Bridging Andrology and Oncology: Prognostic Indicators of Cancer Among Infertile Men
Abstract
1. Introduction
2. Methods
3. Male Infertility and Cancer Risk: The Evidence
3.1. Testicular Cancer
3.2. Prostate Cancer
3.3. Hematologic and Other Malignancies
3.4. Mortality and Longitudinal Outcomes
4. Shared Biological and Pathological Mechanisms
4.1. Genetic Susceptibility
4.2. Epigenetic Dysregulation
4.3. Hormonal Imbalance, Infertility, and Systemic Disease
4.4. Environmental and Lifestyle Exposure
4.5. Biological Pathways Linking Inferility and Genomic Stability
5. Prognostic Indicators of Cancer Risk in Infertile Men
5.1. Clinical Indicators
5.2. Hormonal Profiles
5.3. Semen Parameters
5.4. Genetic Biomarkers
5.5. Epigenetic and Molecular Biomarkers
5.6. Toward a Risk Stratification Model
6. Translational and Clinical Implications
6.1. Predictive Biomarkers in Male Infertility
6.2. Counseling and Ethical Considerations
6.3. Surveillance and Early Detection Strategies
6.4. Multidisciplinary Collaboration and Health System Needs
7. Future Directions and Research Gaps
7.1. Future Directions and Research Gaps
7.2. Multi-Omics and Biomarker Discovery
7.3. Emerging Technologies for Surveillance
7.4. Artificial Intelligence and Predictive Models
7.5. Clinical Guidelines and Ethical Frameworks
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TGCTs | Testicular Germ Cell Tumors |
| SIR | Standardized Incidence Ratio |
| piRNAs | Piwi-interacting RNAs |
| OS | Oxidative Stress |
| ROS | Reactive Oxygen Species |
| DNMTs | DNA-methyltransferases |
| PSA | Prostate-specific antigen |
| cfDNA | Cell-free DNA |
References
- Leslie, S.W.; Soon-Sutton, T.L.; Khan, M.A. Male Infertility. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK562258/ (accessed on 12 August 2024).
- Gül, M.; Russo, G.I.; Kandil, H.; Boitrelle, F.; Saleh, R.; Chung, E.; Kavoussi, P.; Mostafa, T.; Shah, R.; Agarwal, A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J. Men’s Health 2024, 42, 502–517. [Google Scholar] [CrossRef]
- Huyghe, E.; Chiu, P.K.F. Health risks associated with infertility and non-obstructive azoospermia. Asian J. Androl. 2025, 27, 428–432. [Google Scholar] [CrossRef]
- Gann, P.H. Risk factors for prostate cancer. Rev. Urol. 2002, 4 (Suppl. S5), S3–S10. [Google Scholar]
- Broustas, C.G.; Lieberman, H.B. DNA damage response genes and the development of cancer metastasis. Radiat. Res. 2014, 181, 111–130. [Google Scholar] [CrossRef]
- Chiba, H.; Hiura, H.; Okae, H.; Miyauchi, N.; Sato, F.; Sato, A.; Arima, T. DNA methylation errors in imprinting disorders and assisted reproductive technology. Pediatr. Int. 2013, 55, 542–549. [Google Scholar] [CrossRef]
- Adetunji, A.O.; Owusu, H.; Adewale, E.F.; Adesina, P.A.; Xedzro, C.; Saliu, T.P.; Islam, S.; Zhu, Z.; Morenikeji, O.B. DNA Methylation: A Key Regulator in Male and Female Reproductive Outcomes. Life 2025, 15, 1109. [Google Scholar] [CrossRef] [PubMed]
- Venn, A.; Healy, D.; McLachlan, R. Cancer risks associated with the diagnosis of infertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2003, 17, 343–367. [Google Scholar] [CrossRef] [PubMed]
- Kroener, L.; Dumesic, D.; Al-Safi, Z. Use of fertility medications and cancer risk: A review and update. Curr. Opin. Obstet. Gynecol. 2017, 29, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Krzastek, S.C.; Smith, R.P.; Kovac, J.R. Future diagnostics in male infertility: Genomics, epigenetics, metabolomics and proteomics. Transl. Androl. Urol. 2020, 9 (Suppl. S2), S195–S205. [Google Scholar] [CrossRef]
- Behboudi-Gandevani, S.; Bidhendi-Yarandi, R.; Panahi, M.H.; Vaismoradi, M. A Systematic Review and Meta-Analysis of Male Infertility and the Subsequent Risk of Cancer. Front. Oncol. 2021, 11, 696702. [Google Scholar] [CrossRef]
- Maiolino, G.; Fernández-Pascual, E.; Ochoa Arvizo, M.A.; Vishwakarma, R.; Martínez-Salamanca, J.I. Male Infertility and the Risk of Developing Testicular Cancer: A Critical Contemporary Literature Review. Medicina 2023, 59, 1305. [Google Scholar] [CrossRef]
- Hanson, B.M.; Eisenberg, M.L.; Hotaling, J.M. Male infertility: A biomarker of individual and familial cancer risk. Fertil. Steril. 2018, 109, 6–19. [Google Scholar] [CrossRef]
- Nagirnaja, L.; Aston, K.I.; Conrad, D.F. Genetic intersection of male infertility and cancer. Fertil. Steril. 2018, 109, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Rajpert-De Meyts, E.; Aksglaede, L.; Bandak, M.; Toppari, J.; Jørgensen, N. Testicular Cancer: Pathogenesis, Diagnosis and Management with Focus on Endocrine Aspects. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK278992/ (accessed on 3 October 2025).
- Jacobsen, R.; Bostofte, E.; Engholm, G.; Hansen, J.; Olsen, J.H.; Skakkebaek, N.E.; Moller, H. Risk of testicular cancer in men with abnormal semen characteristics: Cohort study. BMJ 2000, 321, 789–792. [Google Scholar] [CrossRef]
- Hu, G.X.; Lian, Q.Q.; Ge, R.S.; Hardy, D.O.; Li, X.K. Phthalate-induced testicular dysgenesis syndrome: Leydig cell influence. Trends Endocrinol. Metab. TEM 2009, 20, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, R.M.; Skakkebaek, N.E. Testicular dysgenesis syndrome: Mechanistic insights and potential new downstream effects. Fertil. Steril. 2008, 89, e33–e38. [Google Scholar] [CrossRef]
- Wirén, S.M.; Drevin, L.I.; Carlsson, S.V.; Akre, O.; Holmberg, E.C.; Robinson, D.E.; Garmo, H.G.; Stattin, P.E. Fatherhood status and risk of prostate cancer: Nationwide, population-based case-control study. Int. J. Cancer 2013, 133, 937–943. [Google Scholar] [CrossRef]
- Walsh, T.J.; Schembri, M.; Turek, P.J.; Chan, J.M.; Carroll, P.R.; Smith, J.F.; Eisenberg, M.L.; Van Den Eeden, S.K.; Croughan, M.S. Increased risk of high-grade prostate cancer among infertile men. Cancer 2010, 116, 2140–2147. [Google Scholar] [CrossRef]
- Laukhtina, E.; Mori, K.; Pradere, B.; Shariat, S.F. Association between male infertility and prostate cancer: A systematic review and meta-analysis. Curr. Opin. Urol. 2021, 31, 346–353. [Google Scholar] [CrossRef]
- Kaufman, J.M.; Lapauw, B.; Mahmoud, A.; T’Sjoen, G.; Huhtaniemi, I.T. Aging and the Male Reproductive System. Endocr. Rev. 2019, 40, 906–972. [Google Scholar] [CrossRef] [PubMed]
- Buonacquisto, A.; Del Principe, M.I.; Pallotti, F.; Bianchini, S.; Buzzatti, E.; Caponecchia, L.; Chiaretti, S.; Cicolani, G.; Conflitti, A.C.; Di Chiano, S.; et al. Semen quality in acute leukemia patients: A retrospective study. Ann. Hematol. 2025, 104, 4071–4080. [Google Scholar] [CrossRef] [PubMed]
- Melku, M.; Best, O.G.; Winter, J.M.; Thurgood, L.A.; Ahmed, M.; Kichenadasse, G.; Mittinty, M.; Wassie, M.M.; Symonds, E.L. Incidence, Risk and Trends of Multiple Primary Cancers in Patients With Colorectal Cancer: Evidence From the South Australian Cancer Registry. Cancer Med. 2025, 14, e70984. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Bi, X.; Pan, D.; Chen, Y.; Carling, T.; Ma, S.; Udelsman, R.; Zhang, Y. The risk of second cancers after diagnosis of primary thyroid cancer is elevated in thyroid microcarcinomas. Thyroid Off. J. Am. Thyroid Assoc. 2013, 23, 575–582. [Google Scholar] [CrossRef]
- Valkna, A.; Juchnewitsch, A.G.; Põlluaas, L.; Lillepea, K.; Tjagur, S.; Dutta, A.; Pomm, K.; Punab, M.; Laan, M. Significantly increased load of hereditary cancer-linked germline variants in infertile men. Hum. Reprod. Open 2025, 2025, hoaf008. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.; Demidova, E.V.; Lesh, R.W.; Hall, M.J.; Daly, M.B.; Meyer, J.E.; Edelman, M.J.; Arora, S. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat. Rev. 2022, 104, 102337. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Lanzillotti, C.; Mazziotta, C.; Tognon, M.; Martini, F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front. Cell Dev. Biol. 2021, 9, 689624. [Google Scholar] [CrossRef]
- Nicu, A.T.; Medar, C.; Chifiriuc, M.C.; Gradisteanu Pircalabioru, G.; Burlibasa, L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front. Cell Dev. Biol. 2022, 10, 861995. [Google Scholar] [CrossRef]
- Rehman, S.; Usman, Z.; Rehman, S.; AlDraihem, M.; Rehman, N.; Rehman, I.; Ahmad, G. Endocrine disrupting chemicals and impact on male reproductive health. Transl. Androl. Urol. 2018, 7, 490–503. [Google Scholar] [CrossRef]
- Sciorio, R.; Greco, P.F.; Greco, E.; Tramontano, L.; Elshaer, F.M.; Fleming, S. Potential effects of environmental toxicants on sperm quality and potential risk for fertility in humans. Front. Endocrinol. 2025, 16, 1545593. [Google Scholar] [CrossRef]
- Faja, F.; Esteves, S.; Pallotti, F.; Cicolani, G.; Di Chiano, S.; Delli Paoli, E.; Lenzi, A.; Lombardo, F.; Paoli, D. Environmental disruptors and testicular cancer. Endocrine 2022, 78, 429–435. [Google Scholar] [CrossRef]
- Maleknia, M.; Ahmadirad, N.; Golab, F.; Katebi, Y.; Haj Mohamad Ebrahim Ketabforoush, A. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors. Epigenet. Insights 2023, 16, 25168657231199893. [Google Scholar] [CrossRef] [PubMed]
- Den Hond, E.; Tournaye, H.; De Sutter, P.; Ombelet, W.; Baeyens, W.; Covaci, A.; Cox, B.; Nawrot, T.S.; Van Larebeke, N.; D’Hooghe, T. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. Environ. Int. 2015, 84, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, F.; Kasman, A.M.; Chen, T.; De Berardinis, E.; Busetto, G.M.; Sciarra, A.; Ferro, M.; Lucarelli, G.; Belladelli, F.; Salonia, A.; et al. The Association between Mortality and Male Infertility: Systematic Review and Meta-analysis. Urology 2021, 154, 148–157. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Betts, P.; Herder, D.; Lamb, D.J.; Lipshultz, L.I. Increased risk of cancer among azoospermic men. Fertil. Steril. 2013, 100, 681–685. [Google Scholar] [CrossRef]
- López-Gil, L.; Pascual-Ahuir, A.; Proft, M. Genomic Instability and Epigenetic Changes during Aging. Int. J. Mol. Sci. 2023, 24, 14279. [Google Scholar] [CrossRef]
- Requesens, M.; Foijer, F.; Nijman, H.W.; de Bruyn, M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front. Immunol. 2024, 15, 1462496. [Google Scholar] [CrossRef] [PubMed]
- Elías-Llumbet, A.; Lira, S.; Manterola, M. Male aging in germ cells: What are we inheriting? Genet. Mol. Biol. 2025, 47 (Suppl. S1), e20240052. [Google Scholar] [CrossRef]
- Borbiev, T.; Babcock, K.; Sinopole, K.; Chesnut, G.T.; Petrovics, G. Ancestry-Specific DNA Damage Repair Gene Mutations and Prostate Cancer. Cancers 2025, 17, 682. [Google Scholar] [CrossRef]
- Pallatt, S.; Nambidi, S.; Adhikary, S.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. A brief review of Lynch syndrome: Understanding the dual cancer risk between endometrial and colorectal cancer. Oncol. Rev. 2025, 19, 1549416. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Leslie, S.W.; McHugh, T.W. Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK431096/ (accessed on 3 October 2025).
- Ibrahim, M.; Yadav, S.; Ogunleye, F.; Zakalik, D. Male BRCA mutation carriers: Clinical characteristics and cancer spectrum. BMC Cancer 2018, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, T.; Frost, D.; Barrowdale, D.; Evans, D.G.; Bancroft, E.; Adlard, J.; Ahmed, M.; Barwell, J.; Brady, A.F.; Brewer, C.; et al. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. Eur. Urol. 2020, 77, 24–35. [Google Scholar] [CrossRef]
- Dakal, T.C.; Dhabhai, B.; Pant, A.; Moar, K.; Chaudhary, K.; Yadav, V.; Ranga, V.; Sharma, N.K.; Kumar, A.; Maurya, P.K.; et al. Oncogenes and tumor suppressor genes: Functions and roles in cancers. MedComm 2024, 5, e582. [Google Scholar] [CrossRef]
- Stojchevski, R.; Sutanto, E.A.; Sutanto, R.; Hadzi-Petrushev, N.; Mladenov, M.; Singh, S.R.; Verma, P.; Sengupta, S.; Bhaskar, R.; Avtanski, D. Translational Advances in Oncogene and Tumor-Suppressor Gene Research. Cancers 2025, 17, 1008. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.R.; Bhaskar, R.; Ghosh, S.; Yarlagadda, B.; Singh, K.K.; Verma, P.; Sengupta, S.; Mladenov, M.; Hadzi-Petrushev, N.; Stojchevski, R.; et al. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers 2025, 17, 1082. [Google Scholar] [CrossRef]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010, 2, a001008. [Google Scholar] [CrossRef]
- Williams, L.A.; Pankratz, N.; Lane, J.; Krailo, M.; Roesler, M.; Richardson, M.; Frazier, A.L.; Amatruda, J.F.; Poynter, J.N. Klinefelter syndrome in males with germ cell tumors: A report from the Children’s Oncology Group. Cancer 2018, 124, 3900–3908. [Google Scholar] [CrossRef]
- Blackburn, J.; Ramakrishnan, A.; Graham, C.; Bambang, K.; Sriranglingam, U.; Senniappan, S. Klinefelter Syndrome: A Review. Clin. Endocrinol. 2025, 102, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.; Sin, H.S.; Fukushima, M.; Namiki, M. Azoospermia factor and male infertility. Reprod. Med. Biol. 2010, 9, 129–137. [Google Scholar] [CrossRef]
- Colaco, S.; Modi, D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. RBE 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, M.; Alizadeh, A.; Sadighi, M.; Eftekhari-Yazdi, P.; Sharafi, M.; Shahverdi, A. Underestimated Aspects in Male Infertility: Epigenetics is A New Approach in Men with Obesity or Diabetes: A Review. Int. J. Fertil. Steril. 2022, 16, 132–139. [Google Scholar]
- Hosseini, M.; Khalafiyan, A.; Zare, M.; Karimzadeh, H.; Bahrami, B.; Hammami, B.; Kazemi, M. Sperm epigenetics and male infertility: Unraveling the molecular puzzle. Hum. Genom. 2024, 18, 57. [Google Scholar] [CrossRef]
- Tang, Q.; Pan, F.; Yang, J.; Fu, Z.; Lu, Y.; Wu, X.; Han, X.; Chen, M.; Lu, C.; Xia, Y.; et al. Idiopathic male infertility is strongly associated with aberrant DNA methylation of imprinted loci in sperm: A case-control study. Clin. Epigenet. 2018, 10, 134. [Google Scholar] [CrossRef]
- Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 2009, 1, 239–259. [Google Scholar] [CrossRef]
- Netto, G.J.; Nakai, Y.; Nakayama, M.; Jadallah, S.; Toubaji, A.; Nonomura, N.; Albadine, R.; Hicks, J.L.; Epstein, J.I.; Yegnasubramanian, S.; et al. Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Mod. Pathol. 2008, 21, 1337–1344. [Google Scholar] [CrossRef]
- Simon, L.; Castillo, J.; Oliva, R.; Lewis, S.E.M. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod. BioMed. Online 2011, 23, 724–734. [Google Scholar] [CrossRef]
- Punjabi, U.; Goovaerts, I.; Peeters, K.; Van Mulders, H.; De Neubourg, D. Sperm as a Carrier of Genome Instability in Relation to Paternal Lifestyle and Nutritional Conditions. Nutrients 2022, 14, 3155. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Zhang, D.; Cui, Y.; He, Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell. Mol. Life Sci. CMLS 2024, 81, 379. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi Asouri, S.; Aghadavood, E.; Mirzaei, H.; Abaspour, A.; Esmaeil Shahaboddin, M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024, 10, e33767. [Google Scholar] [CrossRef] [PubMed]
- Behre, H.M.; Bergmann, M.; Simoni, M.; Tüttelmann, F. Primary Testicular Failure. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK279076/ (accessed on 3 October 2025).
- Parekh, N.V.; Lundy, S.D.; Vij, S.C. Fertility considerations in men with testicular cancer. Transl. Androl. Urol. 2020, 9 (Suppl. S1), S14–S23. [Google Scholar] [CrossRef] [PubMed]
- Alahmar, A.T. Role of Oxidative Stress in Male Infertility: An Updated Review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [Google Scholar] [CrossRef]
- Harding, A.T.; Heaton, N.S. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers 2022, 14, 909. [Google Scholar] [CrossRef]
- Chang, S.; Skakkebæk, A.; Gravholt, C.H. Klinefelter Syndrome and medical treatment: Hypogonadism and beyond. Hormones 2015, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Krzastek, S.C.; Farhi, J.; Gray, M.; Smith, R.P. Impact of environmental toxin exposure on male fertility potential. Transl. Androl. Urol. 2020, 9, 2797–2813. [Google Scholar] [CrossRef]
- Tesarik, J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int. J. Mol. Sci. 2025, 26, 2797. [Google Scholar] [CrossRef]
- Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell. Mol. Life Sci. 2020, 77, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Moustakli, E.; Zikopoulos, A.; Katopodis, P.; Dafopoulos, S.; Paraschos, V.S.; Zachariou, A.; Dafopoulos, K. Dietary and Lifestyle Interventions to Mitigate Oxidative Stress in Male and Female Fertility: Practical Insights for Infertility Management-A Narrative Review. Metabolites 2025, 15, 379. [Google Scholar] [CrossRef] [PubMed]
- Puzuka, A.; Alksere, B.; Gailite, L.; Erenpreiss, J. Idiopathic Infertility as a Feature of Genome Instability. Life 2021, 11, 628. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ridgeway, A.D.; Lamb, D.J. DNA mismatch repair and infertility. Curr. Opin. Urol. 2010, 20, 525–532. [Google Scholar] [CrossRef]
- Li, N.; Wang, H.; Zou, S.; Yu, X.; Li, J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod. Sci. 2025, 32, 41–51. [Google Scholar] [CrossRef]
- Glaviano, A.; Singh, S.K.; Lee, E.H.C.; Okina, E.; Lam, H.Y.; Carbone, D.; Reddy, E.P.; O’Connor, M.J.; Koff, A.; Singh, G.; et al. Cell cycle dysregulation in cancer. Pharmacol. Rev. 2025, 77, 100030. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Slama, P.; Roychoudhury, S. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int. J. Mol. Sci. 2021, 22, 10043. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Wang, Y.; Deng, F.; Deng, Z. Oxidative Stress: Signaling Pathways, Biological Functions, and Disease. MedComm 2025, 6, e70268. [Google Scholar] [CrossRef]
- Baumann, A.A.; Buribayev, Z.; Wolkenhauer, O.; Salybekov, A.A.; Wolfien, M. Epigenomic Echoes-Decoding Genomic and Epigenetic Instability to Distinguish Lung Cancer Types and Predict Relapse. Epigenomes 2025, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- García-Guede, Á.; Vera, O.; Ibáñez-de-Caceres, I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development. Antioxidants 2020, 9, 468. [Google Scholar] [CrossRef]
- Vega, A.; Baptissart, M.; Caira, F.; Brugnon, F.; Lobaccaro, J.M.A.; Volle, D.H. Epigenetic: A molecular link between testicular cancer and environmental exposures. Front. Endocrinol. 2012, 3, 150. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Yadav, A.; Kaushik, M.; Dada, R. Cancer risk and male Infertility: Unravelling predictive biomarkers and prognostic indicators. Clin. Chim. Acta 2024, 558, 119670. [Google Scholar] [CrossRef]
- Assidi, M. Infertility in Men: Advances towards a Comprehensive and Integrative Strategy for Precision Theranostics. Cells 2022, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, H.; Rajpertdemeyts, E.; Main, K.; Skakkebaek, N.; Toppari, J. Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicol. Appl. Pharmacol. 2005, 207, 501–505. [Google Scholar] [CrossRef]
- Schneuer, F.J.; Milne, E.; Jamieson, S.E.; Pereira, G.; Hansen, M.; Barker, A.; Holland, A.J.A.; Bower, C.; Nassar, N. Association between male genital anomalies and adult male reproductive disorders: A population-based data linkage study spanning more than 40 years. Lancet Child Adolesc. Health 2018, 2, 736–743. [Google Scholar] [CrossRef]
- Sengupta, P.; Dutta, S.; Karkada, I.R.; Chinni, S.V. Endocrinopathies and Male Infertility. Life 2021, 12, 10. [Google Scholar] [CrossRef]
- Adamczewska, D.; Słowikowska-Hilczer, J.; Walczak-Jędrzejowska, R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life 2022, 12, 570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.C.; Scott, M.; Eisenberg, M.L. Male Fertility as a Proxy for Health. J. Clin. Med. 2024, 13, 5559. [Google Scholar] [CrossRef]
- Khanam, M.; Banerjee, A.; Jerin, J.; Fazyl, M.M. The Study of Semen Quality for Evaluation of Male Factor Infertility. J. Chittagong Med. Coll. Teach. Assoc. 2020, 31, 13–18. [Google Scholar] [CrossRef]
- PDQ Cancer Genetics Editorial Board. Genetics of Prostate Cancer (PDQ®): Health Professional Version. In PDQ Cancer Information Summaries [Internet]; National Cancer Institute (US): Bethesda, MD, USA, 2002. Available online: http://www.ncbi.nlm.nih.gov/books/NBK65784/ (accessed on 3 October 2025).
- Finch, A.; Clark, R.; Vesprini, D.; Lorentz, J.; Kim, R.H.; Thain, E.; Fleshner, N.; Akbari, M.R.; Cybulski, C.; Narod, S.A. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis. Oncol. 2022, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Huang, G.; Zhang, B.; Wang, X.; Xu, Z.; Zhai, J. Chromosomal abnormalities and Y chromosome microdeletions in infertile men with azoospermia and oligozoospermia in Eastern China. J. Int. Med. Res. 2020, 48, 300060519896712. [Google Scholar] [CrossRef] [PubMed]
- Black, K.; Ølgaard, S.; Khoei, A.A.; Glazer, C.; Ohl, D.A.; Jensen, C.F.S. The Genetic Landscape of Male Factor Infertility and Implications for Men’s Health and Future Generations. Uro 2025, 5, 2. [Google Scholar] [CrossRef]
- Cescon, M.; Chianese, R.; Tavares, R.S. Environmental Impact on Male (In)Fertility via Epigenetic Route. J. Clin. Med. 2020, 9, 2520. [Google Scholar] [CrossRef]
- Babaei, K.; Aziminezhad, M.; Mirzajani, E.; Mozdarani, H.; Sharami, S.H.; Norollahi, S.E.; Samadani, A.A. A critical review of the recent concept of regulatory performance of DNA Methylations, and DNA methyltransferase enzymes alongside the induction of immune microenvironment elements in recurrent pregnancy loss. Toxicol. Rep. 2024, 12, 546–563. [Google Scholar] [CrossRef]
- Zhao, R.; Lu, H.; Yuan, H.; Chen, S.; Xu, K.; Zhang, T.; Liu, Z.; Jiang, Y.; Suo, C.; Chen, X. Plasma proteomic profiles for early detection and risk stratification of non-small cell lung carcinoma: A prospective cohort study with 52,913 participants. Int. J. Cancer 2025, 157, 1577–1589. [Google Scholar] [CrossRef]
- Al-Daffaie, F.M.; Al-Mudhafar, S.F.; Alhomsi, A.; Tarazi, H.; Almehdi, A.M.; El-Huneidi, W.; Abu-Gharbieh, E.; Bustanji, Y.; Alqudah, M.A.Y.; Abuhelwa, A.Y.; et al. Metabolomics and Proteomics in Prostate Cancer Research: Overview, Analytical Techniques, Data Analysis, and Recent Clinical Applications. Int. J. Mol. Sci. 2024, 25, 5071. [Google Scholar] [CrossRef]
- Hamed, M.A.; Wasinger, V.; Wang, Q.; Graham, P.; Malouf, D.; Bucci, J.; Li, Y. Prostate cancer-derived extracellular vesicles metabolic biomarkers: Emerging roles for diagnosis and prognosis. J. Control. Release 2024, 371, 126–145. [Google Scholar] [CrossRef]
- Pozzi, E.; Belladelli, F.; Corsini, C.; Boeri, L.; Capogrosso, P.; Fallara, G.; Candela, L.; Bertini, A.; Cattafi, F.; Raffo, M.; et al. Contemporary Diagnostic Work-Up for Male Infertility: Emphasizing Comprehensive Baseline Assessment. World J. Men’s Health 2025, 43, 265–281. [Google Scholar] [CrossRef]
- Leslie, S.W.; Soon-Sutton, T.L.; Skelton, W.P. Prostate Cancer. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470550/ (accessed on 3 October 2025).
- Bancroft, E.K.; Page, E.C.; Brook, M.N.; Thomas, S.; Taylor, N.; Pope, J.; McHugh, J.; Jones, A.B.; Karlsson, Q.; Merson, S.; et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): Initial results from an international prospective study. Lancet Oncol. 2021, 22, 1618–1631. [Google Scholar] [CrossRef]
- Mancini, M.; Carmignani, L.; Gazzano, G.; Sagone, P.; Gadda, F.; Bosari, S.; Rocco, F.; Colpi, G.M. High prevalence of testicular cancer in azoospermic men without spermatogenesis. Hum. Reprod. 2007, 22, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Wood, H.M.; Elder, J.S. Cryptorchidism and testicular cancer: Separating fact from fiction. J. Urol. 2009, 181, 452–461. [Google Scholar] [CrossRef]
- Lip, S.Z.L.; Murchison, L.E.D.; Cullis, P.S.; Govan, L.; Carachi, R. A meta-analysis of the risk of boys with isolated cryptorchidism developing testicular cancer in later life. Arch. Dis. Child. 2013, 98, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Z.; Ye, L.J.; Xiao, W.Q.; Huang, W.S.; Wen, W.B.; Dai, S.; Lai, L.Y.; Peng, Y.Q.; Wu, T.H.; Sun, Q.; et al. Association of higher serum follicle-stimulating hormone levels with successful microdissection testicular sperm extraction outcomes in nonobstructive azoospermic men with reduced testicular volumes. Asian J. Androl. 2025, 27, 440–446. [Google Scholar] [CrossRef]
- Huddart, R.A.; Norman, A.; Moynihan, C.; Horwich, A.; Parker, C.; Nicholls, E.; Dearnaley, D.P. Fertility, gonadal and sexual function in survivors of testicular cancer. Br. J. Cancer 2005, 93, 200–207. [Google Scholar] [CrossRef]
- Gan, S.; Liu, J.; Chen, Z.; Xiang, S.; Gu, C.; Li, S.; Wang, S. Low serum total testosterone level as a predictor of upgrading in low-risk prostate cancer patients after radical prostatectomy: A systematic review and meta-analysis. Investig. Clin. Urol. 2022, 63, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Gu, J.; Meng, Q.H.; Kim, J.; Strom, S.; Davis, J.W.; He, Y.; Wagar, E.A.; Thompson, T.C.; Logothetis, C.J.; et al. Low serum testosterone is associated with tumor aggressiveness and poor prognosis in prostate cancer. Oncol. Lett. 2017, 13, 1949–1957. [Google Scholar] [CrossRef]
- Yao, S.; Till, C.; Kristal, A.R.; Goodman, P.J.; Hsing, A.W.; Tangen, C.M.; Platz, E.A.; Stanczyk, F.Z.; Reichardt, J.K.; Tang, L.; et al. Serum estrogen levels and prostate cancer risk in the prostate cancer prevention trial: A nested case-control study. Cancer Causes Control CCC 2011, 22, 1121–1131. [Google Scholar] [CrossRef]
- Black, A.; Pinsky, P.F.; Grubb, R.L.; Falk, R.T.; Hsing, A.W.; Chu, L.; Meyer, T.; Veenstra, T.D.; Xu, X.; Yu, K.; et al. Sex steroid hormone metabolism in relation to risk of aggressive prostate cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2374–2382. [Google Scholar] [CrossRef]
- Kliesch, S.; Bergmann, M.; Hertle, L.; Nieschlag, E.; Behre, H.M. Semen parameters and testicular pathology in men with testicular cancer and contralateral carcinoma in situ or bilateral testicular malignancies. Hum. Reprod. 1997, 12, 2830–2835. [Google Scholar] [CrossRef]
- Song, S.H.; Lee, T.H.; Her, Y.S.; Oh, M.; Shin, D.H.; Heo, Y.; Kim, D.K.; Kim, D.S. Semen quality and sperm DNA fragmentation in cancer patients undergoing sperm cryopreservation. Investig. Clin. Urol. 2023, 64, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.W.; Ara, A.; Saharan, A.; Jaffar, M.; Gugnani, N.; Esteves, S.C. Sperm DNA Fragmentation: Causes, evaluation and management in male infertility. JBRA Assist. Reprod. 2024, 28, 306–319. [Google Scholar] [CrossRef]
- Cheng, H.H.; Shevach, J.W.; Castro, E.; Couch, F.J.; Domchek, S.M.; Eeles, R.A.; Giri, V.N.; Hall, M.J.; King, M.C.; Lin, D.W.; et al. BRCA1, BRCA2, and Associated Cancer Risks and Management for Male Patients: A Review. JAMA Oncol. 2024, 10, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.H.; Liu, S.Y.; Wang, N.; Wu, Y.; Jin, F. Impact of DNA mismatch repair system alterations on human fertility and related treatments. J. Zhejiang Univ. Sci. B 2016, 17, 10–20. [Google Scholar] [CrossRef]
- Nichols, C.R.; Heerema, N.A.; Palmer, C.; Loehrer, P.J.; Williams, S.D.; Einhorn, L.H. Klinefelter’s syndrome associated with mediastinal germ cell neoplasms. J. Clin. Oncol. 1987, 5, 1290–1294. [Google Scholar] [CrossRef]
- Bonouvrie, K.; van der Werff Ten Bosch, J.; van den Akker, M. Klinefelter syndrome and germ cell tumors: Review of the literature. Int. J. Pediatr. Endocrinol. 2020, 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Amjadian, T.; Yaghmaei, P.; Nasim, H.R.; Yari, K. Impact of DNA methylation of the human mesoderm-specific transcript (MEST) on male infertility. Heliyon 2023, 9, e21099. [Google Scholar] [CrossRef]
- Cannarella, R.; Crafa, A.; Barbagallo, F.; Lundy, S.D.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. H19 Sperm Methylation in Male Infertility: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 7224. [Google Scholar] [CrossRef]
- Cui, X.; Jing, X.; Wu, X.; Yan, M.; Li, Q.; Shen, Y.; Wang, Z. DNA methylation in spermatogenesis and male infertility. Exp. Ther. Med. 2016, 12, 1973–1979. [Google Scholar] [CrossRef]
- Drabovich, A.P.; Saraon, P.; Drabovich, M.; Karakosta, T.D.; Dimitromanolakis, A.; Hyndman, M.E.; Jarvi, K.; Diamandis, E.P. Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients. Mol. Cell. Proteom. MCP 2019, 18, 1807–1823. [Google Scholar] [CrossRef] [PubMed]
- Fietz, D.; Sgaier, R.; O’Donnell, L.; Stanton, P.G.; Dagley, L.F.; Webb, A.I.; Schuppe, H.C.; Diemer, T.; Pilatz, A. Proteomic biomarkers in seminal plasma as predictors of reproductive potential in azoospermic men. Front. Endocrinol. 2024, 15, 1327800. [Google Scholar] [CrossRef] [PubMed]
- Duffin, K.; Mitchell, R.T.; Brougham, M.F.H.; Hamer, G.; Van Pelt, A.M.M.; Mulder, C.L. Impacts of cancer therapy on male fertility: Past and present. Mol. Asp. Med. 2024, 100, 101308. [Google Scholar] [CrossRef]
- Pelzman, D.L.; Hwang, K. Genetic testing for men with infertility: Techniques and indications. Transl. Androl. Urol. 2021, 10, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Humaidan, P.; Ubaldi, F.M.; Alviggi, C.; Antonio, L.; Barratt, C.L.R.; Behre, H.M.; Jørgensen, N.; Pacey, A.A.; Simoni, M.; et al. APHRODITE criteria: Addressing male patients with hypogonadism and/or infertility owing to altered idiopathic testicular function. Reprod. Biomed. Online 2024, 48, 103647. [Google Scholar] [CrossRef]
- Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. Fertil. Steril. 2005, 83, 1622–1628. [Google Scholar] [CrossRef]
- Ahsan, M.D.; Levi, S.R.; Webster, E.M.; Bergeron, H.; Lin, J.; Narayan, P.; Nelson, B.B.; Li, X.; Fowlkes, R.K.; Brewer, J.T.; et al. Do people with hereditary cancer syndromes inform their at-risk relatives? A systematic review and meta-analysis. PEC Innov. 2023, 2, 100138. [Google Scholar] [CrossRef]
- Balcom, J.R.; Kotzer, K.E.; Waltman, L.A.; Kemppainen, J.L.; Thomas, B.C. The Genetic Counselor’s Role in Managing Ethical Dilemmas Arising in the Laboratory Setting. J. Genet. Couns. 2016, 25, 838–854. [Google Scholar] [CrossRef]
- Jansen, S.N.G.; Kamphorst, B.A.; Mulder, B.C.; van Kamp, I.; Boekhold, S.; van den Hazel, P.; Verweij, M.F. Ethics of early detection of disease risk factors: A scoping review. BMC Med. Ethics 2024, 25, 25. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, A.C.; Martin, R.; Holst, S.C.; Wienbeck, J.; Heider, D. Guideline for software life cycle in health informatics. iScience 2022, 25, 105534. [Google Scholar] [CrossRef]
- Page, E.C.; Bancroft, E.K.; Brook, M.N.; Assel, M.; Hassan Al Battat, M.; Thomas, S.; Taylor, N.; Chamberlain, A.; Pope, J.; Raghallaigh, H.N.; et al. Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. Eur. Urol. 2019, 76, 831–842. [Google Scholar] [CrossRef]
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- Ho, D.; Quake, S.R.; McCabe, E.R.B.; Chng, W.J.; Chow, E.K.; Ding, X.; Gelb, B.D.; Ginsburg, G.S.; Hassenstab, J.; Ho, C.M.; et al. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol. 2020, 38, 497–518. [Google Scholar] [CrossRef]
- Yiallourou, S.R.; Magliano, D.; Haregu, T.N.; Carrington, M.J.; Rolnik, D.L.; Rombauts, L.; Rodrigues, A.; Ball, J.; Bruinsma, F.J.; Da Silva Costa, F. Long term all-cause and cardiovascular disease mortality among women who undergo fertility treatment. Med. J. Aust. 2022, 217, 532–537. [Google Scholar] [CrossRef]
- Blüher, M. An overview of obesity-related complications: The epidemiological evidence linking body weight and other markers of obesity to adverse health outcomes. Diabetes Obes. Metab. 2025, 27 (Suppl. S2), 3–19. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.M.; Taylor, N.; Maguire, J.; de Graves, S.; Signorelli, C.; Fuentes-Bolanos, N.A.; Tucker, K.M.; Cruickshank, M. A coordinated multidisciplinary model of care is needed for child and family centered care in pediatric genetic cancer risk services: A scoping review. Fam. Cancer 2025, 24, 55. [Google Scholar] [CrossRef]
- Berliner, J.L.; Cummings, S.A.; Boldt Burnett, B.; Ricker, C.N. Risk assessment and genetic counseling for hereditary breast and ovarian cancer syndromes-Practice resource of the National Society of Genetic Counselors. J. Genet. Couns. 2021, 30, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, A.; Salama, M.; Elsayed, M.; Nawara, M.; Kamel, M.; Abuelnaga, Y.; Ghonim, M.; Elshafeey, F.; Abdelhadi, R.; Gebril, S.; et al. Indicators of infertility and fertility care: A systematic scoping review. Hum. Reprod. Open 2022, 2022, hoac047. [Google Scholar] [CrossRef]
- Sax, M.R.; Lawson, A.K. Emotional Support for Infertility Patients: Integrating Mental Health Professionals in the Fertility Care Team. Women 2022, 2, 68–75. [Google Scholar] [CrossRef]
- Galeș, L.N.; Păun, M.A.; Anghel, R.M.; Trifănescu, O.G. Cancer Screening: Present Recommendations, the Development of Multi-Cancer Early Development Tests, and the Prospect of Universal Cancer Screening. Cancers 2024, 16, 1191. [Google Scholar] [CrossRef]
- Laza, C.; Niño De Guzmán, E.; Gea, M.; Plazas, M.; Posso, M.; Rué, M.; Castells, X.; Román, M. “For and against” factors influencing participation in personalized breast cancer screening programs: A qualitative systematic review until March 2022. Arch. Public Health 2024, 82, 23. [Google Scholar] [CrossRef] [PubMed]
- Pichugova, S.V.; Chereshnev, V.A.; Beikin, Y.B. Characteristic of spermogram parameters in men with reproductive pathology in age-related aspect. Obstet. Gynecol. Reprod. 2022, 15, 715–725. [Google Scholar] [CrossRef]
- Barratt, C.L.R.; Björndahl, L.; De Jonge, C.J.; Lamb, D.J.; Osorio Martini, F.; McLachlan, R.; Oates, R.D.; van der Poel, S.; St John, B.; Sigman, M.; et al. The diagnosis of male infertility: An analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum. Reprod. Update 2017, 23, 660–680. [Google Scholar] [CrossRef]
- Wang, S.; Gaskins, A.J.; Farland, L.V.; Zhang, D.; Birmann, B.M.; Rich-Edwards, J.W.; Wang, Y.X.; Tamimi, R.M.; Missmer, S.A.; Chavarro, J.E. A prospective cohort study of infertility and cancer incidence. Fertil. Steril. 2023, 120, 134–142. [Google Scholar] [CrossRef]
- Ghantasala, G.S.P.; Dilip, K.; Vidyullatha, P.; Allabun, S.; Alqahtani, M.S.; Othman, M.; Abbas, M.; Soufiene, B.O. Enhanced ovarian cancer survival prediction using temporal analysis and graph neural networks. BMC Med. Inform. Decis. Mak. 2024, 24, 299. [Google Scholar] [CrossRef]
- Parkes, R.; Garcia, T.X. Bringing proteomics to bear on male fertility: Key lessons. Expert Rev. Proteom. 2024, 21, 181–203. [Google Scholar] [CrossRef] [PubMed]
- Podgrajsek, R.; Hodzic, A.; Stimpfel, M.; Kunej, T.; Peterlin, B. Insight into the complexity of male infertility: A multi-omics review. Syst. Biol. Reprod. Med. 2024, 70, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Gómez, G.; Yañez, F.; Soler, Z.; Pons-Tarin, M.; Mayorga, L.; Herrera-deGuise, C.; Borruel, N.; Rodriguez-Sinovas, A.; Consegal, M.; Manjón, I.; et al. Microbiome multi-omics analysis reveals novel biomarkers and mechanisms linked with CD etiopathology. Biomark. Res. 2025, 13, 85. [Google Scholar] [CrossRef]
- Hachem, S.; Yehya, A.; El Masri, J.; Mavingire, N.; Johnson, J.R.; Dwead, A.M.; Kattour, N.; Bouchi, Y.; Kobeissy, F.; Rais-Bahrami, S.; et al. Contemporary Update on Clinical and Experimental Prostate Cancer Biomarkers: A Multi-Omics-Focused Approach to Detection and Risk Stratification. Biology 2024, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Encinas, A.; García-Peiró, A.; Del Rey, J.; Ribas-Maynou, J.; Abad, C.; Amengual, M.J.; Prada, E.; Navarro, J.; Benet, J. Proteomic Analysis in Seminal Plasma of Fertile Donors and Infertile Patients with Sperm DNA Fragmentation. Int. J. Mol. Sci. 2020, 21, 5046. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A. Sperm and Seminal Plasma Proteomics: Molecular Changes Associated with Varicocele-Mediated Male Infertility. World J. Men’s Health. 2020, 38, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.E.; Dracopoli, N.C.; Bach, P.B.; Lau, A.; Scharpf, R.B.; Meijer, G.A.; Andersen, C.L.; Velculescu, V.E. Cell-free DNA approaches for cancer early detection and interception. J. ImmunoTher. Cancer 2023, 11, e006013. [Google Scholar] [CrossRef]
- Gao, Q.; Zeng, Q.; Wang, Z.; Li, C.; Xu, Y.; Cui, P.; Zhu, X.; Lu, H.; Wang, G.; Cai, S.; et al. Circulating cell-free DNA for cancer early detection. Innovation 2022, 3, 100259. [Google Scholar] [CrossRef] [PubMed]
- Larriba, S.; Vigués, F.; Bassas, L. Using Small Non-Coding RNAs in Extracellular Vesicles of Semen as Biomarkers of Male Reproductive System Health: Opportunities and Challenges. Int. J. Mol. Sci. 2023, 24, 5447. [Google Scholar] [CrossRef]
- Huang, J.; Chen, H.; Li, N.; Liu, P.; Yang, J.; Zhao, Y. Emerging technologies towards extracellular vesicles large-scale production. Bioact. Mater. 2025, 52, 338–365. [Google Scholar] [CrossRef]
- Duong, D.; Solomon, B.D. Artificial intelligence in clinical genetics. Eur. J. Hum. Genet. EJHG 2025, 33, 281–288. [Google Scholar] [CrossRef]
- Salemi, M.H.; Foroozandeh, E.; Ashkzari, M.K. Applications, Challenges, and Future Perspectives of Artificial Intelligence in Psychopharmacology, Psychological Disorders and Physiological Psychology: A Comprehensive Review. J. Pharm. Bioallied Sci. 2025, 17 (Suppl. S1), S229–S233. [Google Scholar] [CrossRef]
- Qaderi, K.; Sharifipour, F.; Dabir, M.; Shams, R.; Behmanesh, A. Artificial intelligence (AI) approaches to male infertility in IVF: A mapping review. Eur. J. Med. Res. 2025, 30, 246. [Google Scholar] [CrossRef]
- Beshir, L. A Framework to Ethically Approach Incidental Findings in Genetic Research. EJIFCC 2020, 31, 302–309. [Google Scholar] [PubMed]
- Piessens, V.; Van den Bruel, A.; Piessens, A.; Van Hecke, A.; Brodersen, J.B.; Lauwerier, E.; Stul, F.; De Sutter, A.; Heytens, S. Do health professionals know about overdiagnosis in screening, and how are they dealing with it? A mixed-methods systematic scoping review. PLoS ONE 2025, 20, e0315247. [Google Scholar] [CrossRef] [PubMed]

| Mechanism | Key Findings | Examples of Relevant Genes/Pathways | Notes/Implications | References |
|---|---|---|---|---|
| Genetic Susceptibility | Infertile men are enriched for pathogenic germline variants in cancer-associated genes; defects in DNA repair predispose to malignancy | MLH1, MSH2, MSH6, PMS2, BRCA2, CHEK2, ATM, TP53, RB1; Klinefelter syndrome (47,XXY); Y-chromosome AZF deletions | Shared genetic etiology: a germline defect may underlie both spermatogenic failure and elevated cancer risk | [14,26,27] |
| Epigenetic Dysregulation | Aberrant DNA methylation, histone retention, dysregulated small non-coding RNAs | H19, MEST, piRNAs | Impaired spermatogenesis may reflect systemic epigenomic instability; potential biomarker for cancer risk | [28,29] |
| Endocrine/Hormonal | Low testosterone, elevated FSH/LH, altered estrogen | Androgen and estrogen pathways, gonadotropin signaling | Hormonal imbalance promotes OS, alters testicular microenvironment, and may favor tumorigenesis | [30,31,32] |
| Environmental/Lifestyle | Exposure to toxins, endocrine disruptors, radiation; obesity, smoking | OS pathways, inflammatory mediators | Interacts with genetic and epigenetic susceptibility, amplifying cancer risk; reinforces multifactorial etiology | [33,34] |
| Indicator Category | Specific Marker/Feature | Associated Cancer Types | Evidence Strength | Notes/Clinical Implications | References |
|---|---|---|---|---|---|
| Clinical | Azoospermia, severe oligozoospermia | Testicular cancer, hematologic malignancies | High | Strongest epidemiologic predictor; prioritize for surveillance | [12,36,100] |
| History of cryptorchidism, hypospadias, testicular dysgenesis | Testicular cancer | Moderate–High | Reflects developmental predisposition to malignancy | [101,102] | |
| Advanced age at infertility evaluation | Prostate cancer, general malignancy | Moderate | Age may modify risk but less specific | [20,21] | |
| Hormonal | Elevated FSH/LH | Testicular cancer, systemic malignancy | Moderate | Indicates primary testicular failure and germ cell stress | [103,104] |
| Low serum testosterone | Aggressive prostate cancer | Moderate | Combined with clinical features improves risk stratification | [105,106] | |
| Altered estrogen/testosterone ratio | Testicular and prostate cancers | Low–Moderate | Potential biomarker; requires further validation | [107,108] | |
| Semen Parameters | Sperm concentration, motility, morphology | Testicular cancer, leukemia/lymphoma | Moderate–High | Severe abnormalities (azoospermia, extreme oligozoospermia) indicate highest risk | [36,109] |
| Sperm DNA fragmentation, OS | Multiple cancer types | Low–Moderate | Emerging molecular indicator of genomic instability | [110,111] | |
| Genetic | Germline mutations in BRCA2, CHEK2, ATM, TP53, RB1 | Prostate, breast, testicular, colorectal | High | Particularly relevant in idiopathic severe infertility or family history of cancer | [14,44,112] |
| MMR gene mutations (MLH1, MSH2, MSH6, PMS2) | Colorectal, endometrial, urogenital | Moderate–High | Supports early cancer surveillance in high-risk men | [72,113] | |
| Klinefelter syndrome (47,XXY), Y-chromosome AZF microdeletions | Mediastinal germ cell tumors, testicular cancer | High | Strong chromosomal predictors of both infertility and malignancy | [1,114,115] | |
| Epigenetic/Molecular | Aberrant DNA methylation (H19, MEST) | Multiple cancer types | Low–Moderate | Reflects genomic instability; investigational as biomarker | [28,116,117] |
| Altered histone/protamine ratio, piRNA dysregulation | Multiple cancer types | Low | Potential molecular marker; currently research-based | [54,118] | |
| Seminal plasma proteomics/metabolomics | Multiple cancer types | Low | Early investigational biomarkers for risk prediction | [119,120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zachariou, A.; Moustakli, E.; Zikopoulos, A.; Filiponi, M.; Potiris, A.; Kathopoulis, N.; Grigoriadis, T.; Tzeli, M.; Machairiotis, N.; Domali, E.; et al. Bridging Andrology and Oncology: Prognostic Indicators of Cancer Among Infertile Men. Curr. Issues Mol. Biol. 2025, 47, 930. https://doi.org/10.3390/cimb47110930
Zachariou A, Moustakli E, Zikopoulos A, Filiponi M, Potiris A, Kathopoulis N, Grigoriadis T, Tzeli M, Machairiotis N, Domali E, et al. Bridging Andrology and Oncology: Prognostic Indicators of Cancer Among Infertile Men. Current Issues in Molecular Biology. 2025; 47(11):930. https://doi.org/10.3390/cimb47110930
Chicago/Turabian StyleZachariou, Athanasios, Efthalia Moustakli, Athanasios Zikopoulos, Maria Filiponi, Anastasios Potiris, Nikolaos Kathopoulis, Themos Grigoriadis, Maria Tzeli, Nikolaos Machairiotis, Ekaterini Domali, and et al. 2025. "Bridging Andrology and Oncology: Prognostic Indicators of Cancer Among Infertile Men" Current Issues in Molecular Biology 47, no. 11: 930. https://doi.org/10.3390/cimb47110930
APA StyleZachariou, A., Moustakli, E., Zikopoulos, A., Filiponi, M., Potiris, A., Kathopoulis, N., Grigoriadis, T., Tzeli, M., Machairiotis, N., Domali, E., Thomakos, N., & Stavros, S. (2025). Bridging Andrology and Oncology: Prognostic Indicators of Cancer Among Infertile Men. Current Issues in Molecular Biology, 47(11), 930. https://doi.org/10.3390/cimb47110930

