Regulatory Effects of Coffee/Chlorogenic Acid and Tea/Epigallocatechin-3-O-Gallate on microRNA in Association with Their Anticancer Activity
Abstract
1. Introduction
2. Observational Epidemiology of Coffee and Tea Consumption
2.1. Human Studies on Consumption of Coffee and Tea
2.2. Human Clinical Intervention Studies on Consumption of Coffee and Tea
3. Regulatory Effects of Coffee/CGA and Tea/EGCG on miRs
4. miR Targets in ROS-Associated Anticancer Pathways
5. Involvement of miRs in the Anticancer Pathway Associated with ROS-Scavenging Activities of CGA and EGCG
| Polyphenols | AMPK Up Stimulation/ Upregulation | ROS Down Suppression/ Downregulation | NF-κB Down Suppression/ Downregulation |
|---|---|---|---|
| CGA | Ping et al. [196] Silva et al. [197] Saadatagah et al. [198] | Wójciak et al. [199] Huimei Chen et al. [200] Sharma et al. [201] | Komeili-Movahhed et al. [202] Negm et al. [203] Lin et al. [204] |
| EGCG | Peng et al. [205] Tian et al. [206] Wang et al. [207] | Yuan et al. [208] Khan et al. [209] Haoxiang Chen et al. [210] | X. Li et al. [211] Z.-D. Li et al. [212] Zhang et al. [213] |
6. Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CGA | Chlorogenic acid |
| CI | 95% confidence interval |
| DNMT | DNA methyltransferase |
| EGCG | Epigallocatechin-3-O-gallate |
| HPVs | Human papillomaviruses |
| miR | MicroRNA |
| NGS | Next-generation sequencing |
| OGT | O-GlcNAc transferase |
| ROS | Reactive oxygen species |
| RR | Relative risk |
| RCT | Randomized controlled trial |
| 67LR | 67 kDa laminin receptor |
References
- Treskes, R.W.; Clausen, J.; Marott, J.L.; Jensen, G.B.; Holtermann, A.; Gyntelberg, F.; Jensen, M.T. Use of sugar in coffee and tea and long-term risk of mortality in older adult Danish men: 32 years of follow-up from a prospective cohort study. PLoS ONE 2023, 18, e0292882. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Ohishi, T.; Nakamura, Y.; Fukutomi, R.; Miyoshi, N. Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. Molecules 2022, 27, 3816. [Google Scholar] [CrossRef]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020, 25, 4553. [Google Scholar] [CrossRef]
- Hayakawa, S.; Ohishi, T.; Oishi, Y.; Isemura, M.; Miyoshi, N. Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants 2022, 11, 2352. [Google Scholar] [CrossRef]
- Zhao, L.-G.; Li, Z.-Y.; Feng, G.-S.; Ji, X.-W.; Tan, Y.-T.; Li, H.-L.; Gunter, M.J.; Xiang, Y.-B. Coffee drinking and cancer risk: An umbrella review of meta-analyses of observational studies. BMC Cancer 2020, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Hong, J. Prevention of chronic diseases by tea: Possible mechanisms and human relevance. Annu. Rev. Nutr. 2013, 33, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Ferhatosmanoğlu, A.; Selcuk, L.B.; Arıca, D.A.; Ersöz, Ş.; Yaylı, S. Frequency of skin cancer and evaluation of risk factors: A hospital-based study from Turkey. J. Cosmet. Dermatol. 2022, 21, 6920–6927. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Cristaldi, A.; Okatyeva, V.; Bianco, S.L.; Conti, G.O.; Zuccarello, P.; Copat, C.; Caltabiano, R.; Cannizzaro, M.; Ferrante, M. Dietary habits and thyroid cancer risk: A hospital-based case-control study in Sicily (South Italy). Food Chem. Toxicol. 2020, 146, 111778. [Google Scholar] [CrossRef]
- Yu, E.Y.W.; Dai, Y.; Wesselius, A.; van Osch, F.; Brinkman, M.; van den Brandt, P.; Grant, E.J.; White, E.; Weiderpass, E.; Gunter, M.; et al. Coffee consumption and risk of bladder cancer: A pooled analysis of 501,604 participants from 12 cohort studies in the BLadder Cancer Epidemiology and Nutritional Determinants (BLEND) international study. Eur. J. Epidemiol. 2020, 35, 523–535. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Zhao, L.; Mucci, L.A.; Giovannucci, E.L. Decaffeinated coffee consumption and risk of total and site-specific cancer. Ann. Oncol. 2025, 36, 819–831. [Google Scholar] [CrossRef]
- Hashemian, M.; Sinha, R.; Murphy, G.; Weinstein, S.J.; Liao, L.M.; Freedman, N.D.; Abnet, C.C.; Albanes, D.; Loftfield, E. Coffee and tea drinking and risk of cancer of the urinary tract in male smokers. Ann. Epidemiol. 2019, 34, 33–39. [Google Scholar] [CrossRef]
- Zhao, L.-G.; Li, Z.-Y.; Feng, G.-S.; Ji, X.-W.; Tan, Y.-T.; Li, H.-L.; Gunter, M.J.; Xiang, Y.-B. Tea Drinking and Risk of Cancer Incidence: A Meta-Analysis of Prospective Cohort Studies and Evidence Evaluation. Adv. Nutr. 2021, 12, 402–412. [Google Scholar] [CrossRef]
- Al-Zalabani, A.H.; Wesselius, A.; Yu, E.Y.-W.; van den Brandt, P.; Grant, E.J.; White, E.; Skeie, G.; Liedberg, F.; Weiderpass, E.; Zeegers, M.P. Tea consumption and risk of bladder cancer in the Bladder Cancer Epidemiology and Nutritional Determinants (BLEND) Study: Pooled analysis of 12 international cohort studies. Clin. Nutr. 2022, 41, 1122–1130. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Albers, R.; Chen, Y.-T.; Steineck, G.; Kellen, E.; Johnson, K.C.; Lu, C.-M.; Pohlabeln, H.; La Vecchia, C.; Porru, S.; et al. The Association between Tea Consumption and Bladder Cancer Risk Based on the Bladder Cancer Epidemiology and Nutritional Determinants (BLEND) International Consortium. Nutr. Cancer 2025, 77, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Milne, E.; Greenop, K.R.; Petridou, E.; Bailey, H.D.; Orsi, L.; Kang, A.Y.; Baka, M.; Bonaventure, A.; Kourti, M.; Metayer, C.; et al. Maternal consumption of coffee and tea during pregnancy and risk of childhood ALL: A pooled analysis from the childhood Leukemia International Consortium. Cancer Causes Control 2018, 29, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Karalexi, M.A.; Dessypris, N.; Clavel, J.; Metayer, C.; Erdmann, F.; Orsi, L.; Kang, A.Y.; Schüz, J.; Bonaventure, A.; Greenop, K.R.; et al. Coffee and tea consumption during pregnancy and risk of childhood acute myeloid leukemia: A Childhood Leukemia International Consortium (CLIC) study. Cancer Epidemiol. 2019, 62, 101581. [Google Scholar] [CrossRef] [PubMed]
- Msallem, E.; Pacquement, H.; Olivier, L.; Brugières, L.; Parker, J.L.; Garnier, N.; Lambilliotte, A.; Faure, L.; Clavel, J.; Bonaventure, A. Association Between Perinatal Factors and Childhood Lymphoma-A Pooled Analysis of the ESCALE and ESTELLE Studies (SFCE). Pediatr. Blood Cancer 2025, 72, e31439. [Google Scholar] [CrossRef]
- Flores-García, M.K.; Flores-Collado, G.; Mérida-Ortega, Á.; Ugalde-Resano, R.; González-Rocha, A.; Denova-Gutiérrez, E.; Muñoz-Aguirre, P.; Zapata-Tarrés, M.; López-Carrillo, L. Maternal and infant diet play a role in acute leukemia development: An expanded systematic review and meta-analysis. Clin. Nutr. ESPEN 2025, 66, 515–522. [Google Scholar] [CrossRef]
- Torres-Duarte, K.; Rodríguez, L.M.C.; Mora-Becerra, C.; Moreno-Chaparro, J.; Gaitán-Duarte, H. Association Between Maternal Diet During Pregnancy and the Risk of Childhood Acute Lymphoblastic Leukemia. An Overview. Cancer Rep. 2025, 8, e70231. [Google Scholar] [CrossRef]
- Pranata, R.; Feraldho, A.; Lim, M.A.; Henrina, J.; Vania, R.; Golden, N.; July, J. Coffee and tea consumption and the risk of glioma: A systematic review and dose-response meta-analysis. Br. J. Nutr. 2022, 127, 78–86. [Google Scholar] [CrossRef]
- Malmir, H.; Shayanfar, M.; Mohammad-Shirazi, M.; Tabibi, H.; Sharifi, G.; Esmaillzadeh, A. Tea and coffee consumption in relation to glioma: A case-control study. Eur. J. Nutr. 2019, 58, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Mirtavoos-Mahyari, H.; Salehipour, P.; Parohan, M.; Sadeghi, A.; Coffee, E.O. Black Tea and Green Tea Consumption on the Risk of Non-Hodgkin’s Lymphoma: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Nutr. Cancer 2019, 71, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Cote, D.J.; Bever, A.M.; Wilson, K.M.; Smith, T.R.; Smith-Warner, S.A.; Stampfer, M.J. A prospective study of tea and coffee intake and risk of glioma. Int. J. Cancer 2020, 146, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Onyije, F.M.; Dolatkhah, R.; Olsson, A.; Bouaoun, L.; Deltour, I.; Erdmann, F.; Bonaventure, A.; Scheurer, M.E.; Clavel, J.; Schüz, J. Risk factors for childhood brain tumours: A systematic review and meta-analysis of observational studies from 1976 to 2022. Cancer Epidemiol. 2024, 88, 102510. [Google Scholar] [CrossRef]
- Hu, Z.; Ye, J.; Shi, S.; Luo, C.; Wang, T.; Liu, Y.; Ye, J.; Sun, X.; Ke, Y.; Hou, C. Maternal smoking, consumption of alcohol, and caffeinated beverages during pregnancy and the risk of childhood brain tumors: A meta-analysis of observational studies. BMC Public Health 2024, 24, 1238. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Jin, Y.; Guo, J. Association between tea and coffee consumption and brain cancer risk: An updated meta-analysis. World J. Surg. Oncol. 2019, 17, 51. [Google Scholar] [CrossRef]
- Creed, J.H.; Smith-Warner, S.A.; Gerke, T.A.; Egan, K.M. A prospective study of coffee and tea consumption and the risk of glioma in the UK Biobank. Eur. J. Cancer 2020, 129, 123–131. [Google Scholar] [CrossRef]
- Wang, Z.; Arthur, R.; Shadyab, A.H.; Saquib, N.; Johnson, K.C.; Snetselaar, L.G.; Mu, L.; Chen, Z.; Luo, J. Association of tea-drinking habits with the risk of non-Hodgkin lymphoma: A prospective cohort study among postmenopausal women. Br. J. Nutr. 2023, 129, 1543–1551. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Yang, Y.; Xie, J.; Liu, M.; Zhang, Y.; Zhang, Y.; Zhao, Q. Does coffee, tea and caffeine consumption reduce the risk of incident breast cancer? A systematic review and network meta-analysis. Public Health Nutr. 2021, 24, 6377–6389. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yoo, D.M.; Min, C.; Choi, H.G. Association between Coffee Consumption/Physical Exercise and Gastric, Hepatic, Colon, Breast, Uterine Cervix, Lung, Thyroid, Prostate, and Bladder Cancer. Nutrients 2021, 13, 3927. [Google Scholar] [CrossRef]
- Do, T.M.; Nguyen, Q.H.N.; Le, N.H.D.; Nguyen, H.D.; Phung, A.H.T.; Tran, T.S.; Nguyen, T.V.; Ho-Pham, L.T. Association between dietary factors and breast cancer risk: A matched case-control study in Vietnam. BMC Cancer 2024, 24, 1224. [Google Scholar] [CrossRef] [PubMed]
- Schmit, S.L.; Nwogu, O.; Matejcic, M.; DeRenzis, A.; Lipworth, L.; Blot, W.J.; Raskin, L. Coffee consumption and cancer risk in African Americans from the Southern Community Cohort Study. Sci. Rep. 2020, 10, 17907. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liang, B.; Lam, T.H.; Cheng, K.K.; Zhang, W.; Xu, L. The mediating roles of anthropo-metabolic biomarkers on the association between beverage consumption and breast cancer risk. Nutr. J. 2025, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Nucci, D.; Abalsamo, A.; Acito, M.; Villarini, M.; Moretti, M.; Realdon, S. Green Tea Consumption and Risk of Breast Cancer and Recurrence-A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2018, 10, 1886. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Liao, Y.-H.; Lin, Y.; Liu, Q.; Xie, X.-M.; Tang, L.-Y.; Ren, Z.-F. Effects of tea consumption and the interactions with lipids on breast cancer survival. Breast Cancer Res. Treat. 2019, 176, 679–686. [Google Scholar] [CrossRef]
- van Die, M.D.; Bone, K.M.; Visvanathan, K.; Kyrø, C.; Aune, D.; Ee, C.; Paller, C.J. Phytonutrients and outcomes following breast cancer: A systematic review and meta-analysis of observational studies. JNCI Cancer Spectr. 2024, 8, pkad104. [Google Scholar] [CrossRef]
- Lamchabbek, N.; Elattabi, C.; Bour, A.; Chimera, B.; Boutayeb, S.; Belyamani, L.; Faure, E.; Huybrechts, I.; Khalis, M. Associations Between Dietary Factors and Breast Cancer Risk: A Systematic Review of Evidence from the MENA Region. Nutrients 2025, 17, 394. [Google Scholar] [CrossRef]
- Romelli, M.; Gnagnarella, P.; Gaeta, A.; Serrano, D.; Ermini, I.; Cavalcabo’, N.D.B.; Saieva, C.; Iadevaia, S.; Gandini, S.; Caini, S. Coffee and tea intake and survival of cancer patients: A systematic review and meta-analysis. Cancer Causes Control 2025. [Google Scholar] [CrossRef]
- Shin, S.; Fu, J.; Shin, W.-K.; Huang, D.; Min, S.; Kang, D. Association of food groups and dietary pattern with breast cancer risk: A systematic review and meta-analysis. Clin. Nutr. 2023, 42, 282–297. [Google Scholar] [CrossRef]
- Nordestgaard, A.T. Causal relationship from coffee consumption to diseases and mortality: A review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. Eur. J. Nutr. 2022, 61, 573–587. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Hung, H.-Y.; You, J.-F.; Chiang, J.-M.; Chin, C.-C. Common habitual behaviors and synchronous colorectal cancer risk: A retrospective case-control study. Int. J. Color. Dis. 2019, 34, 1421–1430. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhao, R.; Xia, L.; Cui, Y.-P.; Rao, Z.-Y.; Zhou, Y.; Wu, X.-T. Dose-response meta-analysis of coffee consumption and risk of colorectal adenoma. Eur. J. Clin. Nutr. 2020, 74, 297–306. [Google Scholar] [CrossRef]
- Mackintosh, C.; Yuan, C.; Ou, F.-S.; Zhang, S.; Niedzwiecki, D.; Chang, I.-W.; O’Neil, B.H.; Mullen, B.C.; Lenz, H.-J.; Blanke, C.D.; et al. Association of Coffee Intake With Survival in Patients With Advanced or Metastatic Colorectal Cancer. JAMA Oncol. 2020, 6, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chinnathambi, S.; Kumar, M.; Pandian, G.N. Food Intake and Colorectal Cancer. Nutr. Cancer 2023, 75, 1710–1742. [Google Scholar] [CrossRef] [PubMed]
- Oyelere, A.M.; Kok, D.E.; Bos, D.; Gunter, M.J.; Ferrari, P.; Keski-Rahkonen, P.; de Wilt, J.H.W.; van Halteren, H.K.; Kouwenhoven, E.A.; van Duijnhoven, F.J.B.; et al. Coffee consumption is associated with a reduced risk of colorectal cancer recurrence and all-cause mortality. Int. J. Cancer 2024, 154, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Lehoczki, A.; Laukkanen, J.A. Coffee consumption, cancer, and healthy aging: Epidemiological evidence and underlying mechanisms. GeroScience 2025, 47, 1517–1555. [Google Scholar] [CrossRef]
- Oyelere, A.M.; Verstraete, F.F.; Kok, D.E.; Bos, D.; Gunter, M.J.; de Wilt, J.H.W.; Keski-Rahkonen, P.; van Duijnhoven, F.J.B.; Kampman, E. Coffee consumption and mortality in colorectal cancer patients: Does the co-existence of cardiometabolic disease matter? Clin. Nutr. ESPEN 2025, 67, 62–70. [Google Scholar] [CrossRef]
- Rosato, V.; Guercio, V.; Bosetti, C.; Gracia-Lavedan, E.; Villanueva, C.M.; Polesel, J.; Toffoluti, F.; Moreno, V.; Martin, V.; Aragonés, N.; et al. Coffee consumption and colorectal cancer risk: A multicentre case-control study from Italy and Spain. Eur. J. Cancer Prev. 2021, 30, 204–210. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Murphy, N.; Key, T.J. Diet and colorectal cancer in UK Biobank: A prospective study. Int. J. Epidemiol. 2020, 49, 246–258. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Yan, G.; Xu, B.; Sun, M.; Feng, M. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: Univariable and multivariable Mendelian randomization. Eur. J. Nutr. 2024, 63, 469–483. [Google Scholar] [CrossRef]
- Wada, K.; Oba, S.; Tsuji, M.; Goto, Y.; Mizuta, F.; Koda, S.; Uji, T.; Hori, A.; Tanabashi, S.; Matsushita, S.; et al. Green tea intake and colorectal cancer risk in Japan: The Takayama study. Jpn. J. Clin. Oncol. 2019, 49, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Quang, L.N.; Hien, N.Q.; Quang, N.T.; Chung, N.T. Active Lifestyle Patterns Reduce the Risk of Colorectal Cancer in the North of Vietnam: A Hospital-Based Case-Control Study. Cancer Control 2019, 26, 1073274819864666. [Google Scholar] [CrossRef] [PubMed]
- Nie, D.; He, X.; Zheng, H.; Deng, D.; He, F.; Li, R.; Ni, X.; Li, S.; Xu, F. Association between green tea intake and digestive system cancer risk in European and East Asian populations: A Mendelian randomization study. Eur. J. Nutr. 2024, 63, 1103–1111. [Google Scholar] [CrossRef]
- Gao, Y.; Zhai, P.; Jiang, F.; Zhou, F.; Wang, X. Association between coffee drinking and endometrial cancer risk: A meta-analysis. J. Obstet. Gynaecol. Res. 2022, 48, 774–795. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Cai, J.; Dong, Y.; Chen, H.; Bo, Z.; Zhao, X.; Xia, M.; Han, M. A multi-omic approach reveals utility of CD45 expression in prognosis and novel target discovery. Front. Genet. 2022, 13, 928328. [Google Scholar] [CrossRef]
- Crous-Bou, M.; Du, M.; Gunter, M.J.; Setiawan, V.W.; Schouten, L.J.; Shu, X.-O.; Wentzensen, N.; Bertrand, K.A.; Cook, L.S.; Friedenreich, C.M.; et al. Epidemiology of Endometrial Cancer Consortium (E2C2), Coffee consumption and risk of endometrial cancer: A pooled analysis of individual participant data in the Epidemiology of Endometrial Cancer Consortium (E2C2). Am. J. Clin. Nutr. 2022, 116, 1219–1228. [Google Scholar] [CrossRef]
- Ong, J.-S.; Law, M.H.; An, J.; Han, X.; Gharahkhani, P.; Whiteman, D.C.; Neale, R.E.; MacGregor, S. Association between coffee consumption and overall risk of being diagnosed with or dying from cancer among >300,000 UK Biobank participants in a large-scale Mendelian randomization study. Int. J. Epidemiol. 2019, 48, 1447–1456. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, J.; Lin, K.; Lv, Y.; Wang, H.; Lin, J. Tea Consumption and the Risk of Endometrial Cancer: An Updated Meta-Analysis. Nutr. Cancer 2021, 73, 1849–1855. [Google Scholar] [CrossRef]
- Masukume, G.; Mmbaga, B.T.; Dzamalala, C.P.; Mlombe, Y.B.; Finch, P.; Nyakunga-Maro, G.; Mremi, A.; Middleton, D.R.S.; Narh, C.T.; Chasimpha, S.J.D.; et al. A very-hot food and beverage thermal exposure index and esophageal cancer risk in Malawi and Tanzania: Findings from the ESCCAPE case-control studies. Br. J. Cancer 2022, 127, 1106–1115. [Google Scholar] [CrossRef]
- Carter, P.; Yuan, S.; Kar, S.; Vithayathil, M.; Mason, A.M.; Burgess, S.; Larsson, S.C. Coffee consumption and cancer risk: A Mendelian randomisation study. Clin. Nutr. 2022, 41, 2113–2123. [Google Scholar] [CrossRef]
- Inoue-Choi, M.; Ramirez, Y.; O’Connell, C.; de Gonzalez, A.B.; Dawsey, S.M.; Abnet, C.C.; Freedman, N.D.; Loftfield, E. Hot beverage intake and oesophageal cancer in the UK Biobank: Prospective cohort study. Br. J. Cancer 2025, 132, 652–659. [Google Scholar] [CrossRef]
- Kaimila, B.; Mulima, G.; Kajombo, C.; Salima, A.; Nietschke, P.; Pritchett, N.; Chen, Y.; Murphy, G.; Dawsey, S.M.; Gopal, S.; et al. Tobacco and other risk factors for esophageal squamous cell carcinoma in Lilongwe Malawi: Results from the Lilongwe esophageal cancer case: Control study. PLOS Glob. Public Health 2022, 2, e0000135. [Google Scholar] [CrossRef] [PubMed]
- Eser, S.; Özgür, S.; Shayan, N.A.; Abdianwall, M.H. Risk Factors Related to Esophageal Cancer, a Case-Control Study in Herat Province of Afghanistan. Arch. Iran. Med. 2022, 25, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Jia, G.; Zhou, X.; Yang, Z. Diet and Esophageal Cancer Risk: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. Adv. Nutr. 2022, 13, 2207–2216. [Google Scholar] [CrossRef] [PubMed]
- Martimianaki, G.; Bertuccio, P.; Alicandro, G.; Pelucchi, C.; Bravi, F.; Carioli, G.; Bonzi, R.; Rabkin, C.S.; Liao, L.M.; Sinha, R.; et al. Coffee consumption and gastric cancer: A pooled analysis from the Stomach cancer Pooling Project consortium. Eur. J. Cancer Prev. 2022, 31, 117–127. [Google Scholar] [CrossRef]
- Liu, M.; Song, S.-S.; Park, S. High Polygenic Risk Scores Positively Associated with Gastric Cancer Risk Interact with Coffee and Polyphenol Intake and Smoking Status in Korean Adults. Nutrients 2024, 16, 3263. [Google Scholar] [CrossRef]
- Kim, J.H.; Jun, S.; Kim, J. Dietary intake and cancer incidence in Korean adults: A systematic review and meta-analysis of observational studies. Epidemiol. Health 2023, 45, e2023102. [Google Scholar] [CrossRef]
- Poorolajal, J.; Moradi, L.; Mohammadi, Y.; Cheraghi, Z.; Gohari-Ensaf, F. Risk factors for stomach cancer: A systematic review and meta-analysis. Epidemiol. Health 2020, 42, e2020004. [Google Scholar] [CrossRef]
- Pelucchi, C.; La Vecchia, C.; Bonzi, R.; Negri, E.; Corso, G.; Boccia, S.; Boffetta, P.; Camargo, M.C.; Curado, M.P.; Lunet, N.; et al. StoP Project Working Group, The global gastric cancer consortium: An update from the Stomach cancer Pooling (StoP) project. Eur. J. Cancer Prev. 2024, 33, 433–437. [Google Scholar] [CrossRef]
- Sasazuki, S.; Tamakoshi, A.; Matsuo, K.; Ito, H.; Wakai, K.; Nagata, C.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Inoue, M.; et al. Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan, Green tea consumption and gastric cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn. J. Clin. Oncol. 2012, 42, 335–346. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H.; Zhou, L.; Li, G.; Yi, D.; Zhang, Y.; Wu, Y.; Liu, X.; Wu, X.; Song, Q.; et al. Association between green tea intake and risk of gastric cancer: A systematic review and dose-response meta-analysis of observational studies. Public Health Nutr. 2017, 20, 3183–3192. [Google Scholar] [CrossRef]
- Tanaka, K.; Tamakoshi, A.; Sugawara, Y.; Mizoue, T.; Inoue, M.; Sawada, N.; Matsuo, K.; Ito, H.; Naito, M.; Nagata, C.; et al. Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan, Coffee, green tea and liver cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn. J. Clin. Oncol. 2019, 49, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Bhurwal, A.; Rattan, P.; Yoshitake, S.; Pioppo, L.; Reja, D.; Dellatore, P.; Rustgi, V. Inverse Association of Coffee with Liver Cancer Development: An Updated Systematic Review and Meta-analysis. J. Gastrointestin. Liver Dis. 2020, 29, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, E.K.J.; Volterrani, D. Coffee Consumption and Cancer Risk: An Assessment of the Health Implications Based on Recent Knowledge. Med. Princ. Pract. 2021, 30, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef]
- Cai, X.; Li, X.; Liang, C.; Zhang, M.; Dong, Z.; Yu, W. The effect of metabolism-related lifestyle and clinical risk factors on digestive system cancers in East Asian populations: A two-sample Mendelian randomization analysis. Sci. Rep. 2024, 14, 9474. [Google Scholar] [CrossRef]
- Chen, J.-G.; Zhang, Y.-H.; Lu, J.-H.; Kensler, T.W. Liver Cancer Etiology: Old Issues and New Perspectives. Curr. Oncol. Rep. 2024, 26, 1452–1468. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Tan, Y.-T.; Liu, D.-K.; Gao, L.-F.; Li, H.-L.; Xiang, Y.-B. Cumulative consumption of tea is associated with lower risk of liver cancer: Updated results from the Shanghai Women’s Health Study. Int. J. Cancer 2023, 152, 1115–1123. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Christopher, C.N.; Tabung, F.K.; Bao, W.; Garcia, D.O.; Shadyab, A.H.; Saquib, N.; Neuhouser, M.L.; Tinker, L.F.; et al. Association of dietary insulinemic and inflammatory potential with risk of liver cancer and chronic liver disease mortality in postmenopausal women: A prospective cohort study. Am. J. Clin. Nutr. 2023, 118, 530–537. [Google Scholar] [CrossRef]
- Seow, W.J.; Koh, W.-P.; Jin, A.; Wang, R.; Yuan, J.-M. Associations between tea and coffee beverage consumption and the risk of lung cancer in the Singaporean Chinese population. Eur. J. Nutr. 2019, 59, 3083–3091. [Google Scholar] [CrossRef]
- Bunjaku, J.; Lama, A.; Pesanayi, T.; Shatri, J.; Chamberlin, M.; Hoxha, I. Lung Cancer and Lifestyle Factors: Umbrella Review. Hematol. Oncol. Clin. N. Am. 2024, 38, 171–184. [Google Scholar] [CrossRef]
- Jabbari, M.; Salari-Moghaddam, A.; Bagheri, A.; Larijani, B.; Esmaillzadeh, A. A systematic review and dose-response meta-analysis of prospective cohort studies on coffee consumption and risk of lung cancer. Sci. Rep. 2024, 14, 14991. [Google Scholar] [CrossRef]
- Jin, S.; Je, Y. Coffee Consumption and Risk of Lung Cancer: A Meta-Analysis of Prospective Cohort Studies. Nutr. Cancer 2024, 76, 552–562. [Google Scholar] [CrossRef]
- Huang, C.-C.; Lai, C.-Y.; Lin, I.-H.; Tsai, C.-H.; Tsai, S.-M.; Lam, K.-L.; Wang, J.-Y.; Chen, C.-C.; Wong, R.-H. Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes 2022, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gao, Z.; Liu, H.; An, L.; Yang, T.; Zhang, B.; Liu, G.; Sun, D. Associations of lifestyle factors with oral cancer risk: An umbrella review. J. Stomatol. Oral. Maxillofac. Surg. 2025, 126, 102234. [Google Scholar] [CrossRef] [PubMed]
- Neetha, M.C.; Panchaksharappa, M.G.; Pattabhiramasastry, S.; Shivaprasad, N.V.; Venkatesh, U.G. Chemopreventive Synergism between Green Tea Extract and Curcumin in Patients with Potentially Malignant Oral Disorders: A Double-blind, Randomized Preliminary Study. J. Contemp. Dent. Pract. 2020, 21, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.L.; Jeong, G.H.; Yang, J.W.; Lee, K.H.; Kronbichler, A.; van der Vliet, H.J.; Grosso, G.; Galvano, F.; Aune, D.; Kim, J.Y.; et al. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2020, 11, 1437–1452. [Google Scholar] [CrossRef]
- Shafiei, F.; Salari-Moghaddam, A.; Milajerdi, A.; Larijani, B.; Esmaillzadeh, A. Coffee and caffeine intake and risk of ovarian cancer: A systematic review and meta-analysis. Int. J. Gynecol. Cancer 2019, 29, 579–584. [Google Scholar] [CrossRef]
- Huang, C.; Bu, H.; Wang, Y.; Chu, R.; Zhao, W.; Liu, Y.; Wu, H.; Yao, S. Association between coffee and tea consumption and ovarian cancer incidence: A prospective analysis in the PLCO dataset. Int. J. Cancer 2024, 155, 1033–1044. [Google Scholar] [CrossRef]
- Nagle, C.M.; Ibiebele, T.I.; Bandera, E.V.; Cramer, D.; Doherty, J.A.; Giles, G.G.; Goodman, M.T.; Hanley, G.E.; Harris, H.R.; Jensen, A.; et al. Pre-diagnosis tea and coffee consumption and survival after a diagnosis of ovarian cancer: Results from the Ovarian Cancer Association Consortium. Br. J. Cancer 2024, 131, 1043–1049. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, K.; Zhong, J.; Tang, S.; Xu, S.; Lu, W.; Wu, Y.; Xia, D. Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies. Nutrients 2023, 15, 403. [Google Scholar] [CrossRef]
- Gersekowski, K.; DeFazio, A.; Friedlander, M.; Obermair, A.; Webb, P.M. Green tea consumption, primary treatment outcome and survival after a diagnosis of ovarian cancer. J. Epidemiol. Community Health 2025, 79, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Gregg, J.R.; Kim, J.; Logothetis, C.; Hanash, S.; Zhang, X.; Manyam, G.; Muir, K.; Group, U.K.P.S.C.; Giles, G.G.; Stanford, J.L.; et al. Coffee Intake, Caffeine Metabolism Genotype, and Survival Among Men with Prostate Cancer. Eur. Urol. Oncol. 2023, 6, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Papadimitriou, N.; Lagiou, P.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; Murphy, N.; Gunter, M.; Freisling, H.; Tzoulaki, I.; et al. Coffee and tea consumption and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 2019, 144, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Grammatikopoulou, M.G.; Gkiouras, K.; Papageorgiou, S.Τ.; Myrogiannis, I.; Mykoniatis, I.; Papamitsou, T.; Bogdanos, D.P.; Goulis, D.G. Dietary Factors and Supplements Influencing Prostate Specific-Antigen (PSA) Concentrations in Men with Prostate Cancer and Increased Cancer Risk: An Evidence Analysis Review Based on Randomized Controlled Trials. Nutrients 2020, 12, 2985. [Google Scholar] [CrossRef]
- Perletti, G.; Magri, V.; Vral, A.; Stamatiou, K.; Trinchieri, A. Green tea catechins for chemoprevention of prostate cancer in patients with histologically-proven HG-PIN or ASAP. Concise review and meta-analysis. Arch. Ital. Urol. Androl. 2019, 91, 153–156. [Google Scholar] [CrossRef]
- Filippini, T.; Malavolti, M.; Borrelli, F.; Izzo, A.A.; Fairweather-Tait, S.J.; Horneber, M.; Vinceti, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2020, 3, CD005004. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Wang, Y.; Xu, Y. Effect of dietary antioxidants on the risk of prostate cancer. Systematic review and network meta-analysis. Nutr. Hosp. 2023, 40, 657–667. [Google Scholar] [CrossRef]
- Rhee, J.; Lim, R.K.; Purdue, M.P. Coffee consumption and risk of renal cancer: A meta-analysis of cohort evidence. Cancer Causes Control 2022, 33, 101–108. [Google Scholar] [CrossRef]
- Chen, Y.; Abe, S.K.; Inoue, M.; Yamaji, T.; Iwasaki, M.; Nomura, S.; Hashizume, M.; Tsugane, S.; Sawada, N.; Group, J.P.C.S. Green tea and coffee consumption and risk of kidney cancer in Japanese adults. Sci. Rep. 2022, 12, 20274. [Google Scholar] [CrossRef]
- Oh, C.C.; Jin, A.; Yuan, J.-M.; Koh, W.-P. Coffee, tea, caffeine, and risk of nonmelanoma skin cancer in a Chinese population: The Singapore Chinese Health Study. J. Am. Acad. Dermatol. 2019, 81, 395–402. [Google Scholar] [CrossRef]
- Paiva, M.; Yumeen, S.; Kahn, B.J.; Nan, H.; Cho, E.; Saliba, E.; Qureshi, A. Coffee, Citrus, and Alcohol: A Review of What We Drink and How it May Affect our Risk for Skin Cancer. Yale J. Biol. Med. 2023, 96, 205–210. [Google Scholar] [CrossRef]
- Shao, C.C.; Luo, D.; Pang, G.D.; Xiao, J.; Yang, X.R.; Zhang, Y.; Jia, H.Y. A dose-response meta-analysis of coffee consumption and thyroid cancer occurrence. Int. J. Food Sci. Nutr. 2020, 71, 176–185. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Alghamdi, M.A.; Cayssials, V.; Franceschi, S.; Almquist, M.; Hennings, J.; Sandström, M.; Tsilidis, K.K.; Weiderpass, E.; Boutron-Ruault, M.-C.; et al. Coffee and tea drinking in relation to the risk of differentiated thyroid carcinoma: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2019, 58, 3303–3312. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, P.; Liu, H.; Li, T.; Wang, H.; Jiang, D.; Liu, L.; Ye, H. Coffee and Risk of Pancreatic Cancer: Insights from Two-Sample and Multivariable Mendelian Randomization Analyses. Nutrients 2024, 16, 3723. [Google Scholar] [CrossRef]
- Yu, X.; Bao, Z.; Zou, J.; Dong, J. Coffee consumption and risk of cancers: A meta-analysis of cohort studies. BMC Cancer 2011, 11, 96. [Google Scholar] [CrossRef]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef]
- Hayakawa, S.; Saito, K.; Miyoshi, N.; Ohishi, T.; Oishi, Y.; Miyoshi, M.; Nakamura, Y. Anti-Cancer Effects of Green Tea by Either Anti- or Pro- Oxidative Mechanisms. Asian Pac. J. Cancer Prev. 2016, 17, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Q.; Hu, J.; Zhang, F.; Yu, Y.; Ma, L. Green Tea and Epigallocatechin Gallate (EGCG) for Cancer Prevention: A Systematic Review and Meta-Analysis. Am. J. Chin. Med. 2025, 53, 1755–1784. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Li, S.; Kang, X.; Deng, J.; Yang, H.; Chen, F.; Jiang, J.; Zhang, J.; Li, W. Phase I study of chlorogenic acid injection for recurrent high-grade glioma with long-term follow-up. Cancer Biol. Med. 2023, 20, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Samavat, S.; Ashtary-Larky, D.; Naeini, F.; Nazarian, B.; Kashkooli, S.; Clark, C.C.T.; Bagheri, R.; Asbaghi, O.; Babaali, M.; Goudarzi, M.A.; et al. The effects of green coffee bean extract on blood pressure and heart rate: A systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab. Syndr. 2024, 18, 103120. [Google Scholar] [CrossRef]
- Gupta, A.; Atanasov, A.G.; Li, Y.; Kumar, N.; Bishayee, A. Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action. Pharmacol. Res. 2022, 186, 106505. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, N.; Tanabe, H.; Suzuki, T.; Saeki, K.; Hara, Y. Applications of a Standardized Green Tea Catechin Preparation for Viral Warts and Human Papilloma Virus-Related and Unrelated Cancers. Molecules 2020, 25, 2588. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.-S.; Yoo, J.; Huh, S.-W.; Kim, C.-K.; Lee, J.-M.; Namkoong, S.-E.; Bae, S.-M.; Lee, I.P. Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur. J. Cancer Prev. 2003, 12, 383–390. [Google Scholar] [CrossRef]
- Noman, A.M.; Sultan, M.T.; Mazhar, A.; Baig, I.; Javaid, J.; Hussain, M.; Imran, M.; Alsagaby, S.A.; Al Abdulmonem, W.; Mujtaba, A.; et al. Anticancer Molecular Mechanisms of Epigallocatechin Gallate: An Updated Review on Clinical Trials. Food Sci. Nutr. 2025, 13, e70735. [Google Scholar] [CrossRef]
- Sinicrope, F.A.; Viggiano, T.R.; Buttar, N.S.; Song, L.M.W.K.; Schroeder, K.W.; Kraichely, R.E.; Larson, M.V.; Sedlack, R.E.; Kisiel, J.B.; Gostout, C.J.; et al. Randomized Phase II Trial of Polyphenon E versus Placebo in Patients at High Risk of Recurrent Colonic Neoplasia. Cancer Prev. Res. 2021, 14, 573–580. [Google Scholar] [CrossRef]
- Hernandes, L.C.; Machado, A.R.T.; Tuttis, K.; Ribeiro, D.L.; Aissa, A.F.; Dévoz, P.P.; Antunes, L.M.G. Caffeic acid and chlorogenic acid cytotoxicity, genotoxicity and impact on global DNA methylation in human leukemic cell lines. Genet. Mol. Biol. 2020, 43, e20190347. [Google Scholar] [CrossRef]
- Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 2006, 27, 269–277. [Google Scholar] [CrossRef]
- Pal, D.; Sur, S.; Roy, R.; Mandal, S.; Panda, C.K. Epigallocatechin gallate in combination with eugenol or amarogentin shows synergistic chemotherapeutic potential in cervical cancer cell line. J. Cell. Physiol. 2018, 234, 825–836. [Google Scholar] [CrossRef]
- Nandakumar, V.; Vaid, M.; Katiyar, S.K. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 2011, 32, 537–544. [Google Scholar] [CrossRef]
- Kuzuhara, T.; Sei, Y.; Yamaguchi, K.; Suganuma, M.; Fujiki, H. DNA and RNA as new binding targets of green tea catechins. J. Biol. Chem. 2006, 281, 17446–17456. [Google Scholar] [CrossRef]
- Sakamoto, N.; Honma, R.; Sekino, Y.; Goto, K.; Sentani, K.; Ishikawa, A.; Oue, N.; Yasui, W. Non-coding RNAs are promising targets for stem cell-based cancer therapy. Non-Coding RNA Res. 2017, 2, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Bai, M.; Sun, Z.; Yao, N.; Zhang, A.; Guo, S.; Asemi, Z. Epigallocatechin-3-gallate and cancer: Focus on the role of microRNAs. Cancer Cell Int. 2023, 23, 241. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.W.; Yan, F.; Zhong, X.; Mazumder, P.B.; Xu-Monette, Z.Y.; Zou, D.; Young, K.H.; Ramos, K.S.; Li, Y. Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the etiology of multiple myeloma. Mol. Carcinog. 2015, 54, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Al-Maghout, T.; Bissinger, R.; Zeng, N.; Pelzl, L.; Salker, M.S.; Cheng, A.; Singh, Y.; Lang, F. Epigallocatechin-3-gallate (EGCG) up-regulates miR-15b expression thus attenuating store operated calcium entry (SOCE) into murine CD4+ T cells and human leukaemic T cell lymphoblasts. Oncotarget 2017, 8, 89500–89514. [Google Scholar] [CrossRef]
- Tsang, W.P.; Kwok, T.T. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J. Nutr. Biochem. 2010, 21, 140–146. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.-L.; Xue, N.-N.; Li, C.; Guo, H.-H.; Ren, T.-K.; Zhan, Y.; Li, W.-B.; Zhang, J.; Chen, X.-G.; et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 2019, 9, 6745–6763. [Google Scholar] [CrossRef]
- Mirzaaghaei, S.; Foroughmand, A.M.; Saki, G.; Shafiei, M. Combination of Epigallocatechin-3-gallate and Silibinin: A Novel Approach for Targeting Both Tumor and Endothelial Cells. ACS Omega 2019, 4, 8421–8430. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Xue, J.; Zhou, X.; Luo, L.; Ma, Q.; Chen, Y.-F.; Zhang, J.; Zhang, S.-L.; Zhao, L. Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro. Antimicrob. Agents Chemother. 2017, 61, e01347-16. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Asim, M.; Hafeez, B.B.; Adhami, V.M.; Tarapore, R.S.; Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J. 2011, 25, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Fix, L.N.; Shah, M.; Efferth, T.; Farwell, M.A.; Zhang, B. MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60. Cancer Genom. Proteom. 2010, 7, 261–277. [Google Scholar]
- El Gizawy, H.A.; Boshra, S.A.; Mostafa, A.; Mahmoud, S.H.; Ismail, M.I.; Alsfouk, A.A.; Taher, A.T.; Al-Karmalawy, A.A. Pimenta dioica (L.) Merr. Bioactive Constituents Exert Anti-SARS-CoV-2 and Anti-Inflammatory Activities: Molecular Docking and Dynamics, In Vitro, and In Vivo Studies. Molecules 2021, 26, 5844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Wang, W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol. 2016, 37, 4373–4382. [Google Scholar] [CrossRef]
- Banerjee, S.; Mandal, A.K.A. Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Front. Genet. 2022, 13, 995046. [Google Scholar] [CrossRef]
- Li, B.-B.; Huang, G.-L.; Li, H.-H.; Kong, X.; He, Z.-W. Epigallocatechin-3-gallate Modulates MicroRNA Expression Profiles in Human Nasopharyngeal Carcinoma CNE2 Cells. Chin. Med. J. 2017, 130, 93–99. [Google Scholar] [CrossRef]
- Dharshini, L.C.P.; Mandal, A.K.A. Regulation of gene expression by modulating microRNAs through Epigallocatechin-3-gallate in cancer. Mol. Biol. Rep. 2024, 51, 230. [Google Scholar] [CrossRef]
- Zan, L.; Chen, Q.; Zhang, L.; Li, X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 2019, 10, 374–382. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Y.; Liu, M.; Yan, Q.; Zhao, W.; Yang, P.; Gao, Q.; Wei, J.; Zhao, W.; Ma, L. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp. Ther. Med. 2018, 17, 1742–1748. [Google Scholar] [CrossRef]
- Nakayama, T.; Funakoshi-Tago, M.; Tamura, H. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs. Oncol. Lett. 2017, 14, 1109–1114. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, D.; Wan, X.; Bai, Y.; Yuan, C.; Wang, T.; Yuan, D.; Zhang, C.; Liu, C. Chlorogenic Acid Suppresses miR-155 and Ameliorates Ulcerative Colitis through the NF-κB/NLRP3 Inflammasome Pathway. Mol. Nutr. Food Res. 2020, 64, e2000452. [Google Scholar] [CrossRef]
- Luque-Badillo, A.C.; Hernandez-Tapia, G.; Ramirez-Castillo, D.A.; Espinoza-Serrano, D.; Cortes-Limon, A.M.; Cortes-Gallardo, J.P.; Jacobo-Velázquez, D.A.; Martinez-Fierro, M.L.; Rios-Ibarra, C.P. Gold nanoparticles enhance microRNA 31 detection in colon cancer cells after inhibition with chlorogenic acid. Oncol. Lett. 2021, 22, 742. [Google Scholar] [CrossRef] [PubMed]
- Baselga-Escudero, L.; Blade, C.; Ribas-Latre, A.; Casanova, E.; Suárez, M.; Torres, J.L.; Salvadó, M.J.; Arola, L.; Arola-Arnal, A. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res. 2014, 42, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fang, Y.; Yu, J.; Chang, X. Hawthorn polyphenols reduce high glucose-induced inflammation and apoptosis in ARPE-19 cells by regulating miR-34a/SIRT1 to reduce acetylation. J. Food Biochem. 2021, 45, e13623. [Google Scholar] [CrossRef] [PubMed]
- Toden, S.; Tran, H.-M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget 2016, 7, 16158–16171. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, X.; Cao, N.; Chen, C.; Yi, J.; Hao, L.; Ji, Y.; Liu, X.; Lu, J. EGCG enhances cancer cells sensitivity under 60Coγ radiation based on miR-34a/Sirt1/p53. Food Chem. Toxicol. 2019, 133, 110807. [Google Scholar] [CrossRef]
- Mostafa, S.M.; Gamal-Eldeen, A.M.; El Maksoud, N.A.; Fahmi, A.A. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. An. Acad. Bras. Cienc. 2020, 92, e20200574. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Ai, W.; Banik, N.L.; Ray, S.K. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem. Res. 2013, 38, 420–432. [Google Scholar] [CrossRef]
- Zhou, D.-H.; Wang, X.; Feng, Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr. Cancer 2014, 66, 636–644. [Google Scholar] [CrossRef]
- Khedr, N.F.; Zahran, E.S.; Ebeid, A.M.; Melek, S.T.; Werida, R.H. Effect of green coffee on miR-133a, miR-155 and inflammatory biomarkers in obese individuals. Diabetol. Metab. Syndr. 2024, 16, 256. [Google Scholar] [CrossRef]
- Suetsugu, F.; Tadokoro, T.; Fujita, K.; Fujihara, S.; Sasaki, K.; Omayu, E.; Nakatani, K.; Koyama, Y.; Kozuka, K.; Matsui, T.; et al. Antitumor Effects of Epigallocatechin-3-Gallate on Colorectal Cancer: An In Vitro and In Vivo Study. Anticancer Res. 2025, 45, 2937–2947. [Google Scholar] [CrossRef]
- Zhou, N.; Yuan, Y.; Lin, H.; Wang, J.; Lin, H.; Ashktorab, H.; Smoot, D.; Jin, Z.; Zhuang, S.; Qin, Y. Epigallocatechin Gallate Induces miR-192/215 Suppression of EGR1 in Gastric Cancer. Anticancer Res. 2025, 45, 1935–1951. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ping, Z.; Xuemei, G.; Hongjuan, M.; Yi, H.; Xiaoli, L.; Zhongxiang, Z. Chlorogenic acid regulates the proliferation and migration of high-grade serous ovarian cancer cells through modulating the miR199a5p/DDR1 axis. Acta Biochim. Pol. 2022, 69, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.; Mandal, A.K.A. Next-Generation Sequencing Reveals the Role of Epigallocatechin-3-Gallate in Regulating Putative Novel and Known microRNAs Which Target the MAPK Pathway in Non-Small-Cell Lung Cancer A549 Cells. Molecules 2019, 24, 368. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Jordan, H.R.; Tollefsbol, T.O. Effects of SAHA and EGCG on Growth Potentiation of Triple-Negative Breast Cancer Cells. Cancers 2018, 11, 23. [Google Scholar] [CrossRef]
- Arffa, M.L.; Zapf, M.A.; Kothari, A.N.; Chang, V.; Gupta, G.N.; Ding, X.; Al-Gayyar, M.M.; Syn, W.; Elsherbiny, N.M.; Kuo, P.C.; et al. Epigallocatechin-3-Gallate Upregulates miR-221 to Inhibit Osteopontin-Dependent Hepatic Fibrosis. PLoS ONE 2016, 11, e0167435. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wang, H.-H.; Chen, T.-H.; Chiang, M.-C.; Hung, P.-H.; Chen, Y.-J. Involvement of MicroRNA-296 in the Inhibitory Effect of Epigallocatechin Gallate against the Migratory Properties of Anoikis-Resistant Nasopharyngeal Carcinoma Cells. Cancers 2020, 12, 973. [Google Scholar] [CrossRef]
- Kang, Q.; Tong, Y.; Gowd, V.; Wang, M.; Chen, F.; Cheng, K.-W. Oral administration of EGCG solution equivalent to daily achievable dosages of regular tea drinkers effectively suppresses miR483-3p induced metastasis of hepatocellular carcinoma cells in mice. Food Funct. 2021, 12, 3381–3392. [Google Scholar] [CrossRef]
- Jiang, P.; Xu, C.; Chen, L.; Chen, A.; Wu, X.; Zhou, M.; Haq, I.U.; Mariyam, Z.; Feng, Q. EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells. Mol. Carcinog. 2018, 57, 1835–1844. [Google Scholar] [CrossRef]
- Shaalan, Y.M.; Handoussa, H.; Youness, R.A.; Assal, R.A.; El-Khatib, A.H.; Linscheid, M.W.; El Tayebi, H.M.; Abdelaziz, A.I. Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat. Prod. Res. 2018, 32, 2217–2220. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Chen, Y.-J.; Chang, W.-A.; Li, W.-M.; Ke, H.-L.; Wu, W.-J.; Kuo, P.-L. Effects of Epigallocatechin Gallate (EGCG) on Urinary Bladder Urothelial Carcinoma-Next-Generation Sequencing and Bioinformatics Approaches. Medicina 2019, 55, 768. [Google Scholar] [CrossRef]
- Sasaki, K.; Fujita, K.; Fujihara, S.; Iwama, H.; Kitaoka, A.; Suetsugu, F.; Mimura, S.; Tani, J.; Morishita, A.; Masaki, T.; et al. The Polyphenol (-)-Epigallocatechin-3-gallate (EGCG) Inhibits the Proliferation of Gastric Cancer Cells and Alters microRNA Signatures. Anticancer Res. 2025, 45, 2925–2936. [Google Scholar] [CrossRef]
- Yamada, S.; Tsukamoto, S.; Huang, Y.; Makio, A.; Kumazoe, M.; Yamashita, S.; Tachibana, H. Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci. Rep. 2016, 6, 19225. [Google Scholar] [CrossRef] [PubMed]
- Davalos, V.; Moutinho, C.; Villanueva, A.; Boque, R.; Silva, P.; Carneiro, F.; Esteller, M. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 2012, 31, 2062–2074. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-C.; Wentzel, E.A.; Kent, O.A.; Ramachandran, K.; Mullendore, M.; Lee, K.H.; Feldmann, G.; Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J.; et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 2007, 26, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Khiewkamrop, P.; Phunsomboon, P.; Richert, L.; Pekthong, D.; Srisawang, P. Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int. 2018, 18, 46. [Google Scholar] [CrossRef]
- Weiss, J. The health system in Africa: Poor medicine and large problems. Dtsch. Med. Wochenschr. 2009, 134, p42. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, Y.; Sun, Y.; Liu, P. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J. Pharmacol. Sci. 2019, 140, 128–136. [Google Scholar] [CrossRef]
- Tan, M.; Wu, J.; Cai, Y. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochem. Biophys. Res. Commun. 2013, 438, 673–679. [Google Scholar] [CrossRef]
- Yao, S.; Gao, M.; Wang, Z.; Wang, W.; Zhan, L.; Wei, B. Upregulation of MicroRNA-34a Sensitizes Ovarian Cancer Cells to Resveratrol by Targeting Bcl-2. Yonsei Med. J. 2021, 62, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-F.; Fu, J.-Y.; Han, L.; Gao, G.-B.; Zhang, W.-X.; Yu, S.-M.; Li, N.; Li, Y.-J.; Lu, Y.-F.; Ding, X.-F.; et al. The Antipsychotic Drug Aripiprazole Suppresses Colorectal Cancer by Targeting LAMP2a to Induce RNH1/miR-99a/mTOR-Mediated Autophagy and Apoptosis. Adv. Sci. 2024, 11, e2409498. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Gong, J.; Ding, C.; Chen, G. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145. Mol. Med. Rep. 2015, 12, 3127–3131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Yang, Z.; Du, H.; Wu, Z.; Gong, J.; Yan, J.; Zheng, Q. MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells. Biochem. Biophys. Res. Commun. 2012, 427, 444–449. [Google Scholar] [CrossRef]
- Ravindran, F.; Koroth, J.; Manjunath, M.; Narayan, S.; Choudhary, B. Curcumin derivative ST09 modulates the miR-199a-5p/DDR1 axis and regulates proliferation and migration in ovarian cancer cells. Sci. Rep. 2021, 11, 23025. [Google Scholar] [CrossRef]
- Soubani, O.; Ali, A.S.; Logna, F.; Ali, S.; Philip, P.A.; Sarkar, F.H. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 2012, 33, 1563–1571. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, S.; Wu, H.; Zhang, L.; Dai, X.; Hu, J.; Xue, J.; Liu, T.; Liang, Y.; Wu, G. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PLoS ONE 2013, 8, e78344. [Google Scholar] [CrossRef]
- Ding, X.; Zhong, T.; Jiang, L.; Huang, J.; Xia, Y.; Hu, R. miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol. Med. Rep. 2018, 17, 7005–7016. [Google Scholar] [CrossRef]
- Hameiri-Grossman, M.; Porat-Klein, A.; Yaniv, I.; Ash, S.; Cohen, I.J.; Kodman, Y.; Haklai, R.; Elad-Sfadia, G.; Kloog, Y.; Chepurko, E.; et al. The association between let-7, RAS and HIF-1α in Ewing Sarcoma tumor growth. Oncotarget 2015, 6, 33834–33848. [Google Scholar] [CrossRef]
- Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget 2015, 6, 27214–27226. [Google Scholar] [CrossRef]
- Zhang, W.; Bai, W.; Zhang, W. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin. Transl. Oncol. 2014, 16, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.S.; Shahryari, V.; Deng, G.; Thamminana, S.; Saini, S.; Majid, S.; Chang, I.; Hirata, H.; Ueno, K.; Yamamura, S.; et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS ONE 2012, 7, e31060. [Google Scholar] [CrossRef]
- Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol. 2013, 15, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jia, Z.; Li, A.; Jenkins, G.; Yang, X.; Hu, J.; Guo, W. Resveratrol repressed viability of U251 cells by miR-21 inhibiting of NF-κB pathway. Mol. Cell. Biochem. 2013, 382, 137–143. [Google Scholar] [CrossRef]
- Shi, D.-L.; Shi, G.-R.; Xie, J.; Du, X.-Z.; Yang, H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol. Cells 2016, 39, 611–618. [Google Scholar] [CrossRef]
- Gandhy, S.U.; Kim, K.; Larsen, L.; Rosengren, R.J.; Safe, S. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 2012, 12, 564. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Khandkar, M.; Banik, N.L.; Ray, S.K. Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells. Brain Res. 2012, 1454, 1–13. [Google Scholar] [CrossRef]
- Dhar, S.; Hicks, C.; Levenson, A.S. Resveratrol and prostate cancer: Promising role for microRNAs. Mol. Nutr. Food Res. 2011, 55, 1219–1229. [Google Scholar] [CrossRef]
- Song, M.; Zhou, W.; Fan, J.; Jia, C.; Xiong, W.; Wei, H.; Tao, S. Diarrheal microbiota-derived extracellular vesicles drive intestinal homeostasis dysfunction via miR-125b/NF-κB-mediated macrophage polarization. Gut Microbes 2025, 17, 2541036. [Google Scholar] [CrossRef]
- Zhou, J.; Lei, Y.; Chen, J.; Zhou, X. Potential ameliorative effects of epigallocatechin-3-gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats. Int. Immunopharmacol. 2018, 64, 162–169. [Google Scholar] [CrossRef]
- Wang, S.-S.; Feng, L.; Hu, B.-G.; Lu, Y.-F.; Wang, W.-M.; Guo, W.; Suen, C.-W.; Jiao, B.-H.; Pang, J.-X.; Fu, W.-M.; et al. miR-133a Promotes TRAIL Resistance in Glioblastoma via Suppressing Death Receptor 5 and Activating NF-κB Signaling. Mol. Ther. Nucleic Acids 2017, 8, 482–492. [Google Scholar] [CrossRef] [PubMed]
- de la Parra, C.; Castillo-Pichardo, L.; Cruz-Collazo, A.; Cubano, L.; Redis, R.; Calin, G.A.; Dharmawardhane, S. Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutr. Cancer 2016, 68, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Allegri, L.; Rosignolo, F.; Mio, C.; Filetti, S.; Baldan, F.; Damante, G. Effects of nutraceuticals on anaplastic thyroid cancer cells. J. Cancer Res. Clin. Oncol. 2018, 144, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Dubaybo, H.; Ali, S.; Goncalves, P.; Kollepara, S.L.; Sethi, S.; Philip, P.A.; Li, Y. Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer Res. 2013, 3, 465–477. [Google Scholar]
- Zhang, S.; Tang, D.; Zang, W.; Yin, G.; Dai, J.; Sun, Y.U.; Yang, Z.; Hoffman, R.M.; Guo, X. Synergistic Inhibitory Effect of Traditional Chinese Medicine Astragaloside IV and Curcumin on Tumor Growth and Angiogenesis in an Orthotopic Nude-Mouse Model of Human Hepatocellular Carcinoma. Anticancer Res. 2017, 37, 465–473. [Google Scholar] [CrossRef]
- Kim, O.-H.; Jeon, T.J.; Kang, H.; Chang, E.S.; Hong, S.A.; Kim, M.K.; Lee, H.J. hsa-mir-483-3p modulates delayed breast cancer recurrence. Sci. Rep. 2025, 15, 693. [Google Scholar] [CrossRef]
- Ping, P.; Yang, T.; Ning, C.; Zhao, Q.; Zhao, Y.; Yang, T.; Gao, Z.; Fu, S. Chlorogenic acid attenuates cardiac hypertrophy via up-regulating Sphingosine-1-phosphate receptor1 to inhibit endoplasmic reticulum stress. ESC Hear. Fail. 2024, 11, 1580–1593. [Google Scholar] [CrossRef]
- Silva, M.A.; Izidoro, M.; Bonifácio, B.S.; Schenkman, S. Untargeted Metabolomics of Epimastigote Forms of Trypanosoma cruzi. Bio-Protocol. 2025, 15, e5368. [Google Scholar] [CrossRef]
- Saadatagah, S.; Naderian, M.; Larouche, M.; Gaudet, D.; Kullo, I.J.; Ballantyne, C.M. Epidemiology and longitudinal course of chylomicronemia: Insights from NHANES and a large health care system. J. Clin. Lipidol. 2025, 19, 432–441. [Google Scholar] [CrossRef]
- Wójciak, M.; Paduch, R.; Drozdowski, P.; Wójciak, W.; Żuk, M.; Płachno, B.J.; Sowa, I. Antioxidant and Anti-Inflammatory Effects of Nettle Polyphenolic Extract: Impact on Human Colon Cells and Cytotoxicity Against Colorectal Adenocarcinoma. Molecules 2024, 29, 5000. [Google Scholar] [CrossRef]
- Chen, H.; Shi, J.; Tang, Y.; Chen, X.; Wang, Z.; Liu, Q.; Wu, K.; Yao, X. Exploring the effect of chlorogenic acid on oxidative stress and autophagy in dry eye mice via the AMPK/ULK1 pathway. Eur. J. Pharmacol. 2025, 991, 177311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, P.; Islam, A.; Bhardwaj, M.; Kumar, V.; Prakash, H. The neuroprotective role of chlorogenic acid and Fisetin in differentiated neuronal cell line-SHSY5Y against amyloid-β-induced neurotoxicity. Toxicol. Vitr. 2025, 109, 106110. [Google Scholar] [CrossRef] [PubMed]
- Komeili-Movahhed, T.; Heidari, F.; Moslehi, A. Chlorogenic acid alleviated testicular inflammation and apoptosis in tunicamycin induced endoplasmic reticulum stress. Physiol. Int. 2023, 110, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Negm, A.; El-Neanaey, A.A.; Khadr, A.E.S.; Kamel, M.A.E.N.; Ismail, A.E.-H.A.; El Sayed, I.E.T.; Darwish, W.S.; Eldaim, M.A.A.; Okaz, R.S.; Bahr, M.H.; et al. Chlorogenic Acid Ameliorates CCl4-induced Liver Fibrosis by Modulating the PI3K/AKT/mTOR Autophagy Pathway. Anticancer Agents Med. Chem. 2025, 25, 913–920. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Y.; Ding, X.; Xu, H.; Xiong, C.; Tang, M.; Peng, Y. Chlorogenic acid mitigates DHEA-induced oxidative stress in granulosa cells and alleviates ferroptosis via the NF-κB signaling pathway in PCOS. Eur. J. Pharmacol. 2025, 1002, 177870. [Google Scholar] [CrossRef]
- Peng, Y.; Qi, Z.; Xu, Y.; Yang, X.; Cui, Y.; Sun, Q. AMPK and metabolic disorders: The opposite roles of dietary bioactive components and food contaminants. Food Chem. 2024, 437, 137784. [Google Scholar] [CrossRef]
- Tian, C.; Feng, Y.; Chen, T.; Zhang, Z.; He, X.; Jiang, L.; Liu, M. EGCG Restores Keratinocyte Autophagy to Promote Diabetic Wound Healing through the AMPK/ULK1 Pathway. Front. Biosci. 2023, 28, 324. [Google Scholar] [CrossRef]
- Wang, H.; An, Y.; Rajput, S.A.; Qi, D. Resveratrol and (-)-Epigallocatechin-3-gallate Regulate Lipid Metabolism by Activating the AMPK Pathway in Hepatocytes. Biology 2024, 13, 368. [Google Scholar] [CrossRef]
- Yuan, M.; Hu, L.; Zhu, C.; Li, Q.; Tie, H.; Ruan, H.; Wu, T.; Zhang, H.; Xu, L. Comparison and Assessment of Anti-Inflammatory and Antioxidant Capacity Between EGCG and Phosphatidylcholine-Encapsulated EGCG. J. Cosmet. Dermatol. 2025, 24, e16628. [Google Scholar] [CrossRef]
- Khan, I.M.; Gul, H.; Khan, S.; Nassar, N.; Khalid, A.; Swelum, A.A.; Wang, Z. Green tea polyphenol epigallocatechin-3-gallate mediates an antioxidant response via Nrf2 pathway in heat-stressed poultry: A review. Poult. Sci. 2025, 104, 105071. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Q.; Li, M.; Ren, M.; Liu, S.; An, G.; Ren, Y.; Liu, P.; Du, L.; Sun, X.; et al. Polyphenol-based self-assembled nanoparticles treating uveitis by inflammation-oxidative stress suppression. Mater. Today Bio. 2025, 33, 102052. [Google Scholar] [CrossRef]
- Li, X.; Hou, Y.; Han, G.; Yang, Y.; Wang, S.; Lv, X.; Gao, M. S100A4/NF-κB axis mediates the anticancer effect of epigallocatechin-3-gallate in platinum-resistant ovarian cancer. IScience 2024, 27, 108885. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-D.; Liu, F.; Zeng, Y.; Liu, Y.; Luo, W.; Yuan, F.; Li, S.; Li, Q.; Chen, J.; Fujita, M.; et al. EGCG suppresses PD-1 expression of T cells via inhibiting NF-κB phosphorylation and nuclear translocation. Int. Immunopharmacol. 2024, 133, 112069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S.; Zhang, T.; Zi, M.; Wang, S.; Zhang, Q. Green tea epigallocatechin gallate attenuate metabolic dysfunction-associated steatotic liver disease by regulation of pyroptosis. Lipids Health Dis. 2025, 24, 180. [Google Scholar] [CrossRef] [PubMed]
- Nederveen, J.P.; Mastrolonardo, A.J.; Xhuti, D.; Di Carlo, A.; Manta, K.; Fuda, M.R.; Tarnopolsky, M.A. Novel Multi-Ingredient Supplement Facilitates Weight Loss and Improves Body Composition in Overweight and Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 3693. [Google Scholar] [CrossRef]
- Srinivasan, D.; Balakrishnan, R.; Chauhan, A.; Kumar, J.; Girija, D.M.; Shrestha, R.; Shrestha, R.; Subbarayan, R. Epithelial-Mesenchymal Transition in Cancer: Insights Into Therapeutic Targets and Clinical Implications. Medcomm 2025, 6, e70333. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Morikawa-Ichinose, T.; Lee, S.-U.; Tatsumi, Y.; Ichitani, M.; Kumazoe, M.; Tachibana, H.; Fujimura, Y. Comprehensive microRNA analysis toward exploring a new functional component in Matcha green tea. Food Chem. Mol. Sci. 2025, 10, 100265. [Google Scholar] [CrossRef]
- Fujimura, Y.; Kumazoe, M.; Tachibana, H. 67-kDa Laminin Receptor-Mediated Cellular Sensing System of Green Tea Polyphenol EGCG and Functional Food Pairing. Molecules 2022, 27, 5130. [Google Scholar] [CrossRef]





| Cancer Type | Coffee/CGA Upregulation | Coffee/CGA Downregulation | Coffee/CGA No Association | Tea/EGCG Upregulation | Tea/EGCG Downregulation | Tea/EGCG No Association |
|---|---|---|---|---|---|---|
| Bladder cancer | Zhao et al. [5] Yu et al. [9] Zhang et al. [10] | Hashemian et al. [11] | Hashemian et al. [11] Zhao et al. [12] Al-Zalabani et al. [13] Zhang et al. [14] | |||
| Blood cancer/ lymphocytic leukemia/childhood acute lymphoblastic leukemia/acute myeloid ** | Zhao et al. [5] Milne et al. [15] Karalexi et al. [16] Msallem et al. [17] Flores-García et al. [18] Torres-Duarte et al. [19] | Pranata et al. [20] Malmir et al. [21] | Mirtavoos-Mahyari et al. [22] | Malmir et al. [21] Cote et al. [23] Pranata et al. [20] Zhao et al. [12] | Karalexi et al. [16] Mirtavoos-Mahyari et al. [22] Milne et al. [15] | |
| Brain cancer/glioma | Onyije et al. [24] Hu et al. [25] | Song et al. [26] Pranata et al. [20] | Song et al. [26] Pranata et al. [20] Zhao et al. [12] Cote et al. [23] Creed et al. [27] | Wang et al. [28] | ||
| Breast cancer | Wang et al. [29] Kim et al. [30] Do et al. [31] | Schmit et al. [32] Lin et al. [33] | Wang et al. [29] Gianfredi et al. [34] Zhang et al. [35] van Die et al. [36] Lamchabbek et al. [37] Lin et al. [33] Romelli et al. [38] | Shin et al. [39] | ||
| Colorectal cancer | Nordestgaard [40] | Kuo et al. [41] Wang et al. [42] Mackintosh et al. [43] Kim et al. [30] Kumar et al. [44] Oyelere et al. [45] Kunutsor et al. [46] Oyelere et al. [47] Zhang et al. [10] Romelli et al. [38] | Schmit et al. [32] Rosato et al. [48] Bradbury et al. [49] Liu et al. [50] | Wada et al. [51] Quang et al. [52] Romelli et al. [38] | Bradbury et al. [49] Nie et al. [53] | |
| Endometrial cancer | Zhao et al. [5] | Zhao et al. [5] Nordestgaard [40] Gao et al. [54] Ye et al. [55] Crous-Bou et al. [56] Kunutsor et al. [46] | Ong et al. [57] | Zhang et al. [58] | ||
| Esophageal cancer | Masukume et al. [59] Carter et al. [60] Inoue-Choi et al. [61] | Zhao et al. [12] | Kaimila et al. [62] Eser et al. [63] | Zhao et al. [12] Qin et al. [64] | Nie et al. [53] | |
| Gastric cancer | Martimianaki et al. [65] Liu et al. [66] | Kim et al. [30] Kim et al. [67] | Poorolajal et al. [68] Liu et al. [50] Pelucchi et al. [69] | Sasazuki et al. [70] Huang et al. [71] | Poorolajal et al. [68] | |
| Liver cancer | Zhao et al. [5] Tanaka et al. [72] Bhurwal et al. [73] Pauwels et al. [74] Papadimitriou et al. [75] Kim et al. [30] Cai et al. [76] Chen et al. [77] | Li et al. [78] X. Zhang et al. [79] Chen et al. [77] | Tanaka et al. [72] Nie et al. [53] | |||
| Lung cancer | Zhao et al. [5] Nordestgaard [40] Seow et al. [80] Bunjaku et al. [81] Jabbari et al. [82] Kunutsor et al. [46] | Schmit et al. [32] Jin et al. [83] | Seow et al. [80] Huang et al. [84] Bunjaku et al. [81] | |||
| Oral cancer | Xu et al. [85] | Neetha et al. [86] Kim et al. [87] Xu et al. [85] | ||||
| Ovarian cancer | Shafiei et al. [88] Huang et al. [89] | Nagle et al. [90] | Zheng et al. [91] Huang et al. [89] Gersekowski et al. [92] | |||
| Prostate cancer | Gregg et al. [93] Kunutsor et al. [46] Zhang et al. [10] | Schmit et al. [32] Sen et al. [94] | Grammatikopoulou et al. [95] Perletti et al. [96] Filippini et al. [97] Liu et al. [98] | Sen et al. [94] | ||
| Renal cancer | Rhee et al. [99] | Hashemian et al. [11] Chen et al. [100] | Hashemian et al. [11] | |||
| Skin cancer/ melanoma/non-melanoma | Oh et al. [101] Nordestgaard [40] Filippini et al. [97] Paiva et al. [102] | Ferhatosmanoglu et al. [7] | Oh et al. [101] | Filippini et al. [97] | ||
| Thyroid cancer | Shao et al. [103] Kim et al. [30] | Zamora-Ros et al. [104] | Fiore et al. [8] *** | Zamora-Ros et al. [104] | ||
| Pancreatic cancer | Liu et al. [105] | Nie et al. [53] |
| miR | Coffee/CGA Upregulation | Coffee/CGA Downregulation | Green Tea/EGCG Upregulation | Green Tea/EGCG Downregulation |
|---|---|---|---|---|
| miR-7-1 | Wang et al. [124] | |||
| miR-15a | Gordon et al. [125] | |||
| miR-15b | Zhang et al. [126] | |||
| miR-16 | Tsang et al. [127] | Gordon et al. [125] | ||
| miR-17 | Huang et al. [128] | |||
| miR-20a | Huang et al. [128] | Mirzaaghaei et al. [129] | ||
| miR-21 | Wang et al. [130] | Siddiqui et al. [131] Fix et al. [132] | ||
| miR-21-3p | El Gizawy et al. [133] | Zhu et al. [134] | Banerjee et al. [135] | |
| miR-22 | Li et al. [136] | |||
| miR-23b-5p | Dharshini et al. [137] | |||
| miR-25 | Gordon et al. [125] Zan et al. [138] | |||
| miR-27 | Dharshini et al. [137] | |||
| miR-27a | Fix et al. [132] | |||
| miR-29 | Zhu et al. [139] | |||
| miR-29a | Zhu et al. [139] | |||
| miR-30c | Nakayama et al. [140] | |||
| miR-30e-3p | Wang et al. [124] | |||
| miR-31 | Zeng et al. [141] Luque-Badillo et al. [142] | |||
| miR-33a | Baselga-Escudero et al. [143] | |||
| miR-34a | Liu et al. [144] | Toden et al. [145] Kang et al. [146] Mostafa et al. [147] | ||
| miR-92 | Dharshini et al. [137] Gordon et al. [125] | |||
| miR-92a | Mirzaaghaei et al. [129] | |||
| miR-93 | Huang et al. [128] | Chakrabarti et al. [148] | ||
| miR-98-5p | Zhou et al. [149] | |||
| miR-99a | Chakrabarti et al. [148] | |||
| miR-106b | Huang et al. [128] | Chakrabarti et al. [148] | ||
| miR-122 | Baselga-Escudero et al. [143] | |||
| miR-125b | Zhu et al. [139] | Zhu et al. [139] | ||
| miR-133a | Khedr et al. [150] | Wang et al. [124] | ||
| miR-141 | Gordon et al. [125] | |||
| miR-145 | Toden et al. [145] | |||
| miR-146-5p | Zhu et al. [134] | |||
| miR-155 | Zeng et al. [141] El Gizawy et al. [133] | |||
| miR-181a | Wang et al. [124] | |||
| miR-187-5p | Suetsugu et al. [151] | |||
| miR-192 | Zhou et al. [152] | |||
| miR-199-5p | Wang et al. [153] | |||
| miR-200a | Gordon et al. [125] | |||
| miR-200c | Toden et al. [145] | |||
| miR-203 | Zhu et al. [139] | Zhu et al. [139] | ||
| miR-205-3p | Li et al. [136] | |||
| miR-210 | Zhu et al. [139] | |||
| miR-215 | Zhou et al. [152] | |||
| miR-212-5p | Bhardwaj et al. [154] | |||
| miR-215 | Zhou et al. [152] | |||
| miR-218-5p | Zhu et al. [134] | Lewis et al. [155] | ||
| miR-221 | Arffa et al. [156] Tsang et al. [127] | |||
| miR-222 | Wang et al. [124] | |||
| miR-296 | Lin et al. [157] | |||
| miR-330 | Siddiqui et al. [131] | |||
| miR-483-3p | Kang et al. [158] | |||
| miR-485 | Jiang et al. [159] | |||
| miR-548m | Fix et al. [132] | |||
| miR-720 | Fix et al. [132] | |||
| miR-1275 | Shaalan et al. [160] | |||
| miR-3176 | Lee et al. [161] | Zhu et al. [134] | ||
| miR-5100 | Sasaki et al. [162] | |||
| miR-483-3p | Kang et al. [158] | |||
| let-7a | Yamada et al. [163] | |||
| let-7b | Yamada et al. [163] | |||
| let-7e | Yamada et al. [163] |
| NGS analysis of human breast cancer MDA-MB-231 cells [135] | |
| Upregulated by EGCG | miR-15a-3p, miR-18a-3p, miR-30c-5p, miR-122-5p, miR-129-2-3p, miR-130a-5p, miR-138-1-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-146a-3p, miR-150-5p, miR-155-5p, miR-184, miR-192-3p, miR-193b-5p, miR-199a-5p, miR-214-3p, miR-215-5p, miR-320a, miR-320c, miR-324-5p, miR-328-3p, miR-338-5p, miR-338-3p, miR-362-5p, miR-363-3p, miR-365b-5p, miR-365a-5p, miR-374b-5p, miR-378a-3p, miR-378c, miR-382-3p, miR-411-5p, miR-491-3p, miR-500b-3p, miR-548am-3p, miR-548ab, miR-550b-3p, miR-556-5p, miR-574-5p, miR-584-3p, miR-642a-5p, miR-664b-3p, miR-676-3p, miR-1233-3p, miR-1237-3p, miR-1249-3p, miR-1269a, miR-1272, miR-1273a, miR-1293, miR-1908-3p, miR-3074-3p, miR-3120-3p, miR-3135b, miR-3138, miR-3140-3p, miR-3145-3p, miR-3150a-5p, miR-3152-3p, miR-3155b, miR-3177-3p, miR-3184-3p, miR-3605-3p, miR-3620-5p, miR-3648, miR-3679-3p, miR-3684, miR-3909, miR-4284, miR-4436b-5p, miR-4466, miR-4485-3p, miR-4488, miR-4645-5p, miR-4661-5p, miR-4677-5p, miR-4707-5p, miR-4781-3p, miR-4791, miR-4999-5p, miR-5090, miR-5697, miR-6511a-3p, miR-6511b-5p, miR-6514-5p, miR-6515-5p, miR-6516-3p, miR-6716-3p, miR-6729-3p, miR-6739-3p, miR-6741-3p, miR-6753-5p, miR-6761-5p, miR-6769b-3p, miR-6786-3p, miR-6806-3p, miR-6811-5p, miR-6851-3p, miR-6854-3p, miR-6882-5p, miR-7111-3p, miR-7851-3p, let-7e-5p, let-7d-5p |
| Downregulated by EGCG | miR-17-3p, miR-19b-1-5p, miR-19b-3p, miR-21-3p, miR-26b-5p, miR-27a-3p, miR-27b-3p, miR-30c-2-3p, miR-30d-3p, miR-33a-3p, miR-33a-5p, miR-34b-5p, miR-99a-5p, miR-100-3p, miR-140-5p, miR-181b-3p, miR-190a-5p, miR-197-5p, miR-217, miR-218-1-3p, miR-296-3p, miR-301b-5p, miR-301a-3p, miR-335-5p, miR-362-3p, miR-369-3p, miR-378, miR-450a-5p, miR-489-3p, miR-508-3p, miR-516a-5p, miR-522-3p, miR-548u, miR-548ac, miR-548p, miR-551b-5p, miR-570-5p, miR-577, miR-588, miR-589-3p, miR-597-3p, miR-624-3p, miR-627-5p, miR-627-3p, miR-636, miR-653-3p, miR-708-5p, miR-762, miR-942-3p, miR-1260b, miR-1273e, miR-1273c, miR-1273h-5p, miR-1277-5p, miR-1284, miR-1538, miR-1914-3p, miR-1972, miR-1976, miR-2355-3p, miR-3064-5p, miR-3074-5p, miR-3127-5p, miR-3140-5p, miR-3149, miR-3163, miR-3190-3p, miR-3191-3p, miR-3199, miR-3529-3p, miR-3613-5p, miR-3619-3p, miR-3680-3p, miR-3690, miR-3918, miR-3944-3p, miR-4289, miR-4420, miR-4429, miR-4454, miR-4517, miR-4668-5p, miR-4684-5p, miR-4709-5p, miR-5001-3p, miR-5003-5p, miR-5006-3p, miR-5008-3p, miR-5196-3p, miR-5584-5p, miR-5584-3p, miR-5699-5p, miR-6513-5p, miR-6720-3p, miR-6726-3p, miR-6733-5p, miR-6735-5p, miR-6750-3p, miR-6783-5p, miR-6799-3p, miR-6802-3p, miR-6804-5p, miR-6814-5p, miR-6854-5p, miR-6856-3p, miR-6858-3p, miR-6871-3p, miR-6876-5p, miR-6879-3p, miR-6891-5p, miR-6895-5p, miR-7110-3p, miR-7155-5p, let-7i-3p |
| Microarray analysis of human nasopharyngeal carcinoma CNE2 cells [136] | |
| Upregulated by EGCG | miR-29b-1-5p, miR-34a, miR-210, miR-1202, miR-1207-5p, miR-1225-5p, miR-1246, miR-1915, miR-1973, miR-2861, miR-3162, miR-3196, miR-3656, miR-3665, miR-4281 |
| Downregulated by EGCG | miR-205-3p |
| Next-generation sequencing NGS of human urinary transitional cell carcinoma BFTC cells [161] | |
| Upregulated miRNA (>2-fold change) | miR-18a-3p, miR-22-3p, miR-31-5p, miR-93-3p, miR-185-3p, miR-484, miR-642a-5p, miR-1226-3p, miR-1285-3p, miR-3139, miR-3176 |
| Downregulated miRNA (>2-fold change) | miR-3116, miR-6724-5p |
| Microarray analysis of human breast cancer MCF-7 cells [132] | |
| Upregulated by Polyphenon-60 (>1.1-fold change) | let-7a, miR-107, miR-548m, miR-720, miR-1826, miR-1978, miR-1979 |
| Downregulated by Polyphenon-60 (>1.1-fold change) | miR-21, miR-25, miR-26b, miR-27a, miR-27b, miR-92a, miR-125a-5p, miR-200b, miR-203, miR-342-3p, miR-454, miR-1469, miR-1977, let-7c, let-7e, let-7g |
| miR | Dose in the Culture Medium Effective on miR | Target Candidate | Effect of miR on Target * ↑, Upregulation; ↓, Downregulation |
|---|---|---|---|
| miR-16 | 100 μM EGCG Tsang et al. [127] | Bcl-2 | ↓ Yang et al. [167] |
| miR-22 | 40 μM EGCG Li et al. [136] | Wnt/β-catenin | ↓ Zhang et al. [168] |
| miR-29 | 10 μg/mL EGCG Zhu et al. [139] | Wnt | ↓ Tan et al. [169] |
| miR-34a | 50 μM EGCG Chakrabarti et al. [148] | Bcl-2 | ↓ Yao et al. [170] |
| miR-99a | 50 μM EGCG Chakrabarti et al. [148] | mTOR | ↓ Hu et al. [171] |
| miR-145 | 100 μM EGCG Toden et al. [145] | Caspase ERK1/2 via PAK4 | ↑ Zhou et al. [172] ↓ Wang et al. [173] |
| miR-199-5a | 15–120 μM CGA (not specified) Wang et al. [153] | MMP via DDR1 | ↓ Ravindran et al. [174] |
| miR-200c | 100 μM EGCG Toden et al. [145] | PTEN VEGF via VEGFR2 AKT via KRAS | ↑ Soubani et al. [175] ↓ Shi et al. [176] ↓ Ding et al. [177] |
| let-7b | 10 μM EGCG Yamada et al. [163] | ERK | ↓ Hameiri-Grossman et al. [178] |
| miR | Dose in the Culture Medium Effective on miR Unless Otherwise Stated | Target Candidate | Effect of miR on Target * ↑, Upregulation; ↓, Downregulation |
|---|---|---|---|
| miR-20a | 25 μM CGA Huang et al. [128] 50 μg/mL EGCG Mirzaaghaei et al. [129] | p21 Huang et al. [128] PTEN Dhar et al. [179] | ↓ Huang et al. [128] ↑ Dhar et al. [179] |
| miR-21 | 5 mg/kg CGA in mice Wang et al. [130] 10 μg/mL Polyphenon-60 Fix et al. [132] | PTEN CUR: Zhang et al. [180] p21 Zaman et al. [181] Bcl-2 Liu et al. [182] NF-κB Li et al. [183] | ↓ Zhang et al. [180] ↓ Zaman et al. [181] ↑ Liu et al. [182] ↑ Li et al. [183] |
| miR-25 | 1 μM EGCG Gordon et al. [125] 10 μg/mL Polyphenon-60 Fix et al. [132] | p53 Gordon et al. [125] ERK1/2 via KLF4 Ding et al. [177] | ↓ Gordon et al. [125] ↑ Ding et al. [177] |
| miR-27a | 10 μg/mL Polyphenon-60 Fix et al. [132] | NFκB Shi et al. [184] EGFR, Bcl-2, NF-κB Gandhy et al. [185] | ↑ Shi et al. [184] ↑ Gandhy et al. [185] |
| miR-92 | 1 μM EGCG Gordon et al. [125] | p53 Gordon et al. [125] | ↓ Gordon et al. [125] |
| miR-93 | 50 μM CGA Huang et al. [128] 50 μM EGCG Chakrabarti et al. [148] | Caspases Chakrabarti et al. [186] p21 Huang et al. [128] | ↓ Chakrabarti et al. [186] ↓ Huang et al. [128] |
| miR-106b | 25 μM CGA Huang et al. [128] 50 μM EGCG Chakrabarti et al. [148] | p21 Huang et al. [128] PTEN Dhar et al. [187] | ↓ Huang et al. [128] ↓ Dhar et al. [187] |
| miR-125b | 40 μM EGCG Zhu et al. [139] | NF-κB [188] | ↑ Song et al. [188] |
| miR-133a | Green coffee extract containing CGA equivalent to 400 mg in RCT Khedr et al. [150] 50 mg/kg EGCG in rats Zhou et al. [189] | NF-κB [190] | ↑ Wang et al. [190] |
| miR-141 | 1 μM EGCG [125] | p53 Gordon et al. [125] | ↓ Gordon et al. [125] |
| miR-155 | 31.25 μM CGA [125] | NF-κB CGA: Zeng et al. [141] PTEN de la Parra et al. [191] | ↑ Zeng et al. [141] ↓ de la Parra et al. [191] |
| miR-221 Allegri et al. [77] | 50 μM EGCG [192] | PTEN Sarkar et al. [193] MMP2 Zhang et al. [194] | ↓ Sarkar et al. [193] ↑ Zhang et al. [194] |
| 483-3p Kang et al. | 30 μM EGCG [158] | VEGF via OGT Kim et al. [195] | ↑ Kim et al. [195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isemura, M.; Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Fukutomi, R.; Nakamura, Y. Regulatory Effects of Coffee/Chlorogenic Acid and Tea/Epigallocatechin-3-O-Gallate on microRNA in Association with Their Anticancer Activity. Curr. Issues Mol. Biol. 2025, 47, 898. https://doi.org/10.3390/cimb47110898
Isemura M, Hayakawa S, Ohishi T, Miyoshi N, Fukutomi R, Nakamura Y. Regulatory Effects of Coffee/Chlorogenic Acid and Tea/Epigallocatechin-3-O-Gallate on microRNA in Association with Their Anticancer Activity. Current Issues in Molecular Biology. 2025; 47(11):898. https://doi.org/10.3390/cimb47110898
Chicago/Turabian StyleIsemura, Mamoru, Sumio Hayakawa, Tomokazu Ohishi, Noriyuki Miyoshi, Ryuuta Fukutomi, and Yoriyuki Nakamura. 2025. "Regulatory Effects of Coffee/Chlorogenic Acid and Tea/Epigallocatechin-3-O-Gallate on microRNA in Association with Their Anticancer Activity" Current Issues in Molecular Biology 47, no. 11: 898. https://doi.org/10.3390/cimb47110898
APA StyleIsemura, M., Hayakawa, S., Ohishi, T., Miyoshi, N., Fukutomi, R., & Nakamura, Y. (2025). Regulatory Effects of Coffee/Chlorogenic Acid and Tea/Epigallocatechin-3-O-Gallate on microRNA in Association with Their Anticancer Activity. Current Issues in Molecular Biology, 47(11), 898. https://doi.org/10.3390/cimb47110898

