Feng, J. Full-Length Transcriptome of the Great Himalayan Leaf-Nosed Bats (Hipposideros Armiger) Optimized Genome Annotation and Revealed the Expression of Novel Genes. Int. J. Mol. Sci. 2023, 24, 4937. [Google Scholar] [CrossRef] [PubMed]
- Gamage, A.M.; Chan, W.O.Y.; Zhu, F.; Lim, Y.T.; Long, S.; Ahn, M.; Tan, C.W.; Hiang Foo, R.J.; Sia, W.R.; Lim, X.F.; et al. Single-Cell Transcriptome Analysis of the in Vivo Response to Viral Infection in the Cave Nectar Bat Eonycteris spelaea. Immunity 2022, 55, 2187–2205.e5. [Google Scholar] [CrossRef]
- Irving, A.T.; Zhang, Q.; Kong, P.-S.; Luko, K.; Rozario, P.; Wen, M.; Zhu, F.; Zhou, P.; Ng, J.H.J.; Sobota, R.M.; et al. Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection. Cell Rep. 2020, 33, 108345. [Google Scholar] [CrossRef]
- De La Cruz-Rivera, P.C.; Kanchwala, M.; Liang, H.; Kumar, A.; Wang, L.-F.; Xing, C.; Schoggins, J.W. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J. Immunol. 2018, 200, 209–217. [Google Scholar] [CrossRef]
- Aso, H.; Ito, J.; Ozaki, H.; Kashima, Y.; Suzuki, Y.; Koyanagi, Y.; Sato, K. Single-Cell Transcriptome Analysis Illuminating the Characteristics of Species-Specific Innate Immune Responses against Viral Infections. Gigascience 2022, 12, giad086. [Google Scholar] [CrossRef]
- Friedrichs, V.; Toussaint, C.; Schäfer, A.; Rissmann, M.; Dietrich, O.; Mettenleiter, T.C.; Pei, G.; Balkema-Buschmann, A.; Saliba, A.-E.; Dorhoi, A. Landscape and Age Dynamics of Immune Cells in the Egyptian rousette Bat. Cell Rep. 2022, 40, 111305. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, A.D.; Ronk, A.J.; Prasad, A.N.; Covington, M.F.; Stein, K.R.; Schwarz, T.M.; Hekmaty, S.; Fenton, K.A.; Geisbert, T.W.; Basler, C.F.; et al. Marburg and Ebola Virus Infections Elicit a Complex, Muted Inflammatory State in Bats. Viruses 2023, 15, 350. [Google Scholar] [CrossRef]
- Zhang, Z.; Mu, Y.; Shan, L.; Sun, D.; Guo, W.; Yu, Z.; Tian, R.; Xu, S.; Yang, G. Divergent Evolution of TRC Genes in Mammalian Niche Adaptation. Front. Immunol. 2019, 10, 871. [Google Scholar] [CrossRef]
- Larson, P.A.; Bartlett, M.L.; Garcia, K.; Chitty, J.; Balkema-Buschmann, A.; Towner, J.; Kugelman, J.; Palacios, G.; Sanchez-Lockhart, M. Genomic Features of Humoral Immunity Support Tolerance Model in Egyptian Rousette Bats. Cell Rep. 2021, 35, 109140. [Google Scholar] [CrossRef] [PubMed]
- Sirupurapu, V.; Safonova, Y.; Pevzner, P.A. Gene Prediction in the Immunoglobulin Loci. Genome Res. 2022, 32, 1152–1169. [Google Scholar] [CrossRef]
- Bratsch, S.; Wertz, N.; Chaloner, K.; Kunz, T.H.; Butler, J.E. The Little Brown Bat, M. Lucifugus, Displays a Highly Diverse VH, DH and JH Repertoire but Little Evidence of Somatic Hypermutation. Dev. Comp. Immunol. 2011, 35, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Schneor, L.; Kaltenbach, S.; Friedman, S.; Tussia-Cohen, D.; Nissan, Y.; Shuler, G.; Fraimovitch, E.; Kolodziejczyk, A.A.; Weinberg, M.; Donati, G.; et al. Comparison of Antiviral Responses in Two Bat Species Reveals Conserved and Divergent Innate Immune Pathways. iScience 2023, 26, 107435. [Google Scholar] [CrossRef] [PubMed]
- Levinger, R.; Tussia-Cohen, D.; Friedman, S.; Lender, Y.; Nissan, Y.; Fraimovitch, E.; Gavriel, Y.; Tearle, J.L.E.; Kolodziejczyk, A.A.; Moon, K.-M.; et al. Single-Cell and Spatial Transcriptomics Illuminate Bat Immunity and Barrier Tissue Evolution. Mol. Biol. Evol. 2025, 42, msaf017. [Google Scholar] [CrossRef]
- Pavlovich, S.S.; Lovett, S.P.; Koroleva, G.; Guito, J.C.; Arnold, C.E.; Nagle, E.R.; Kulcsar, K.; Lee, A.; Thibaud-Nissen, F.; Hume, A.J.; et al. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell 2018, 173, 1098–1110.e18. [Google Scholar] [CrossRef]
- Paweska, J.T.; Storm, N.; Grobbelaar, A.A.; Markotter, W.; Kemp, A.; Jansen van Vuren, P. Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus. Viruses 2016, 8, 29. [Google Scholar] [CrossRef]
- Guito, J.C.; Prescott, J.B.; Arnold, C.E.; Amman, B.R.; Schuh, A.J.; Spengler, J.R.; Sealy, T.K.; Harmon, J.R.; Coleman-McCray, J.D.; Kulcsar, K.A.; et al. Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Curr. Biol. 2021, 31, 257–270.e5. [Google Scholar] [CrossRef]
- Moreno Santillán, D.D.; Lama, T.M.; Gutierrez Guerrero, Y.T.; Brown, A.M.; Donat, P.; Zhao, H.; Rossiter, S.J.; Yohe, L.R.; Potter, J.H.; Teeling, E.C.; et al. Large-Scale Genome Sampling Reveals Unique Immunity and Metabolic Adaptations in Bats. Mol. Ecol. 2021, 30, 6449–6467. [Google Scholar] [CrossRef]
- Vicente-Santos, A.; Lock, L.R.; Allira, M.; Dyer, K.E.; Dunsmore, A.; Tu, W.; Volokhov, D.V.; Herrera, C.; Lei, G.-S.; Relich, R.F.; et al. Serum Proteomics Reveals a Tolerant Immune Phenotype across Multiple Pathogen Taxa in Wild Vampire Bats. Front. Immunol. 2023, 14, 1281732. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, B.; Garg, K.M.; Ray, R.; Mendenhall, I.H.; Rheindt, F.E. Novel de Novo Genome of Cynopterus brachyotis Reveals Evolutionarily Abrupt Shifts in Gene Family Composition across Fruit Bats. Genome Biol. Evol. 2020, 12, 259–272. [Google Scholar] [CrossRef]
- Morales, A.E.; Dong, Y.; Brown, T.; Baid, K.; Kontopoulos, D.-G.; Gonzalez, V.; Huang, Z.; Ahmed, A.-W.; Bhuinya, A.; Hilgers, L.; et al. Bat Genomes Illuminate Adaptations to Viral Tolerance and Disease Resistance. Nature 2025, 638, 449–458. [Google Scholar] [CrossRef]
- Tian, S.; Zeng, J.; Jiao, H.; Zhang, D.; Zhang, L.; Lei, C.-Q.; Rossiter, S.J.; Zhao, H. Comparative Analyses of Bat Genomes Identify Distinct Evolution of Immunity in Old World Fruit Bats. Sci. Adv. 2023, 9, eadd0141. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.; Tsagkogeorga, G.; Cotton, J.A.; Liu, Y.; Provero, P.; Stupka, E.; Rossiter, S.J. 2013-Genome-Wide Signatures of Convergent Evolution in Echolocating Mammals. Nature 2013, 502, 228–231. [Google Scholar] [CrossRef]
- Dong, D.; Lei, M.; Hua, P.; Pan, Y.-H.; Mu, S.; Zheng, G.; Pang, E.; Lin, K.; Zhang, S. The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls. Mol. Biol. Evol. 2017, 34, 20–34. [Google Scholar] [CrossRef]
- Gong, L.; Geng, Y.; Wang, Z.; Lin, A.; Wu, H.; Feng, L.; Huang, Z.; Wu, H.; Feng, J.; Jiang, T. Behavioral Innovation and Genomic Novelty Are Associated with the Exploitation of a Challenging Dietary Opportunity by an Avivorous Bat. iScience 2022, 25, 104973. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, M.; Kondo, S.; Zhang, Z.; Wu, J.; Nishihara, H.; Niimura, Y.; Suzuki, S.; Touhara, K.; Suzuki, Y.; Noguchi, H.; et al. Comparative Genomic Analyses Illuminate the Distinct Evolution of Megabats within Chiroptera. DNA Res. 2020, 27, dsaa021. [Google Scholar] [CrossRef]
- Cornman, R.S.; Cryan, P.M. Positively Selected Genes in the Hoary Bat (Lasiurus cinereus) Lineage: Prominence of Thymus Expression, Immune and Metabolic Function, and Regions of Ancient Synteny. PeerJ 2022, 10, e13130. [Google Scholar] [CrossRef]
- Huang, Z.; Whelan, C.; Dechmann, D.; Teeling, E.C. Genetic Variation between Long-Lived versus Short-Lived Bats Illuminates the Molecular Signatures of Longevity. Aging 2020, 12, 15962–15977. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, C.; Gu, J.; Uvizl, M.; Power, S.; Douglas, D.; Kacprzyk, J. Duplications of Human Longevity-Associated Genes Across Placental Mammals. Genome Biol. Evol. 2023, 15, evad186. [Google Scholar] [CrossRef]
- Scheben, A.; Mendivil Ramos, O.; Kramer, M.; Goodwin, S.; Oppenheim, S.; Becker, D.J.; Schatz, M.C.; Simmons, N.B.; Siepel, A.; McCombie, W.R. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol. Evol. 2023, 15, evad148. [Google Scholar]
- Bhak, Y.; Jeon, Y.; Jeon, S.; Chung, O.; Jho, S.; Jun, J.; Kim, H.-M.; Cho, Y.; Yoon, C.; Lee, S.; et al. Myotis rufoniger Genome Sequence and Analyses: M. rufoniger’s Genomic Feature and the Decreasing Effective Population Size of Myotis Bats. PLoS ONE 2017, 12, e0180418. [Google Scholar] [CrossRef]
- Lv, T.; Wang, X.; Yu, C.; Wang, Z.; Xiang, R.; Li, L.; Yuan, Y.; Wang, Y.; Wei, X.; Yu, Y.; et al. A Map of Bat Virus Receptors Derived from Single-Cell Multiomics. Sci. Data 2022, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chen, J.; Lin, B.; Zhang, J.; Zhang, S. Differential Expression and Functional Constraint of PRL-2 in Hibernating Bat. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yuan, L.; Sun, M.; Zhang, L.; Zhang, S. Screening of Hibernation-Related Genes in the Brain of Rhinolophus ferrumequinum during Hibernation. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 149, 388–393. [Google Scholar] [CrossRef]
- Lei, M.; Dong, D.; Mu, S.; Pan, Y.-H.; Zhang, S. Comparison of Brain Transcriptome of the Greater Horseshoe Bats (Rhinolophus ferrumequinum) in Active and Torpid Episodes. PLoS ONE 2014, 9, e107746. [Google Scholar] [CrossRef]
- Li, A.; Leng, H.; Li, Z.; Jin, L.; Sun, K.; Feng, J. Temporal Dynamics of the Bat Wing Transcriptome: Insight into Gene-Expression Changes That Enable Protection against Pathogen. Virulence 2023, 14, 2156185. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, H.; Liu, T.; Liu, S.; Jin, L.; Huang, X.; Dai, W.; Sun, K.; Feng, J. Gene Expression vs. Sequence Divergence: Comparative Transcriptome Sequencing among Natural Rhinolophus ferrumequinum Populations with Different Acoustic Phenotypes. Front. Zool. 2019, 16, 37. [Google Scholar] [CrossRef]
- Gomez, J.M.M.; Periasamy, P.; Dutertre, C.-A.; Irving, A.T.; Ng, J.H.J.; Crameri, G.; Baker, M.L.; Ginhoux, F.; Wang, L.-F.; Alonso, S. Phenotypic and Functional Characterization of the Major Lymphocyte Populations in the Fruit-Eating Bat Pteropus alecto. Sci. Rep. 2016, 6, 37796. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Wang, H.; Yao, X. Severe Zoonotic Viruses Carried by Different Species of Bats and Their Regional Distribution. Clin. Microbiol. Infect. 2024, 30, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Greiff, V.; Bhat, P.; Cook, S.C.; Menzel, U.; Kang, W.; Reddy, S.T. A Bioinformatic Framework for Immune Repertoire Diversity Profiling Enables Detection of Immunological Status. Genome Med. 2015, 7, 49. [Google Scholar] [CrossRef]
- Flajnik, M.F. A Cold-Blooded View of Adaptive Immunity. Nat. Rev. Immunol. 2018, 18, 438–453. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Al-Haidari, A.; Sun, J.; Kazi, J.U. T Cell Receptor (TCR) Signaling in Health and Disease. Signal Transduct. Target. Ther. 2021, 6, 412. [Google Scholar] [CrossRef]
- Papenfuss, A.T.; Baker, M.L.; Feng, Z.-P.; Tachedjian, M.; Crameri, G.; Cowled, C.; Ng, J.; Janardhana, V.; Field, H.E.; Wang, L.-F. The Immune Gene Repertoire of an Important Viral Reservoir, the Australian Black Flying Fox. BMC Genom. 2012, 13, 261. [Google Scholar] [CrossRef]
- Massari, S.; Bellini, M.; Ciccarese, S.; Antonacci, R. Overview of the Germline and Expressed Repertoires of the TRB Genes in Sus Scrofa. Front. Immunol. 2018, 9, 2526. [Google Scholar] [CrossRef]
- Lefranc, M.P.; Rabbitts, T.H. 1989-The Human T-Cell Receptor Gamma (TRG) Genes. Trends Biochem. Sci. 1989, 14, 214–218. [Google Scholar] [CrossRef]
- Vernooij, B.T.; Lenstra, J.A.; Wang, K.; Hood, L. Organization of the Murine T-Cell Receptor Gamma Locus. Genomics 1993, 17, 566–574. [Google Scholar] [CrossRef]
- Flajnik, M.F. Comparative Analyses of Immunoglobulin Genes: Surprises and Portents. Nat. Rev. Immunol. 2002, 2, 688–698. [Google Scholar] [CrossRef]
- McMurray, D.N.; Stroud, J.; Murphy, J.J.; Carlomagno, M.A.; Greer, D.L. Role of Immunoglobulin Classes in Experimental Histoplasmosis in Bats. Dev. Comp. Immunol. 1982, 6, 557–567. [Google Scholar] [CrossRef]
- Storm, N.; van Vuren, P.J.; Markotter, W.; Paweska, J.T. Antibody Responses to Marburg Virus in Egyptian Rousette Bats and Their Role in Protection against Infection. Viruses 2018, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E.; Wertz, N.; Zhao, Y.; Zhang, S.; Bao, Y.; Bratsch, S.; Kunz, T.H.; Whitaker, J.O.; Schountz, T. The Two Suborders of Chiropterans Have the Canonical Heavy-Chain Immunoglobulin (Ig) Gene Repertoire of Eutherian Mammals. Dev. Comp. Immunol. 2011, 35, 273–284. [Google Scholar] [CrossRef]
- Shi, B.; Dong, X.; Ma, Q.; Sun, S.; Ma, L.; Yu, J.; Wang, X.; Pan, J.; He, X.; Su, D.; et al. The Usage of Human IGHJ Genes Follows a Particular Non-Random Selection: The Recombination Signal Sequence May Affect the Usage of Human IGHJ Genes. Front. Genet. 2020, 11, 524413. [Google Scholar] [CrossRef]
- Crameri, G.; Todd, S.; Grimley, S.; McEachern, J.A.; Marsh, G.A.; Smith, C.; Tachedjian, M.; De Jong, C.; Virtue, E.R.; Yu, M.; et al. Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines. PLoS ONE 2009, 4, e8266. [Google Scholar] [CrossRef]
- Déjosez, M.; Marin, A.; Hughes, G.M.; Morales, A.E.; Godoy-Parejo, C.; Gray, J.L.; Qin, Y.; Singh, A.A.; Xu, H.; Juste, J.; et al. Bat Pluripotent Stem Cells Reveal Unusual Entanglement between Host and Viruses. Cell 2023, 186, 957–974.e28. [Google Scholar] [CrossRef]
- Alcock, D.; Power, S.; Hogg, B.; Sacchi, C.; Kacprzyk, J.; McLoughlin, S.; Bertelsen, M.F.; Fletcher, N.F.; O’Riain, A.; Teeling, E.C. Generating Bat Primary and Immortalised Cell-Lines from Wing Biopsies. Sci. Rep. 2024, 14, 27633. [Google Scholar] [CrossRef]
- Brook, C.E.; Boots, M.; Chandran, K.; Dobson, A.P.; Drosten, C.; Graham, A.L.; Grenfell, B.T.; Müller, M.A.; Ng, M.; Wang, L.; et al. Accelerated Viral Dynamics in Bat Cell Lines, with Implications for Zoonotic Emergence. eLife 2020, 9, e48401. [Google Scholar] [CrossRef]
Suborder | Family | Species/Assembly Accession Number | Total Length (Gb) | Unmapped Length (Mb) | Chromosome/ Scaffold/ Contig Count | Scaffold N50 (Kb) | Submitter |
---|---|---|---|---|---|---|---|
Microchiroptera | Vespertilionidae | Corynorhinus townsendii (Townsend’s big-eared bat)/GCA_026230055.1 | 2.1 | 0.02 | 390 Scaffold | 174,690.16 | UCLA |
Antrozous pallidus (pallid bat)/GCA_027563665.1 | 2.13 | 5.88 | 23 Chromosome | 114,648.71 | Bat1K | ||
Ia io (great evening bat)/GCA_025583905.1 | 2.1 | 0.06 | 2008 Scaffold | 105,833.40 | Northeast Normal University | ||
Eptesicus fuscus (big brown bat)/GCA_027574615.1 | 2.01 | 0.03 | 25 Chromosome | 102,817.58 | Bat1K | ||
Aeorestes cinereus (hoary bat)/GCA_011751065.1 | 2.15 | 42.36 | 2536 Scaffold | 35,075.55 | United States Geological Survey | ||
Myotis lucifugus (little brown bat)/GCA_000147115.1 | 2.03 | 68.16 | 11,654 Scaffold | 4293.31 | Broad Institute | ||
Myotis brandtii (Brandt’s bat)/GCF_000412655.1 | 2.11 | 1981.77 | 169,750 Scaffold | 3225.83 | BGI | ||
Lasiurus borealis (red bat)/GCA_004026805.1 | 2.86 | 0.64 | 518,900 Scaffold | 38.54 | Broad Institute | ||
Murina aurata feae (little tube-nosed bat)/GCA_004026665.1 | 2.33 | 0.68 | 880,177 Scaffold | 26.05 | Broad Institute | ||
Nycticeius humeralis (evening bat)/GCA_007922795.1 | 2.78 | 0.43 | 1,676,240 Scaffold | 15.09 | Broad Institute | ||
Pipistrellus pipistrellus (common pipistrelle)/GCA_903992545.1 | 1.76 | 0.47 | 22 Chromosome | 94,929.99 | SC | ||
Myotis myotis (greater mouse-eared bat)/GCA_014108235.1 | 2 | 28.95 | 92 Scaffold | 94,448.91 | Bat1K | ||
Myotis yumanensis (Yuma Myotis)/GCA_028538775.1 | 1.95 | 0.02 | 475 Scaffold | 99,144.70 | UCLA | ||
Pipistrellus kuhlii (Kuhl’s pipistrelle)/GCA_014108245.1 | 1.78 | 12.2 | 202 Scaffold | 80,237.35 | Bat1K | ||
Myotis davidii (David’s Myotis)/GCA_000327345.1 | 2.06 | 181.34 | 101,769 Scaffold | 3454.48 | BGI | ||
Rhinolophidae | Rhinolophus ferrumequinum (greater horseshoe bat)/GCA_004115265.3 | 2.08 | 7.55 | 28 Chromosome | 88,025.74 | Vertebrate Genomes Project | |
Phyllostomidae | Phyllostomus discolor (pale spear-nosed bat)/GCA_004126475.3 | 2.11 | 15.09 | 17 Chromosome | 171,742.86 | Vertebrate Genomes Project | |
Desmodus rotundus (common vampire bat)/GCA_022682495.1 | 2.11 | 0.26 | 14 Chromosome | 160,127.86 | Bat1K | ||
Phyllostomus hastatus (greater spear-nosed bat)/GCA_019186645.2 | 2.09 | 0.01 | 534 Scaffold | 39,158.28 | Texas Tech University | ||
Artibeus jamaicensis (Jamaican fruit-eating bat)/GCA_021234435.1 | 2.11 | 0 | 867 Scaffold | 22,092.64 | CSHL | ||
Anoura caudifer (tailed tailless bat)/GCA_004027475.1 | 2.21 | 0.46 | 337,255 Scaffold | 185.02 | Broad Institute | ||
Tonatia saurophila (stripe-headed round-eared bat)/GCA_004024845.1 | 2.11 | 0.29 | 249,810 Scaffold | 165.56 | Broad Institute | ||
Macrotus californicus (California big-eared bat)/GCA_007922815.1 | 2.16 | 0.21 | 1,125,430 Scaffold | 16.94 | Broad Institute | ||
Carollia perspicillata (Seba’s short-tailed bat)/GCA_004027735.1 | 2.69 | 0.39 | 1,925,339 Scaffold | 10.73 | Broad Institute | ||
Trachops cirrhosus (fringe-lipped bat)/GCA_028533065.1 | 2.18 | 14.91 | 15 Chromosome | 124,458.21 | DNA Zoo | ||
Micronycteris hirsuta (hairy big-eared bat)/GCA_004026765.1 | 2.31 | 0.32 | 550,090 Scaffold | 68.87 | Broad Institute | ||
Sturnira hondurensis (bats)/GCA_014824575.3 | 2.1 | 4.31 | 25,881 Scaffold | 10,164.81 | College of Life Sciences at Wuhan University | ||
Noctilionidae | Noctilio leporinus (greater bulldog bat)/GCA_004026585.1 | 2.1 | 0.62 | 298,222 Scaffold | 191.49 | Broad Institute | |
Mormoopidae | Pteronotus parnellii mesoamericanus (Parnell’s mustached bat)/GCA_021234165.1 | 2.07 | 0 | 333 Scaffold | 31,477.94 | CSHL | |
Mormoops blainvillei (Antillean ghost-faced bat)/GCA_004026545.1 | 2.11 | 0.18 | 205,259 Scaffold | 156.29 | Broad Institute | ||
Molossidae | Molossus molossus (Pallas’s mastiff bat)/GCA_014108415.1 | 2.32 | 47.37 | 60 Scaffold | 110,665.20 | Bat1K | |
Molossus nigricans (northern black mastiff bat)/GCA_026936385.1 | 2.41 | 0.1 | 146 Scaffold | 81,933.98 | Bat1K | ||
Tadarida brasiliensis (Brazilian free-tailed bat)/GCA_004025005.1 | 2.71 | 0.42 | 1,067,615 Scaffold | 24.31 | Broad Institute | ||
Miniopteridae | Miniopterus schreibersii (Schreibers’ long-fingered bat)/GCA_004026525.1 | 1.78 | 0.69 | 177,620 Scaffold | 108.71 | Broad Institute | |
Miniopterus natalensis (Natal long-fingered bat)/GCA_001595765.1 | 1.8 | 68.17 | 1269 Scaffold | 4315.19 | University of California, San Francisco | ||
Megadermatidae | Megaderma lyra (Indian false vampire)/GCA_004026885.1 | 2.62 | 0.63 | 1,902,801 Scaffold | 96.49 | Broad Institute | |
Hipposideridae | Hipposideros pendleburyi (Pendlebury’s leaf-nosed bat)/GCA_021464545.1 | 2.17 | 44.77 | 28,685 Scaffold | 15,398.51 | National Science and Technology Development Agency | |
Hipposideros armiger (great roundleaf bat)/GCF_001890085.2 | 2.24 | 1954.59 | 7386 Scaffold | 2328.17 | SKLEC and IECR | ||
Hipposideros galeritus (Cantor’s roundleaf bat)/GCA_004027415.1 | 2.44 | 0.64 | 840,200 Scaffold | 37.98 | Broad Institute | ||
Craseonycteridae | Craseonycteris thonglongyai (hog-nosed bat)/GCA_004027555.1 | 2.27 | 0.62 | 1,224,256 Scaffold | 25.76 | Broad Institute | |
Megachiroptera | Pteropodidae | Eonycteris spelaea (lesser dawn bat)/GCA_003508835.1 | 1.97 | 0 | 4469 Contig | 8002.59 | Duke–NUS Medical School |
Cynopterus brachyotis (lesser short-nosed fruit bat)/GCA_009793145.1 | 1.76 | 71.77 | 48,006 Scaffold | 251.27 | National University of Singapore | ||
Cynopterus sphinx (Indian short-nosed fruit bat)/GCA_030015415.1 | 1.9 | - | 17 Chromosomes | 145.2 | Wuhan University | ||
Eidolon helvum (straw-colored fruit bat)/GCA_000465285.1 | 1.84 | 7.32 | 133,538 Scaffold | 27.68 | School of Biological and Chemical Sciences, Queen Mary University of London | ||
Eidolon dupreanum (Malagasy straw-colored fruit bat)/GCA_028627145.1 (latest) | 2.29 | 8.09 | 17 Chromosome | 101,563.12 | DNA Zoo | ||
Pteropus rufus (Malagasy flying fox)/GCA_028533765.1 | 2.09 | 4.65 | 19 Chromosome | 110,476.78 | DNA Zoo | ||
Rousettus madagascariensis (Madagascan rousette)/GCA_028533395.1 | 2.34 | 10.35 | 18 Chromosome | 85,834.86 | DNA Zoo | ||
Rousettus aegyptiacus (Egyptian rousette)/GCA_014176215.1 | 1.89 | 26.67 | 29 Scaffold | 113,811.80 | Bat1K | ||
Pteropus alecto (black flying fox)/GCA_000325575.1 | 1.99 | 41.33 | 65,597 Scaffold | 15,954.80 | BGI | ||
Pteropus vampyrus (large flying fox)/GCA_000151845.2 | 2.2 | 181.04 | 36,094 Scaffold | 5954.02 | Baylor College of Medicine | ||
Macroglossus sobrinus (lesser long-tongued fruit bat)/GCA_004027375.1 | 1.9 | 0.21 | 171,985 Scaffold | 453.40 | Broad Institute | ||
Pteropus giganteus (Indian flying fox)/GCA_902729225.1 | 1.99 | 17.91 | 16,113 Scaffold | 18,871.25 | CIRI-Inserm-U1111 | ||
Rousettus leschenaultii (Leschenault’s rousette)/GCA_015472975.1 | 1.92 | 16.88 | 8141 Scaffold | 32,720.14 | Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics | ||
Pteropus pselaphon (Bonin flying fox)/GCA_014363405.1 | 1.93 | 0.79 | 7513 Scaffold | 770.41 | Environmental Genomics Office, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhou, H.; Yao, X. Different Species of Bats: Genomics, Transcriptome, and Immune Repertoire. Curr. Issues Mol. Biol. 2025, 47, 252. https://doi.org/10.3390/cimb47040252
Wang H, Zhou H, Yao X. Different Species of Bats: Genomics, Transcriptome, and Immune Repertoire. Current Issues in Molecular Biology. 2025; 47(4):252. https://doi.org/10.3390/cimb47040252
Chicago/Turabian StyleWang, Huifang, Hao Zhou, and Xinsheng Yao. 2025. "Different Species of Bats: Genomics, Transcriptome, and Immune Repertoire" Current Issues in Molecular Biology 47, no. 4: 252. https://doi.org/10.3390/cimb47040252
APA StyleWang, H., Zhou, H., & Yao, X. (2025). Different Species of Bats: Genomics, Transcriptome, and Immune Repertoire. Current Issues in Molecular Biology, 47(4), 252. https://doi.org/10.3390/cimb47040252