A Proposal for Research Involving New Biomarkers of Hypertension, Lifestyle, and Environmental Exposure
Abstract
:1. Introduction
2. The Sequence of Proposed Studies and Monitoring for Patients at Risk of Hypertension
3. Proposed Comprehensive Research Direction for Researchers and Clinicians
- Stage I.
- The monitoring of eating habits, including an evaluation of diet (e.g., 24 h dietary history, dietary history of the past three months), lifestyle (physical activity, leisure activities), anthropometric measurements (BMI, WHR, body fat), socioeconomic status, and working conditions. In addition, a physical examination, ECG, blood pressure test, and basic blood tests, including a complete lipid profile.
- Stage II.
- The examination of individual biomarkers (blood, hair, etc.) for vitamins, antioxidant status (e.g., TAS), and minerals (especially Pb and Cd).
- Stage III.
- The analysis of novel blood biomarkers, including NO, PCSK9, MyBPC3, cfDNA, and MPO.
- Stage IV.
- The analysis of selected microRNA molecules that confirm or detect a predisposition to CVDs, including hypertension (e.g., miR-145-5p, miR-1-3p, and miR-423-5p).
- Stage V.
- The verification of a comprehensive and more accurate analysis of the patient’s test results. The application of personalised and targeted treatment.
- Stage VI.
- Follow-up after one year and the potential adjustment of treatment.
3.1. A 21-Year Monitoring of Men’s Diet for Lifestyle Disease Risks
3.2. The Evaluation of Trace Elements and Antioxidant Status in Men Working in the Metallurgical Industry
3.3. Evaluation of Pb and Cd Exposure as Part of Occupational Exposure
3.4. Evaluation of Vascular Endothelial Dysfunction Indicators in Occupationally at-Risk Men with Hypertension
3.5. Investigation of MicroRNA Levels and Immunological Parameters as Potential Biomarkers for Hypertension in High-Risk Male Patients
3.6. Immunoageing—The Correlation Between Age and NET Biomarkers, the First Line of Immune Defence in a Pathological Condition
4. Study Limitations
5. Suggestions for Future Research Directions
6. Conclusions
Funding
Conflicts of Interest
References
- Wojtyniak, B.; Goryński, P. (Eds.) Situation of the Health of the Polish Population and Its Determinants 2022; National Institute of Public Health PZH—State Research Institute: Warsaw, Poland, 2022. [Google Scholar]
- Mensah, G.A.; Fuster, V.; Murray, C.J.; Roth, G.A.; Global Burden of Cardiovascular Diseases and Risks Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Tunstall-Pedoe, H.; Kuulasmaa, K.; Tolonen, H.; Davidson, M.; Mendis, S. World’s Largest Study of Heart Disease, Stroke, Risk Factors, and Population Trends 1979–2002; MONICA Monograph and Multimedia Sourcebook; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Soedamah-Muthu, S.S.; Chaturvedi, N.; Fuller, J.H.; Toeller, M.; EURODIAB Prospective Complications Study Group. Do European people with type 1 diabetes consume a high atherogenic diet? 7-year follow-up of the EURODIAB Prospective Complications Study. Eur. J. Nutr. 2012, 52, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Farchi, G.; Mariotti, S.; Menotti, A.; Seccareccia, F.; Torsello, S.; Fidanza, F. Diet and 20-y mortality in two rural population groups of middle-aged men in Italy. Am. J. Clin. Nutr. 1989, 50, 1095–1103. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Jamiołkowski, J.; Pędziński, B.; Krzyżak, M.; Maślach, D.; Szpak, A.; Omeljaniuk, W.J. Changes in dietary patterns and the nutritional status in men in the metallurgical industry in Poland over a 21-year period. Ann. Nutr. Metab. 2018, 72, 161–171. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Poniatowski, B.; Szpak, A. Energy intake and essential nutrients in the diets of groups of men aged 55-64 living in Bialystok. Bromat. Chem. Toksykol. XLV 2012, 3, 968–974. [Google Scholar]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Orywal, K.; Czygier, M.; Szmitkowski, M.; Mroczko, B.; Maślach, D.; Szpak, A. Concentration of selected elements and antioxidative potential in a group of males working in the metal industry. Am. J. Men’s Health 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead toxicity and pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. Cadmium Toxicity and Health Effects—A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef]
- Charkiewicz, A.E. Is Copper Still Safe for Us? What Do We Know and What Are the Latest Literature Statements? Curr. Issues Mol. Biol. 2024, 46, 8441–8463. [Google Scholar] [CrossRef]
- Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int. J. Mol. Sci. 2020, 21, 9259. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Bano, I.; Zare, H. A Comprehensive Review on Selenium and Its Effects on Human Health and Distribution in Middle Eastern Countries. Biol. Trace Elem. Res. 2022, 200, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- ATSDR. Lead Toxicity: What Is the Biological Fate of Lead in the Body? Environmental Health and Medicine Education. 2017. Available online: https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=9 (accessed on 24 May 2023).
- Rehman, K.; Fatima, F.; Waheed, I. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J. Evaluation of energy and content of some nutrients in diets of men regularly attending the gym. Bromat. Chem. Toksykol. XLIX 2016, 4, 770–779. [Google Scholar]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Kanicka, M.; Szpak, A.; Szpak, A. Average mineral content in the diet of men aged 45–54 years living in the Bialystok region. Probl. Hig. Epidemiol. 2013, 94, 905–909. [Google Scholar]
- Charkiewicz, A.E.; Poniatowski, B.; Karpińska, M.; Korecki, J.; Jamiołkowski, J.; Szpak, A. Levels of calcium and iron and their main dietary sources in men within a 21-year study period. Bromat. Chem. Toksykol. XLIV 2011, 3, 420–427. [Google Scholar]
- Charkiewicz, A.E.; Szpak, A.; Poniatowski, B.; Korecki, J.; Sawicki, Z. The content of minerals in the diet of men from Białystok. Bromat. Chem. Toksykol. XLII 2009, 3, 625–628. [Google Scholar]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Garley, M.; Nikliński, J. Mercury Exposure and Health Effects: What Do We Really Know? Int. J. Mol. Sci. 2025, 26, 2326. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nikliński, J. Bisphenol A—What Do We Know? A Global or Local Approach at the Public Health Risk Level. Int. J. Mol. Sci. 2024, 25, 6229. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed]
- Charkiewicz, A.E.; Garley, M.; Ratajczak-Wrona, W.; Nowak, K.; Jabłońska, E.; Maślach, D.; Omeljaniuk, W.J. Profile of new vascular damage biomarkers in middle-aged men with arterial hypertension. Adv. Med. Sci. 2021, 66, 185–191. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Garley, M.; Ratajczak-Wrona, W.; Jabłońska, E.; Miltyk, W.; Motyka, J.; Omeljaniuk, W.J. The diagnostic potential of novel biomarkers of hypertension in men. Arch. Med. Sci. 2022, 18, 1666–1671. [Google Scholar] [CrossRef]
- Garley, M.; Omeljaniuk, W.J.; Motkowski, R.; Ratajczak-Wrona, W.; Jabłońska, E.; Filipkowski, D.; Charkiewicz, A.E. Immunoaging—The effect of age on serum levels of NET biomarkers in men: A pilot study. Int. J. Occup. Med. Environ. Health 2023, 36, 333–348. [Google Scholar] [CrossRef]
- Waśkiewicz, A. Assessment of the diet of residents of the right bank of Warsaw in terms of cardiovascular disease risk over a period of 8 years (1993–2001). Now. Lek. 2003, 72, 366–370. [Google Scholar]
- Zachariah, J.P.; Jone, P.-N.; Agbaje, A.O.; Ryan, H.H.; Trasande, L.; Perng, W.; Farzan, S.F.; on behalf of the American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; et al. Environmental Exposures and Pediatric Cardiology: A Scientific Statement from the American Heart Association. Circulation 2024, 149, 20. [Google Scholar] [CrossRef]
- Balachandar, R.; Viramgami, A.; Singh, D.P.; Sheth, A.; Upadhyay, K. Evaluation of an association between lead exposure and hypertension and the role of the renin-angiotensin system among occupationally exposed individuals. Clin. Epidemiol. Glob. Health 2024, 26, 101535. [Google Scholar] [CrossRef]
- Nucera, S.; Serra, M.; Caminiti, R.; Ruga, S.; Passacatini, L.C.; Macrì, R.; Scarano, F.; Maiuolo, J.; Bulotta, R.; Mollace, R.; et al. Non-essential heavy metal effects in cardiovascular diseases: An overview of systematic reviews. Front. Cardiovasc. Med. 2024, 11, 1332339. [Google Scholar] [CrossRef]
- Sun, H.-J.; Wu, Z.-Y.; Nie, X.-W.; Bian, J.-S. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front. Pharmacol. 2020, 10, 1568. [Google Scholar] [CrossRef]
- Levine, A.B.; Punihaole, D.; Levine, T.B. Characterization of the role of nitric oxide and its clinical applications. Cardiology 2012, 122, 55–68. [Google Scholar] [CrossRef]
- Cardounel, A.J.; Cui, H.; Samouilov, A.; Johnson, W.; Kearns, P.; Tsai, A.-L.; Berka, V.; Zweier, J.L. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J. Biol. Chem. 2007, 282, 879–887. [Google Scholar] [CrossRef]
- Hendre, A.S.; Shariff, A.K.; Patil, S.R.; Durgawale, P.P.; Sontakke, A.V.; Suryakar, A.N. Evaluation of oxidative stress and anti-oxidant status in essential hypertension. J. Indian Med. Assoc. 2013, 111, 377-8–380-1. [Google Scholar]
- Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 2007, 43, 645–657. [Google Scholar] [CrossRef]
- Kreutzmann, M.; Kraus, B.J.; Christa, M.; Störk, S.; Jansen, E.H.J.M.; Stopper, H.; Schupp, N. Differential Modulation of Markers of Oxidative Stress and DNA Damage in Arterial Hypertension. Antioxidants 2023, 12, 1965. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants 2022, 11, 511. [Google Scholar] [CrossRef]
- Brusca, S.B.; Elinoff, J.M.; Zou, Y.; Jang, M.K.; Kong, H.; Demirkale, C.Y.; Sun, J.; Seifuddin, F.; Pirooznia, M.; Valantine, H.A.; et al. Plasma Cell-Free DNA Predicts Survival and Maps Specific Sources of Injury in Pulmonary Arterial Hypertension. Circulation 2022, 146, 1033–1045. [Google Scholar] [CrossRef]
- Polina, I.A.; Ilatovskaya, D.V.; DeLeon-Pennell, K.Y. Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clin. Chim. Acta 2020, 503, 145–150. [Google Scholar] [CrossRef]
- Qi, Y.; Uchida, T.; Yamamoto, M.; Yamamoto, Y.; Kido, K.; Ito, H.; Ohno, N.; Asahara, M.; Yamada, Y.; Yamaguchi, O.; et al. Perioperative elevation in cell-free DNA levels in patients undergoing cardiac surgery: Possible contribution of neutrophil extracellular traps to perioperative renal dysfunction. Anesthesiol. Res. Pract. 2016, 2016, 2794364. [Google Scholar] [CrossRef]
- Mesa, M.A.; Vasquez, G. NETosis. Autoimmune Dis. 2013, 2013, 651497. [Google Scholar] [CrossRef]
- Pruchniak, M.P.; Kotuła, I.; Manda-Handzlik, A. Neutrophil extracellular traps (Nets) impact upon autoimmune disorders. Cent. Eur. J. Immunol. 2015, 40, 217–224. [Google Scholar] [CrossRef]
- Cooke, J.P.; Youker, K.A. Future Impact of mRNA Therapy on Cardiovascular Diseases. Methodist DeBakey Cardiovasc. J. 2022, 18, 64–73. [Google Scholar] [CrossRef]
- Collén, A.; Bergenhem, N.; Carlsson, L.; Chien, K.R.; Hoge, S.; Gan, L.-M.; Fritsche-Danielson, R. VEGFA mRNA for regenerative treatment of heart failure. Nat. Rev. Drug Discov. 2022, 21, 79–80. [Google Scholar] [CrossRef]
- Ankasha, S.J.; Shafiee, M.N.; Wahab, N.A.; Ali, R.A.R.; Mokhtar, N.M. Post-transcriptional regulation of microRNAs in cancer: From prediction to validation. Oncol. Rev. 2018, 12, 344. [Google Scholar] [CrossRef]
- Karere, G.M.; Glenn, J.P.; Li, G.; Konar, A.; VandeBerg, J.L.; Cox, L.A. Potential miRNA biomarkers and therapeutic targets for early atherosclerotic lesions. Sci. Rep. 2023, 13, 3467. [Google Scholar] [CrossRef]
- D’Alessandra, Y.; Devanna, P.; Limana, F.; Straino, S.; Di Carlo, A.; Brambilla, P.G.; Rubino, M.; Carena, M.C.; Spazzafumo, L.; De Simone, M.; et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 2010, 31, 2765–2773. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Chen, L.; Chen, K.; Zhou, J.; Song, J. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J. Transl. Med. 2018, 16, 161. [Google Scholar] [CrossRef]
- Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; de Windt, L.J.; van der Wal, A.C.; Kok, W.E.; Pinto, Y.M. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 2010, 106, 1035–1039. [Google Scholar] [CrossRef]
- Tudurachi, B.-S.; Zăvoi, A.; Leonte, A.; Țăpoi, L.; Ureche, C.; Bîrgoan, S.G.; Chiuariu, T.; Anghel, L.; Radu, R.; Sascău, R.A.; et al. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 10510. [Google Scholar] [CrossRef]
- Govindan, S.; Kuster, D.W.; Lin, B.; Kahn, D.J.; Jeske, W.P.; Walenga, J.M.; Leya, F.; Hoppensteadt, D.; Fareed, J.; Sadayappan, S. Increase in cardiac myosin binding protein-C plasma levels is a sensitive and cardiac-specific biomarker of myocardial infarction. Am. J. Cardiovasc. Dis. 2013, 3, 60–70. [Google Scholar]
- Viswanathan, S.K.; Sanders, H.K.; McNamara, J.W.; Jagadeesan, A.; Jahangir, A.; Tajik, A.J.; Sadayappan, S. Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage. PLoS ONE 2017, 12, e0187948. [Google Scholar] [CrossRef]
- Lin, L.-R.; Hu, X.-Q.; Lu, L.-H.; Dai, J.-Z.; Lin, N.-N.; Wang, R.-H.; Xie, Z.-X.; Chen, X.-M. MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations. BMC Cardiovasc. Disord. 2022, 22, 278. [Google Scholar] [CrossRef]
- Vengrenyuk, Y.; Nishi, H.; Long, X.; Ouimet, M.; Savji, N.; Martinez, F.O.; Cassella, C.P.; Moore, K.J.; Ramsey, S.A.; Miano, J.M.; et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 535–546. [Google Scholar] [CrossRef]
- Cao, G.; Xuan, X.; Hu, J.; Zhang, R.; Jin, H.; Dong, H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun. Signal. 2022, 20, 180. [Google Scholar] [CrossRef]
- Platt, F.M.; Wassif, C.; Colaco, A.; Dardis, A.; Lloyd-Evans, E.; Bembi, B.; Porter, F.D. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu. Rev. Genom. Hum. Genet. 2014, 15, 173–194. [Google Scholar] [CrossRef]
- Melendez, Q.M.; Krishnaji, S.T.; Wooten, C.J.; Lopez, D. Hypercholesterolemia: The role of PCSK9. Arch. Biochem. Biophys. 2017, 625–626, 39–53. [Google Scholar] [CrossRef]
- Mohamed, I.A.; Krishnamoorthy, N.T.; Nasrallah, G.K.; Da’As, S.I. The role of cardiac myosin binding protein C3 in hypertrophic cardiomyopathy-progress and novel therapeutic opportunities. J. Cell Physiol. 2017, 232, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Goedeke, L.; Wagschal, A.; Fernández-Hernando, C.; Näär, A.M. miRNA regulation of LDL-cholesterol metabolism. Biochim. Biophys. Acta 2016, 1861, 2047–2052. [Google Scholar] [CrossRef] [PubMed]
No. | A Comprehensive Health Assessment, Published and Described in the Manuscripts Below | References |
---|---|---|
1. | The changes in diet and lipid metabolism in a 21-year prospective study of men working in the metallurgical industry in north-eastern Poland and the changes in their health status associated with cardiovascular risk factors. | [6] |
2. | The concentrations of selected trace elements and total antioxidant status in the studied group of men as likely CVD contributors, along with the group’s dietary habits. | [8] |
3. | The available data on Pb and Cd exposure’s effects on different age groups. | [9,10] |
4. | A profile of new biomarkers of endothelial dysfunction among parameters playing a key role in vascular endothelial function in male hypertension. | [25] |
5. | The diagnostic potential of microRNA profiling and immunological parameters associated with cardiovascular dysfunction in male hypertension. | [26] |
6. | The impact of ageing on neutrophil extracellular trap (NET) formation in men. | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charkiewicz, A.E. A Proposal for Research Involving New Biomarkers of Hypertension, Lifestyle, and Environmental Exposure. Curr. Issues Mol. Biol. 2025, 47, 206. https://doi.org/10.3390/cimb47030206
Charkiewicz AE. A Proposal for Research Involving New Biomarkers of Hypertension, Lifestyle, and Environmental Exposure. Current Issues in Molecular Biology. 2025; 47(3):206. https://doi.org/10.3390/cimb47030206
Chicago/Turabian StyleCharkiewicz, Angelika Edyta. 2025. "A Proposal for Research Involving New Biomarkers of Hypertension, Lifestyle, and Environmental Exposure" Current Issues in Molecular Biology 47, no. 3: 206. https://doi.org/10.3390/cimb47030206
APA StyleCharkiewicz, A. E. (2025). A Proposal for Research Involving New Biomarkers of Hypertension, Lifestyle, and Environmental Exposure. Current Issues in Molecular Biology, 47(3), 206. https://doi.org/10.3390/cimb47030206