Lycopene Mitigates Rat Liver Damage Induced by Lipopolysaccharide via Mechanisms Involving Oxidative Stress, Inflammation, and Apoptosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals and Experimental Design
- Control—single oral dose of vehicle (corn oil, p.o.);
- Lycopene—single oral dose of lycopene (6 mg/kg);
- LPS + Lycopene—single p.o. dose of lycopene (6 mg/kg) dissolved in corn oil [16], followed by a single intraperitoneal injection of LPS (10 mg/kg).
2.3. Serum Biochemical Analysis
2.4. Tissue Biochemical Analyses
2.4.1. Determination of ROS Generators
2.4.2. Lipid and Protein Oxidative Damage Determination
2.4.3. Antioxidant Enzymes Determination
2.4.4. Arginine/Nitric Oxyde Cycle Parameters Determination
2.4.5. Determination of Reduced Glutathione (GSH) and GSH-Related Enzymes
2.4.6. Determination of Alkaline-Dnase I and Acid-DNase II Activity
2.4.7. Inflammation Mediators’ Determination
2.4.8. Nuclear Factor Erythroid 2-Related Factor 2 (NRF-2) Content Determination
2.5. Statistical Analysis
3. Results
3.1. Serum Biochemical Changes
3.2. Tissue Oxidative Stress Damage Parameters
3.3. Nitric Oxide Signaling Pathway
3.4. Tissue Glutathione Cycle Parameters
3.5. Tissue Apoptosis and Inflammation-Associated Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALT | Alanine aminotransferase. |
| Arg | Arginase. |
| AST | Aspartate aminotransferase. |
| Cit | Citrulline. |
| DNase I/II | Deoxyribonuclease I/II. |
| γ-GT | Gamma-glutamyltransferase. |
| GSH | Reduced glutathione. |
| GPx | Glutathione peroxidase. |
| GR | Glutathione reductase. |
| IL-6 | Interleukin-6. |
| iNOS | Inducible nitric oxide synthase. |
| Lyc | Lycopene. |
| LPS | Lipopolysaccharide. |
| MPO | Myeloperoxidase. |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells. |
| Nrf2 | Nuclear factor erythroid 2–related factor 2. |
| NO | Nitric oxide. |
| PCC | Protein carbonyl content. |
| TBARS | Thiobarbituric acid reactive substances. |
| TNF-α | Tumor necrosis factor alpha. |
| XO | Xanthine oxidase. |
References
- Payen, D.; Dupuis, C.; Deckert, V.; Pais de Barros, J.P.; Rérole, A.L.; Lukaszewicz, A.C.; Coudroy, R.; Robert, R.; Lagrost, L. Endotoxin Mass Concentration in Plasma is Associated with Mortality in a Multicentric Cohort of Peritonitis-Induced Shock. Front. Med. 2021, 8, 749405. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Radauer-Preiml, I.; Andosch, A.; Casals, E.; Luetz-Meindl, U.; Cobaleda, M.; Lin, Z.; Jaberi-Douraki, M.; Italiani, P.; et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology 2017, 11, 1157–1175. [Google Scholar] [CrossRef] [PubMed]
- Sokolović, D.; Lazarević, M.; Milić, D.; Stanojković, Z.; Mitić, K.; Sokolović, D.T. Melatonin arrests excessive inflammatory response and apoptosis in lipopolysaccharide-damaged rat liver: A deeper insight into its mechanism of action. Tissue Cell 2022, 79, 101904. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A.; Dulai, P.S.; Caussy, C.; Bettencourt, R.; Highlander, S.K.; et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017, 25, 1054–1062.e5, Erratum in Cell Metab. 2019, 30, 607. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, X.; Zhong, S.; Yu, W.; Wang, J.; Zhu, W.; Yang, T.; Zhao, G.; Jiang, Y.; Li, Y. Effects of Continuous LPS Induction on Oxidative Stress and Liver Injury in Weaned Piglets. Vet. Sci. 2022, 10, 22. [Google Scholar] [CrossRef]
- Xia, S.; Yan, C.; Chen, L.; Cai, G.; Gu, J.; Yuan, Y.; Zou, H.; Liu, Z.; Bian, J. The role of lycopene in alleviating nanoplastic-induced liver inflammation and steatosis: Insights from gut microbiota remodeling. Food Biosci. 2024, 61, 104862. [Google Scholar] [CrossRef]
- Nolan, J.P. The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology 2010, 52, 1829–1835. [Google Scholar] [CrossRef]
- Klein, T.; Neuhaus, K.; Reutter, F.; Nusing, R.M. Generation of 8-epi-prostaglandin F(2alpha) in isolated rat kidney glomeruli by a radical-independent mechanism. Br. J. Pharmacol. 2001, 133, 643–650. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L.N.; Cui, Y.L.; Jiang, H.L. Protective effect of danhong injection on acute hepatic failure induced by lipopolysaccharide and d-galactosamine in mice. Evid. Based Complement. Alternat. Med. 2014, 2014, 153902. [Google Scholar] [CrossRef]
- Burns, J.; Fraser, P.D.; Bramley, P.M. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 2003, 62, 939–947. [Google Scholar] [CrossRef]
- Marzocco, S.; Singla, R.K.; Capasso, A. Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules 2021, 26, 5333. [Google Scholar] [CrossRef]
- Viña, I.; Viña, J.R. Association of Lycopene and Male Reproductive Health: Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 7224. [Google Scholar] [CrossRef]
- Meurer, M.C.; Mees, M.; Mariano, L.N.B.; Boeing, T.; Somensi, L.B.; Mariott, M.; da Silva, R.C.M.V.A.F.; Dos Santos, A.C.; Longo, B.; Santos França, T.C.; et al. Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves oxidative stress in an animal model of ulcerative colitis. Nutr. Res. 2019, 66, 95–106. [Google Scholar] [CrossRef]
- Noreen, S.; Shehzadi, S.; Egbuna, C.; Aja, P.M. Lycopene Alleviates Lipid Dysregulation, Oxidative Stress, and Hypercholesterolemia in Obese Rats Subjected to a High-Fat Diet. Food Sci. Nutr. 2025, 13, e70549. [Google Scholar] [CrossRef] [PubMed]
- Sokolović, D.; Lazarević, M.; Milić, D.; Stanojković, Z.; Petković, M.N.; Stojanović, N.M.; Sokolović, D.T. Melatonin reduces lipopolysaccharide-induced kidney damage. Acta Med. Median. 2023, 62, 15–20. [Google Scholar] [CrossRef]
- Sendão, M.C.; Behling, E.B.; dos Santos, R.A.; Antunes, L.M.; de Lourdes Pires Bianchi, M. Comparative effects of acute and subacute lycopene administration on chromosomal aberrations induced by cisplatin in male rats. Food Chem. Toxicol. 2006, 44, 1334–1339. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Sokolović, D.T.; Lilić, L.; Milenković, V.; Stefanović, R.; Ilić, T.P.; Mekić, B.; Ilić, I.; Stojanović, N.M.; Ilić, I.R. Effects of melatonin on oxidative stress parameters and pathohistological changes in rat skeletal muscle tissue following carbon tetrachloride application. Saudi Pharm. J. 2018, 26, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, N.M.; Maslovarić, A.; Mihajlović, I.; Marković, A.; Randjelović, P.J.; Sokolović, D. Melatonin treatment prevents carbon-tetrachloride induced rat brain injury. Toxicol. Res. 2023, 12, 895–901. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Randjelović, P.J.; Mladenović, M.Z.; Ilić, I.R.; Petrović, V.; Stojiljković, N.; Ilić, S.; Radulović, N.S. Toxic essential oils, part VI: Acute oral toxicity of lemon balm (Melissa officinalis L.) essential oil in BALB/c mice. Food Chem. Toxicol. 2019, 133, 110794. [Google Scholar] [CrossRef]
- Mladenović, B.; Mladenović, N.; Brzački, V.; Petrović, N.; Kamenov, A.; Golubović, M.; Ničković, V.; Stojanović, N.M.; Sokolović, D.T. Exogenous putrescine affects polyamine and arginine metabolism in rat liver following bile ductus ligation. Can. J. Physiol. Pharmacol. 2018, 96, 1232–1237. [Google Scholar] [CrossRef]
- El-Aarag, B.; Attia, A.; Zahran, M.; Younes, A.; Tousson, E. New phthalimide analog ameliorates CCl4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis. Saudi J. Biol. Sci. 2021, 28, 6384–6395. [Google Scholar] [CrossRef]
- Porembska, Z.; Kedra, M. Early diagnosis of myocardial infarction by arginase activity determination. Clin. Chim. Acta 1975, 60, 355–361. [Google Scholar] [CrossRef]
- Boyde, T.R.C.; Rahmatullah, M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal. Biochem. 1980, 107, 424–431. [Google Scholar] [CrossRef]
- Radulović, N.S.; Đorđević Zlatković, M.R.; Stojanović, N.M.; Nešić, M.S.; Zlatković, D.B.; Potić Floranović, M.S.; Tričković Vukić, D.S.; Randjelovic, P.J. Marrubiin inhibits peritoneal inflammatory response induced by carrageenan application in C57 mice. Int. J. Mol. Sci. 2024, 25, 4496. [Google Scholar] [CrossRef]
- Popović, D.; Kocić, G.; Katić, V.; Jović, Z.; Zarubica, A.; Janković Veličković, L.; Nikolić, V.; Jović, A.; Kundalić, B.; Rakić, V.; et al. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem. Biol. Interact. 2019, 304, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, M.; Kostić, M.; Džopalić, T.; Sokolović, D.; Lazarević, Z.; Milovanović, J.; Ničković, V.; Sokolović, D. Melatonin mediates cardiac tissue damage under septic conditions induced by lipopolysaccharide. Int. J. Mol. Sci. 2024, 25, 11088. [Google Scholar] [CrossRef]
- El-Aarag, B.; Shalaan, E.S.; Ahmed, A.A.S.; El Sayed, I.E.T.; Ibrahim, W.M. Cryptolepine Analog Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma Cells in Mice via Targeting Cell Growth, Oxidative Stress, and PTEN/Akt/mTOR Signaling Pathway. Anticancer Agents Med. Chem. 2024, 24, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Nyblom, H.; Berggren, U.; Balldin, J.; Olsson, R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 2004, 39, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, W.; Cheng, L.M.; Wang, G.G. Lycopene attenuates LPS-induced liver injury by inactivation of NF-κB/COX-2 signaling. Int. J. Clin. Exp. Pathol. 2019, 12, 817–825. [Google Scholar]
- Albrahim, T.; Alonazi, M.A. Lycopene corrects metabolic syndrome and liver injury induced by high fat diet in obese rats through antioxidant, anti-inflammatory, antifibrotic pathways. Biomed. Pharmacother. 2021, 141, 111831. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef]
- Kurosaki, M.; Li Calzi, M.; Scanziani, E.; Garattini, E.; Terao, M. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: Regulation by bacterial lipopolysaccharide. Biochem. J. 1995, 306, 225–234. [Google Scholar] [CrossRef]
- Gao, H.; Yang, T.; Chen, X.; Song, Y. Changes of lipopolysaccharide-induced acute kidney and liver injuries in rats based on metabolomics analysis. J. Inflamm. Res. 2021, 14, 1807–1820. [Google Scholar] [CrossRef]
- Miltojević, A.B.; Mitić, K.V.; Stojanović, N.M.; Randjelović, P.J.; Radulović, N.S. Methyl and Isopropyl N-Methylanthranilates affect primary macrophage function—An insight into the possible immunomodulatory mode of action. Chem. Biodivers. 2022, 19, e202100724. [Google Scholar] [CrossRef]
- Brito, A.K.D.S.; Lima, G.M.; Farias, L.M.; Rodrigues, L.A.R.L.; Carvalho, V.B.L.; Pereira, C.F.C.; Frota, K.M.G.; Conde-Júnior, A.M.; Silva, A.M.O.; Rizzo, M.D.S.; et al. Lycopene-rich extract from red guava (Psidium guajava L.) decreases plasma triglycerides and improves oxidative stress biomarkers on experimentally induced dyslipidemia in hamsters. Nutrients 2019, 11, 393. [Google Scholar] [CrossRef]
- Bandeira, A.C.B.; da Silva, T.P.; de Araujo, G.R.; Araujo, C.M.; da Silva, R.C.; Lima, W.G.; Bezerra, F.S.; Costa, D.C. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice. Chem. Biol. Interact. 2017, 263, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Tokaç, M.; Aydin, S.; Taner, G.; Özkardeş, A.B.; Yavuz Taşlipinar, M.; Doğan, M.; Dündar, H.Z.; Kiliç, M.; Başaran, A.A.; Başaran, A.N. Hepatoprotective and antioxidant effects of lycopene in acute cholestasis. Turk. J. Med. Sci. 2015, 45, 857–864. [Google Scholar] [CrossRef]
- Baz, L.; Algarni, S.; Al-Thepyani, M.; Aldairi, A.; Gashlan, H. lycopene improves metabolic disorders and liver injury induced by a hight-fat diet in obese rats. Molecules 2022, 27, 7736. [Google Scholar] [CrossRef]
- Genčić, M.S.; Aksić, J.M.; Živković Stošić, M.Z.; Randjelović, P.J.; Stojanović, N.M.; Stojanović-Radić, Z.Z.; Radulović, N.S. Linking the antimicrobial and anti-inflammatory effects of immortelle essential oil with its chemical composition—The interplay between the major and minor constituents. Food Chem. Toxicol. 2021, 158, 112666. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Kim, M.Y. Nitric oxide in liver diseases. Trends Pharmacol. Sci. 2015, 36, 524–536. [Google Scholar] [CrossRef] [PubMed]
- La Mura, V.; Pasarín, M.; Rodriguez-Vilarrupla, A.; García-Pagán, J.C.; Bosch, J.; Abraldes, J.G. Liver sinusoidal endothelial dysfunction after LPS administration: A role for inducible-nitric oxide synthase. J. Hepatol. 2014, 61, 1321–1327. [Google Scholar] [CrossRef]
- Chioda, M.; Marigo, I.; Mandruzzato, S.; Mocellin, S.; Bronte, V. Arginase, nitric oxide synthase, and novel inhibitors of L-arginine metabolism in immune modulation. In Cancer Immunotherapy; Academic Press: London, UK, 2013; pp. 597–634. [Google Scholar]
- Lee, E.J.; Lee, Y.R.; Joo, H.K.; Cho, E.J.; Choi, S.; Sohn, K.C.; Lee, S.D.; Park, J.B.; Jeon, B.H. Arginase II inhibited lipopolysaccharide-induced cell death by regulation of iNOS and Bcl-2 family proteins in macrophages. Mol. Cells 2013, 35, 396–401. [Google Scholar] [CrossRef]
- Donghia, R.; Campanella, A.; Bonfiglio, C.; Cuccaro, F.; Tatoli, R.; Giannelli, G. Protective role of lycopene in subjects with liver disease: NUTRIHEP Study. Nutrients 2024, 16, 562. [Google Scholar] [CrossRef]
- Ko, K.; Yang, H.; Noureddin, M.; Iglesia-Ara, A.; Xia, M.; Wagner, C.; Luka, Z.; Mato, J.M.; Lu, S.C. Changes in S-adenosylmethionine and GSH homeostasis during endotoxemia in mice. Lab. Investig. 2008, 88, 1121–1129. [Google Scholar] [CrossRef]
- Sewerynek, E.; Melchiorri, D.; Chen, L.; Reiter, R.J. Melatonin reduces both basal and bacterial lipopolysaccharide-induced lipid peroxidation in vitro. Free Radic. Biol. Med. 1995, 19, 903–909. [Google Scholar] [CrossRef]
- Leal, M.; Shimada, A.; Ruíz, F.; González de Mejía, E. Effect of lycopene on lipid peroxidation and glutathione-dependent enzymes induced by T-2 toxin in vivo. Toxicol. Lett. 1999, 109, 1–10. [Google Scholar] [CrossRef]
- Lauková, L.; Konečná, B.; Janovičová, Ľ.; Vlková, B.; Celec, P. Deoxyribonucleases and their applications in biomedicine. Biomolecules 2020, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Thimmulappa, R.K.; Lee, H.; Rangasamy, T.; Reddy, S.P.; Yamamoto, M.; Kensler, T.W.; Biswal, S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Investig. 2006, 116, 984–995. [Google Scholar] [CrossRef]
- Tomasi, M.L.; Ryoo, M.; Iglesias Ara, H.; Ko, K.S.; Lu, S.C. Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. Free Radic. Biol. Med. 2014, 68, 148–158. [Google Scholar] [CrossRef]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Lian, F.; Wang, X.D. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int. J. Cancer 2008, 123, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Ma, J.; Xv, Q.; Gao, H.; Yin, H.; Yan, G.; Jiang, X.; Yu, W. Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system. Redox Biol. 2022, 57, 102494. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Qiu, J.; Wei, S.; Liu, M.; Wang, Q.; Wang, P.; Sha, B.; Wang, H.; Shi, Y.; Zhou, J.; et al. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in Kupffer cells. Ann. Transl. Med. 2021, 9, 631. [Google Scholar] [CrossRef]
- He, L.H.; Yao, D.H.; Wang, L.Y.; Zhang, L.; Bai, X.L. Gut microbiome-mediated alteration of immunity, inflammation, and metabolism involved in the regulation of non-alcoholic fatty liver disease. Front. Microbiol. 2021, 12, 761836. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.J.A.; Santos, A.; Prada, P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology 2016, 31, 283–293. [Google Scholar] [CrossRef]
- Shahid, A.; Chambers, S.; Scott-Thomas, A.; Bhatia, M. Gut Microbiota and liver dysfunction in sepsis: The role of inflammatory mediators and therapeutic approaches. Int. J. Mol. Sci. 2024, 25, 13415. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Liu, M.; Zhao, H.; Sun, Y. Lycopene prevents non-alcoholic fatty liver disease through regulating hepatic NF-κB/NLRP3 inflammasome pathway and intestinal microbiota in mice fed with high-fat and high-fructose diet. Front. Nutr. 2023, 10, 1120254. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chen, M.S.; Zhu, H.M.; Liu, R.Q.; Hu, Z.Y.; Yang, S.J.; Wang, X.Q.; Cheng, Y.; Song, Y.J.; Mao, X.Y.; et al. SIRT3 promotes mitophagy to attenuate fumonisin B1-induced chicken hepatocyte senescence and antagonism of lycopene. J. Hazard. Mater. 2025, 497, 139557. [Google Scholar] [CrossRef]


| Serum Parameter | Control | Lyc (6 mg/kg) | LPS (10 mg/kg) | LPS (10 mg/kg) + Lyc (6 mg/kg) |
|---|---|---|---|---|
| ALT (U/L) | 49 ± 5.2 | 51.1 ± 4.7 | 212 ± 39.1 * | 145 ± 22.8 #,** |
| AST (U/L) | 138 ± 17.1 | 152 ± 21.8 | 753 ± 158.5 * | 499 ± 187 ##,* |
| γ-GT (U/L) | 2.4 ± 0.12 | 2.2 ± 0.18 | 3.2 ± 0.4 ** | 3.2 ± 0.6 ** |
| Total bilirubin (μmol/L) | 1.9 ± 0.33 | 1.9 ± 0.6 | 2.1 ± 0.6 | 2.25 ± 0.5 |
| Direct bilirubin (μmol/L) | 0.53± 0.13 | 0.39 ± 0.05 | 0.48 ± 0.13 | 0.51 ± 0.19 |
| Serum Parameter | Control | Lyc (6 mg/kg) | LPS (10 mg/kg) | LPS (10 mg/kg) + Lyc (6 mg/kg) |
|---|---|---|---|---|
| XO (IU/mg of proteins) | 0.98 ± 0.26 | 1.1 ± 0.17 | 2.24 ± 0.41 * | 1.21 ± 0.4 # |
| MPO (OD/mg of proteins) | 80 ± 7.8 | 92 ± 11.5 | 162 ± 15.9 * | 88 ± 17 # |
| TBARS (μmol/ mg of proteins) | 1.7 ± 0.33 | 1.7 ± 0.6 | 3.1 ± 0.6 * | 1.55 ± 0.5 # |
| PCC (μmol/ mg of proteins) | 5.9 ± 1.8 | 8.4 ± 5.1 | 27.8 ± 6.1 * | 19.9 ± 5.8 ##,* |
| CAT (IU/mg of proteins) | 1.17 ± 0.1 | 1.24 ± 0.2 | 0.52 ± 0.1 * | 1.02 ± 0.2 # |
| SOD (% decrease) | 100 ± 7.4 | 102 ± 5.3 | 54.9 ± 8.5 * | 82.3 ± 6.1 ##,** |
| Serum Parameter | Control | Lyc (6 mg/kg) | LPS (10 mg/kg) | LPS (10 mg/kg) + Lyc (6 mg/kg) |
|---|---|---|---|---|
| DNase I (IU/g of proteins) | 4.1 ± 0.6 | 4.6 ± 0.2 | 9.5 ± 0.7 * | 5.6 ± 0.8 #,*** |
| DNase II (IU/g of proteins) | 5.6 ± 0.5 | 5.1 ± 0.7 | 15.6 ± 4.4 * | 7.9 ± 2.5 ##,** |
| NF-κB (pg/mg of proteins) | 29.9 ± 11.5 | 33.7 ± 7.8 | 221.5 ± 33.8 * | 145.2 ± 19.4 #,* |
| IL-6 (pg/mg of proteins) | 1.3 ± 0.8 | 1.2 ± 0.2 | 6.5 ± 1.2 * | 3.4 ± 1.1 #,*** |
| TNF-α (pg/mg of proteins) | 32.5 ± 12.1 | 31.4 ± 8.1 | 105.5 ± 16.5 * | 43.9 ± 12.5 # |
| Nrf2 (pg/mg of proteins) | 400 ± 48 | 385 ± 26 | 256 ± 27 * | 298 ± 14 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tešić Rajković, S.; Rančić, A.; Stojanović, M.; Živadinović, J.; Ramić, I.; Nestorović, M.; Spasić, S.; Stanković, E.; Nagorni, I.; Brzački, V.; et al. Lycopene Mitigates Rat Liver Damage Induced by Lipopolysaccharide via Mechanisms Involving Oxidative Stress, Inflammation, and Apoptosis. Curr. Issues Mol. Biol. 2025, 47, 914. https://doi.org/10.3390/cimb47110914
Tešić Rajković S, Rančić A, Stojanović M, Živadinović J, Ramić I, Nestorović M, Spasić S, Stanković E, Nagorni I, Brzački V, et al. Lycopene Mitigates Rat Liver Damage Induced by Lipopolysaccharide via Mechanisms Involving Oxidative Stress, Inflammation, and Apoptosis. Current Issues in Molecular Biology. 2025; 47(11):914. https://doi.org/10.3390/cimb47110914
Chicago/Turabian StyleTešić Rajković, Snežana, Andrija Rančić, Marko Stojanović, Jelena Živadinović, Ivana Ramić, Milica Nestorović, Sava Spasić, Elena Stanković, Ivan Nagorni, Vesna Brzački, and et al. 2025. "Lycopene Mitigates Rat Liver Damage Induced by Lipopolysaccharide via Mechanisms Involving Oxidative Stress, Inflammation, and Apoptosis" Current Issues in Molecular Biology 47, no. 11: 914. https://doi.org/10.3390/cimb47110914
APA StyleTešić Rajković, S., Rančić, A., Stojanović, M., Živadinović, J., Ramić, I., Nestorović, M., Spasić, S., Stanković, E., Nagorni, I., Brzački, V., Ilić, I., Dičić, M., & Sokolović, D. (2025). Lycopene Mitigates Rat Liver Damage Induced by Lipopolysaccharide via Mechanisms Involving Oxidative Stress, Inflammation, and Apoptosis. Current Issues in Molecular Biology, 47(11), 914. https://doi.org/10.3390/cimb47110914

