In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Selection
2.2. Identification of Sequence Type (ST) Complexes
2.3. Virulence Finder 2.0
2.4. Statistical Analyses
3. Results
3.1. Determination of Clonal Complexes and ExPEC Classification
3.2. Virulence Profile of Extra-Intestinal E. coli Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnston, B.D.; Thuras, P.; Porter, S.B.; Anacker, M.; VonBank, B.; Vagnone, P.S.; Witwer, M.; Castanheira, M.; Johnson, J.R. Global molecular epidemiology of carbapenem-resistant Escherichia coli (2002–2017). Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1–13. [Google Scholar]
- Erb, A.; Stürmer, T.; Marre, R.; Brenner, H. Prevalence of antibiotic resistance in Escherichia coli: Overview of geographical, temporal, and methodological variations. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 83–90. [Google Scholar] [CrossRef]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, R.R.; Moreira, B.M.; Picão, R.C. Antimicrobial resistance among Enterobacteriaceae in South America: History, current dissemination status, and associated socioeconomic factors. Drug Resist. Updates 2014, 17, 24–36. [Google Scholar] [CrossRef]
- Calero-Cáceres, W.; Rodríguez, K.; Medina, A.; Medina, J.; Ortuño-Gutiérrez, N.; Sunyoto, T.; Gomes Dias, C.A.; Bastidas-Caldes, C.; Ramírez, M.S.; Harries, A.D. Genomic Insights of mcr-1 Harboring Escherichia coli by Geographical Region and a One-Health Perspective. Front. Microbiol. 2023, 13, 1032753. [Google Scholar] [CrossRef]
- Martinez, P.; Garzón, D.; Mattar, S. CTX-M-producing Escherichia coli and Klebsiella pneumoniae isolated from community-acquired urinary tract infections in Valledupar, Colombia. Braz. J. Infect. Dis. 2012, 16, 420–425. [Google Scholar] [CrossRef]
- Joffré, E.; Iñiguez Rojas, V. Molecular epidemiology of Enteroaggregative Escherichia coli (EAEC) isolates of hospitalized children from Bolivia reveals high heterogeneity and multidrug-resistance. Int. J. Mol. Sci. 2020, 21, 9543. [Google Scholar] [CrossRef]
- Espinoza, L.L.; Carhuaricra Huamán, D.; Rodríguez Cueva, C.; Durán Gonzales, C.; León, Y.I.; Silvestre Espejo, T.; Marcelo Monge, G.; Rosadio Alcántara, R.; Maturrano Hernández, L. Genomic analysis of multidrug-resistant Escherichia coli strains carrying the mcr-1 gene recovered from pigs in Lima, Peru. Comp. Immunol. Microbiol. Infect. Dis. 2023, 99, 102019. [Google Scholar] [CrossRef]
- Leimbach, A.; Hacker, J.; Dobrindt, U.E. coli as an all-rounder: The thin line between commensalism and pathogenicity. In Between Pathogenicity and Commensalism: Current Topics in Microbiology and Immunology; Dobrindt, U., Hacker, J., Svanborg, C., Eds.; Springer: Heidelberg/Berlin, Germany, 2013; Volume 358, pp. 3–32. [Google Scholar]
- Conway, T.; Cohen, P.S. Commensal and pathogenic Escherichia coli metabolism in the gut. Metab. Bact. Pathog. 2015, 3, 343–362. [Google Scholar]
- Köhler, C.-D.; Dobrindt, U. What defines extraintestinal pathogenic Escherichia coli? Int. J. Med. Microbiol. 2011, 301, 642–647. [Google Scholar] [CrossRef]
- Dale, A.P.; Woodford, N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J. Infect. 2015, 71, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Geurtsen, J.; de Been, M.; Weerdenburg, E.; Zomer, A.; McNally, A.; Poolman, J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol. Rev. 2022, 46, fuac031. [Google Scholar]
- Goldstone, R.J.; Popat, R.; Schuberth, H.J.; Sandra, O.; Sheldon, I.M.; Smith, D.G. Genomic characterisation of an endometrial pathogenic Escherichia coli strain reveals the acquisition of genetic elements associated with extra-intestinal pathogenicity. BMC Genom. 2014, 15, 1075. [Google Scholar] [CrossRef]
- Ewers, C.; Antão, E.M.; Diehl, I.; Philipp, H.C.; Wieler, L.H. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl. Environ. Microbiol. 2009, 75, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence, and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Sora, V.M.; Meroni, G.; Martino, P.A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathogens 2021, 10, 1355. [Google Scholar] [CrossRef]
- Johnson, J.R.; Kuskowski, M.A.; Owens, K.; Gajewski, A.; Winokur, P.L. Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J. Infect. Dis. 2003, 188, 759–768. [Google Scholar] [CrossRef]
- Palma, N.; Gomes, C.; Riveros, M.; García, W.; Martínez-Puchol, S.; Ruiz-Roldan, L.; Mateu, J.; García, C.; Jacobs, J.; Ochoa, T.J.; et al. Virulence factors profiles and ESBL production in Escherichia coli causing bacteremia in Peruvian children. Diagn. Microbiol. Infect. Dis. 2016, 86, 70–75. [Google Scholar] [CrossRef]
- Zurita, J.; Sevillano, G.; Paz y Miño, A.; Haro, N.; Larrea-Álvarez, M.; Alcocer, I.; Ortega-Paredes, D. Dominance of ST131, B2, bla CTX-M-15, and papA-papC-kpsMII-uitA among ESBL Escherichia coli isolated from bloodstream infections in Quito, Ecuador: A 10-year surveillance study (2009–2019). J. Appl. Microbiol. 2023, 134, lxad269. [Google Scholar] [CrossRef]
- De La Cadena, E.; Mojica, M.F.; Castillo, N.; Correa, A.; Appel, T.M.; García-Betancur, J.C.; Pallares, C.J.; Villegas, M.V. Genomic analysis of CTX-M-group-1-producing extraintestinal pathogenic E. coli (ExPEC) from patients with urinary tract infections (UTI) from Colombia. Antibiotics 2020, 9, 899. [Google Scholar] [CrossRef] [PubMed]
- De La Cadena, E.; Mahecha, M.; Velandia, A.M.; García-Betancur, J.C.; Rojas, L.J.; Porras, J.; Pallares, C.; Villegas, M.V. Identification of MCR-1 genes and characterization of resistance mechanisms to colistin in Escherichia coli isolates from Colombian hospitals. Antibiotics 2023, 12, 488. [Google Scholar] [CrossRef]
- Fonseca-Martínez, S.A.; Martínez-Vega, R.A.; Farfán-García, A.E.; González Rugeles, C.I.; Criado-Guerrero, L.Y. Association between uropathogenic Escherichia coli virulence genes and severity of infection and resistance to antibiotics. Infect. Drug Resist. 2023, 16, 3707–3718. [Google Scholar] [CrossRef]
- Bazalar-Gonzales, J.; Silvestre-Espejo, T.; Rodríguez Cueva, C.; Carhuaricra Huamán, D.; Ignación León, Y.; Luna Espinoza, L.; Rosadio Alcántara, R.; Maturrano Hernández, L. Genomic insights into ESBL-producing Escherichia coli isolated from non-human primates in the Peruvian Amazon. Front. Vet. Sci. 2024, 10, 1340428. [Google Scholar] [CrossRef]
- Alvarez, L.; Carhuaricra, D.; Palomino-Farfan, J.; Calle, S.; Maturrano, L.; Siuce, J. Genomic profiling of multidrug-resistant swine Escherichia coli and clonal relationship to human isolates in Peru. Antibiotics 2023, 12, 1748. [Google Scholar] [CrossRef]
- Benavides, J.A.; Godreuil, S.; Opazo-Capurro, A.; Mahamat, O.O.; Falcon, N.; Oravcova, K.; Streicker, D.G.; Shiva, C. Long-term maintenance of multidrug-resistant Escherichia coli carried by vampire bats and shared with livestock in Peru. Sci. Total Environ. 2022, 810, 152045. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; Barba, P.; Mena-López, S.; Espinel, N.; Zurita, J. Escherichia coli hyperepidemic clone ST410-A harboring blaCTX-M-15 isolated from fresh vegetables in a municipal market in Quito, Ecuador. Int. J. Food Microbiol. 2018, 280, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Zurita, J.; Yánez, F.; Sevillano, G.; Ortega-Paredes, D.; Paz y Miño, A. Ready-to-eat street food: A potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett. Appl. Microbiol. 2020, 70, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Paredes, D.; Barba, P.; Mena-López, S.; Espinel, N.; Crespo, V.; Zurita, J. High quantities of multidrug-resistant Escherichia coli are present in the Machángara urban river in Quito, Ecuador. J. Water Health 2020, 18, 67–76. [Google Scholar] [CrossRef]
- Blanco, V.M.; Maya, J.J.; Correa, A.; Perenguez, M.; Munoz, J.S.; Motoa, G.; Pallares, C.J.; Rosso, F.; Matta, L.; Celis, Y.; et al. Prevalence and risk factors for extended-spectrum β-lactamase-producing Escherichia coli causing community-onset urinary tract infections in Colombia. Enferm. Infecc. Microbiol. Clin. 2016, 34, 559–565. [Google Scholar] [CrossRef]
- Pérez-Etayo, L.; González, D.; Vitas, A.I. The aquatic ecosystem, a good environment for the horizontal transfer of antimicrobial resistance and virulence-associated factors among extended spectrum β-lactamase-producing E. coli. Microorganisms 2020, 8, 568. [Google Scholar] [CrossRef]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J. Clin. Microbiol. 2020, 58, e01128-20. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Tetzschner, A.M.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef]
- Laing, C.R.; Buchanan, C.; Taboada, E.N.; Zhang, Y.; Karmali, M.A.; Thomas, J.E.; Gannon, V.P.J. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genom. 2009, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Zankari, E.; Aarestrup, F.M.; Lund, O. Benchmarking of Methods for Identification of Antimicrobial Resistance Genes in Bacterial Whole Genome Data. J. Antimicrob. Chemother. 2016, 71, 2484–2488. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Chiluisa-Guacho, C.; Escobar-Perez, J.; Dutra-Asensi, M. First Detection of the CTX-M-15 Producing Escherichia coli O25-ST131 Pandemic Clone in Ecuador. Pathogens 2018, 7, 42. [Google Scholar] [CrossRef]
- Machado, M.A.M.; Panzenhagen, P.; Lázaro, C.; Rojas, M.; Figueiredo, E.E.d.S.; Conte-Junior, C.A. Unveiling the High Diversity of Clones and Antimicrobial Resistance Genes in Escherichia coli Originating from ST10 across Different Ecological Niches. Antibiotics 2024, 13, 737. [Google Scholar] [CrossRef]
- Calderon Toledo, C.; von Mentzer, A.; Agramont, J.; Thorell, K.; Zhou, Y.; Szabó, M.; Colque, P.; Kuhn, I.; Gutiérrez-Cortez, S.; Joffré, E. Circulation of enterotoxigenic Escherichia coli (ETEC) isolates expressing CS23 from the environment to clinical settings. mSystems 2023, 8, e00141-23. [Google Scholar] [CrossRef]
- Martins, J.C.L.; Pintor-Cora, A.; Alegría, Á.; Santos, J.A.; Herrera-Arias, F. Characterization of ESBL-Producing Escherichia spp. and Report of an mcr-1 Colistin-Resistant Escherichia fergusonni Strain from Minced Meat in Pamplona, Colombia. Int. J. Food Microbiol. 2023, 394, 110168. [Google Scholar] [CrossRef] [PubMed]
- Solis, M.N.; Loaiza, K.; Torres-Elizalde, L.; Mina, I.; Šefcová, M.A.; Larrea-Álvarez, M. Detecting Class 1 Integrons and Their Variable Regions in Escherichia coli Whole-Genome Sequences Reported from Andean Community Countries. Antibiotics 2024, 13, 394. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Wurpel, D.J.; Beatson, S.A.; Totsika, M.; Petty, N.K.; Schembri, M.A. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 2013, 8, e52835. [Google Scholar] [CrossRef]
- Ravan, H.; Amandadi, M. Analysis of yeh fimbrial gene cluster in Escherichia coli O157:H7 in order to find a genetic marker for this serotype. Curr. Microbiol. 2015, 71, 274–282. [Google Scholar] [CrossRef]
- Garénaux, A.; Caza, M.; Dozois, C.M. The Ins and Outs of Siderophore-Mediated Iron Uptake by Extra-Intestinal Pathogenic Escherichia coli. Vet. Microbiol. 2011, 153, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.E.; Heffernan, J.R.; Henderson, J.P. The Iron Hand of Uropathogenic Escherichia coli: The Role of Transition Metal Control in Virulence. Future Microbiol. 2018, 13, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Tapader, R.; Basu, S.; Pal, A. Secreted Proteases: A New Insight in the Pathogenesis of Extraintestinal Pathogenic Escherichia coli. Int. J. Med. Microbiol. 2019, 309, 159–168. [Google Scholar] [CrossRef]
- Micenková, L.; Štaudová, B.; Bosák, J.; Mikalová, L.; Littnerová, S.; Vrba, M.; Ševčíková, A.; Woznicová, V.; Šmajs, D. Bacteriocin-Encoding Genes and ExPEC Virulence Determinants Are Associated in Human Fecal Escherichia coli Strains. BMC Microbiol. 2014, 14, 109. [Google Scholar] [CrossRef]
- Micenková, L.; Bosák, J.; Vrba, M.; Ševčíková, A.; Šmajs, D. Human Extraintestinal Pathogenic Escherichia coli Strains Differ in Prevalence of Virulence Factors, Phylogroups, and Bacteriocin Determinants. BMC Microbiol. 2016, 16, 218. [Google Scholar] [CrossRef]
- Welch, R.A. Uropathogenic Escherichia coli-Associated Exotoxins. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Management; Wiley: Hoboken, NJ, USA, 2017; pp. 263–276. [Google Scholar]
- Homeier, T.; Semmler, T.; Wieler, L.H.; Ewers, C. The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype? PLoS ONE 2010, 5, e10877. [Google Scholar] [CrossRef]
- Desvaux, M.; Dalmasso, G.; Beyrouthy, R.; Barnich, N.; Delmas, J.; Bonnet, R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front. Microbiol. 2020, 11, 2065. [Google Scholar] [CrossRef]
- Donnenberg, M.S.; Tzipori, S.; McKee, M.L.; O’Brien, A.D.; Alroy, J.; Kaper, J.B. The Role of the eae Gene of Enterohemorrhagic Escherichia coli in Intimate Attachment In Vitro and in a Porcine Model. J. Clin. Investig. 1993, 92, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Amézquita-Montes, Z.; Tamborski, M.; Kopsombut, U.G.; Zhang, C.; Arzuza, O.S.; Gómez-Duarte, O.G. Genetic Relatedness among Escherichia coli Pathotypes Isolated from Food Products for Human Consumption in Cartagena, Colombia. Foodborne Pathog. Dis. 2015, 12, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Jiménez, D.; García-Meniño, I.; Herrera, A.; García, V.; López-Beceiro, A.M.; Alonso, M.P.; Blanco, J.; Mora, A. Genomic Characterization of Escherichia coli Isolates Belonging to a New Hybrid aEPEC/ExPEC Pathotype O153:H10-A-ST10 eae-beta1 Occurred in Meat, Poultry, Wildlife, and Human Diarrheagenic Samples. Antibiotics 2020, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, B.A.; Finton, M.D.; Porcellato, D.; Brandal, L.T. High Frequency of Hybrid Escherichia coli Strains with Combined Intestinal Pathogenic Escherichia coli (IPEC) and Extraintestinal Pathogenic Escherichia coli (ExPEC) Virulence Factors Isolated from Human Fecal Samples. BMC Infect. Dis. 2018, 18, 544. [Google Scholar] [CrossRef]
- Izdebski, R.; Baraniak, A.; Fiett, J.; Adler, A.; Kazma, M.; Salomon, J.; Lawrence, C.; Rossini, A.; Salvia, A.; Vidal Samso, J.; et al. Clonal Structure, Extended-Spectrum β-Lactamases, and Acquired AmpC-Type Cephalosporinases of Escherichia coli Populations Colonizing Patients in Rehabilitation Centers in Four Countries. Antimicrob. Agents Chemother. 2013, 57, 309–316. [Google Scholar] [CrossRef]
- Chattaway, M.A.; Jenkins, C.; Rajendram, D.; Cravioto, A.; Talukder, K.A.; Dallman, T.; Underwood, A.; Platt, S.; Okeke, I.N.; Wain, J.; et al. Enteroaggregative Escherichia coli Have Evolved Independently as Distinct Complexes within the E. coli Population with Varying Ability to Cause Disease. PLoS ONE 2014, 9, e112967. [Google Scholar] [CrossRef]
- Guo, S.; Wakeham, D.; Brouwers, H.J.; Cobbold, R.N.; Abraham, S.; Mollinger, J.L.; Johnson, J.R.; Chapman, T.A.; Gordon, D.M.; Barrs, V.R.; et al. Human-Associated Fluoroquinolone-Resistant Escherichia coli Clonal Lineages, Including ST354, Isolated from Canine Feces and Extraintestinal Infections in Australia. Microbes Infect. 2015, 17, 266–274. [Google Scholar] [CrossRef]
- Vangchhia, B.; Abraham, S.; Bell, J.M.; Collignon, P.; Gibson, J.S.; Ingram, P.R.; Johnson, J.R.; Kennedy, K.; Trott, D.J.; Turnidge, J.D.; et al. Phylogenetic Diversity, Antimicrobial Susceptibility and Virulence Characteristics of Phylogroup F Escherichia coli in Australia. Microbiology 2016, 162, 1904–1912. [Google Scholar] [CrossRef]
Rank | Human (n = 357) | Animal (n = 194) | Environment (n = 147) | Food (n = 14) | ||||
---|---|---|---|---|---|---|---|---|
ST | n * (%) | ST | n (%) | ST | n (%) | ST | n (%) | |
1 | 38 | 43 (12) | 354 | 21 (11) | 117 | 21 (14) | 224 | 5 (36) |
2 | 10 | 39 (11) | 162 | 19 (10) | 38 | 17 (12) | 973 | 2 (14) |
3 | 354 | 23 (6) | 117 | 16 (8) | 131 | 15 (10) | 155 | 1 (7) |
4 | 131 | 22 (6) | 155 | 10 (5) | 224 | 10 (7) | 117 | 1 (7) |
5 | 117 | 15 (4) | 449 | 9 (5) | 449 | 9 (6) | 162 | 1 (7) |
6 | 93 | 15 (4) | 38 | 7 (4) | 10 | 8 (5) | 69 | 1 (7) |
7 | 449 | 14 (4) | 453 | 7 (4) | 1193 | 7 (5) | 12,486 | 1 (7) |
8 | 349 | 11 (3) | 48 | 7 (4) | 69 | 6 (4) | 4204 | 1 (7) |
9 | 162 | 11 (3) | 349 | 7 (4) | 162 | 6 (4) | 847 | 1 (7) |
10 | 69 | 9 (3) | 93 | 6 (3) | 354 | 5 (3) | ||
Rank | Peru (n = 90) | Ecuador (n = 615) | Colombia (n = 5) | Bolivia (n = 2) | ||||
ST | n (%) | ST | n (%) | ST | n (%) | ST | n (%) | |
1 | 10 | 23 (26) | 38 | 65 (11) | 69 | 2 (40) | 442 | 2 (100) |
2 | 452 | 5 (6) | 117 | 52 (8) | 59 | 1 (20) | ||
3 | 349 | 4 (4) | 354 | 47 (8) | 354 | 1 (20) | ||
4 | 127 | 4 (4) | 162 | 37 (6) | 73 | 1 (20) | ||
5 | 155 | 4 (4) | 131 | 35 (6) | ||||
6 | 131 | 3 (3) | 449 | 30 (5) | ||||
7 | 93 | 3 (3) | 10 | 28 (5) | ||||
8 | 12517 | 3 (3) | 224 | 22 (4) | ||||
9 | 449 | 2 (2) | 93 | 22 (4) | ||||
10 | 57 | 2 (2) | 349 | 17 (3) |
Rank | Animal (n = 194) | Environment (n = 147) | Human (n = 357) | Food (n = 14) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST | Virulence Genes | n * | avg. | ST | Virulence Genes | n | avg. | ST | Virulence Genes | n | avg. | ST | Virulence Genes | n | avg. | |
1 | 449 | 484 | 9 | 54 | 449 | 454 | 9 | 50 | 449 | 737 | 14 | 53 | 4204 | 47 | 1 | 47 |
2 | 117 | 706 | 16 | 44 | 69 | 256 | 6 | 43 | 117 | 620 | 15 | 41 | 12486 | 46 | 1 | 46 |
3 | 38 | 302 | 7 | 43 | 224 | 402 | 10 | 40 | 349 | 453 | 11 | 41 | 117 | 42 | 1 | 42 |
4 | 354 | 892 | 21 | 42 | 354 | 197 | 5 | 39 | 38 | 1741 | 43 | 40 | 162 | 40 | 1 | 40 |
5 | 93 | 239 | 6 | 40 | 38 | 646 | 17 | 38 | 354 | 926 | 23 | 40 | 224 | 184 | 5 | 37 |
6 | 349 | 269 | 7 | 38 | 117 | 783 | 21 | 37 | 93 | 603 | 15 | 40 | 155 | 36 | 1 | 36 |
7 | 453 | 267 | 7 | 38 | 131 | 558 | 15 | 37 | 69 | 353 | 9 | 39 | 973 | 60 | 2 | 30 |
8 | 48 | 250 | 7 | 36 | 162 | 216 | 6 | 36 | 131 | 821 | 22 | 37 | 847 | 29 | 1 | 29 |
9 | 162 | 675 | 19 | 36 | 10 | 273 | 8 | 34 | 10 | 1392 | 39 | 36 | 69 | 28 | 1 | 28 |
10 | 155 | 311 | 10 | 31 | 1193 | 224 | 7 | 32 | 162 | 376 | 11 | 34 | ||||
Rank | Peru (n = 90) | Ecuador (n = 615) | Colombia (n = 5) | Bolivia (n = 2) | ||||||||||||
ST | Virulence Genes | n | avg. | ST | Virulence Genes | n | avg. | ST | Virulence Genes | n | avg. | ST | Virulence Genes | n | avg. | |
1 | 449 | 106 | 2 | 53 | 449 | 1569 | 30 | 52 | 73 | 45 | 1 | 45 | 442 | 74 | 2 | 37 |
2 | 57 | 94 | 2 | 47 | 354 | 1949 | 47 | 41 | 59 | 44 | 1 | 44 | ||||
3 | 93 | 118 | 3 | 39 | 117 | 2110 | 52 | 41 | 69 | 66 | 2 | 33 | ||||
4 | 127 | 148 | 4 | 37 | 38 | 2621 | 65 | 40 | 354 | 30 | 1 | 30 | ||||
5 | 10 | 794 | 23 | 35 | 349 | 684 | 17 | 40 | ||||||||
6 | 131 | 103 | 3 | 34 | 93 | 852 | 22 | 39 | ||||||||
7 | 349 | 136 | 4 | 34 | 131 | 1318 | 35 | 38 | ||||||||
8 | 452 | 163 | 5 | 33 | 224 | 822 | 22 | 37 | ||||||||
9 | 12,517 | 93 | 3 | 31 | 10 | 1009 | 28 | 36 | ||||||||
10 | 155 | 108 | 4 | 27 | 162 | 1307 | 37 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldaz, N.; Loaiza, K.; Larrea-Álvarez, C.M.; Šefcová, M.A.; Larrea-Álvarez, M. In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community. Curr. Issues Mol. Biol. 2025, 47, 169. https://doi.org/10.3390/cimb47030169
Aldaz N, Loaiza K, Larrea-Álvarez CM, Šefcová MA, Larrea-Álvarez M. In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community. Current Issues in Molecular Biology. 2025; 47(3):169. https://doi.org/10.3390/cimb47030169
Chicago/Turabian StyleAldaz, Nabila, Karen Loaiza, César Marcelo Larrea-Álvarez, Miroslava Anna Šefcová, and Marco Larrea-Álvarez. 2025. "In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community" Current Issues in Molecular Biology 47, no. 3: 169. https://doi.org/10.3390/cimb47030169
APA StyleAldaz, N., Loaiza, K., Larrea-Álvarez, C. M., Šefcová, M. A., & Larrea-Álvarez, M. (2025). In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community. Current Issues in Molecular Biology, 47(3), 169. https://doi.org/10.3390/cimb47030169