A Retrospective Assessment of Changes in Stroke Risk-Related Biomarkers in Individuals with Prediabetes from Durban, South Africa: Preliminary Findings
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Collection
2.3. Sample Size Calculation
- •
- n is the required sample size.
- •
- Z is the Z-score corresponding to the chosen confidence level.
- •
- P represents the assumed prevalence.
- •
- E is the desired margin of error.
2.4. Study Design
2.5. Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Study Participants
3.2. C-Reactive Protein (CRP) Concentration
3.3. Interleukin-6 (IL-6) Concentration
3.4. Fibrinogen Concentration
3.5. D-Dimer (D2D) Concentration
3.6. Calcium Binding Protein (S100B) Concentration
3.7. Correlation Analysis
3.8. Glial Fibrillary Acidic Protein (GFAP) Concentration
3.9. Neuron Specific Enolase (NSE) Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADA | American Diabetes Association |
| BREC | Biomedical Research Ethics Committee |
| CI | Confidence Level |
| CRP | C-reactive protein |
| CT | Computed tomography |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| GFAP | Glial fibrillary acidic protein |
| HbA1c | Glycated Haemoglobin |
| IFG | Impaired fasting glucose |
| IGT | Impaired glucose tolerance |
| IL-6 | Interleukin 6 |
| IQR | Interquartile Range |
| MRI | Magnetic resonance imaging |
| NPD | Non Prediabetic |
| NSE | Neuron-specific enolase |
| PD | Prediabetic |
| ROS | Reactive oxygen species |
| S100B | Calcium-binding protein B |
| SEM | Standard error of mean |
| T2D | Type 2 diabetic |
| T2DM | Type 2 diabetes mellitus |
| UKZN | University of KwaZulu-Natal |
| WHO | World Health Organization |
References
- Goyal, R.; Singhal, M.; Jialal, I. Type 2 Diabetes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pheiffer, C.; Pillay-van Wyk, V.; Joubert, J.D.; Levitt, N.; Nglazi, M.D.; Bradshaw, D. The prevalence of type 2 diabetes in South Africa: A systematic review protocol. BMJ Open 2018, 8, e021029. [Google Scholar] [CrossRef]
- Pheiffer, C.; Pillay-van Wyk, V.; Turawa, E.; Levitt, N.; Kengne, A.P.; Bradshaw, D. Prevalence of Type 2 Diabetes in South Africa: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5868. [Google Scholar] [CrossRef]
- Kone, N.; Cassim, N.; Maposa, I.; George, J.A. Diabetic control and compliance using glycated haemoglobin (HbA1C) testing guidelines in public healthcare facilities of Gauteng province, South Africa. PLoS ONE 2023, 18, e0278789. [Google Scholar] [CrossRef]
- Kenny, H.C.; Abel, E.D. Heart Failure in Type 2 Diabetes Mellitus. Circ. Res. 2019, 124, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Hastrup, S.; Hedegaard, J.N.; Andersen, G.; Rungby, J.; Johnsen, S.P. Type 2 diabetes mellitus in patients with ischemic stroke—A nationwide study. Diabet. Med. 2024, 41, e15337. [Google Scholar] [CrossRef]
- Mosenzon, O.; Cheng, A.Y.; Rabinstein, A.A.; Sacco, S. Diabetes and Stroke: What are the connections? J. Stroke 2023, 25, 26–38. [Google Scholar] [CrossRef]
- Murphy, S.J.; Werring, D.J. Stroke: Causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef]
- Bradshaw, D.; Norman, R.; Pieterse, D.; Levitt, N.S. Estimating the burden of disease attributable to diabetes in South Africa in 2000. S. Afr. Med. J. 2007, 97, 700–706. [Google Scholar] [CrossRef]
- Chen, R.; Ovbiagele, B.; Feng, W. Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. Am. J. Med. Sci. 2016, 351, 380–386. [Google Scholar] [CrossRef]
- Arboix, A.; Milian, M.; Oliveres, M.; García-Eroles, L.; Massons, J. Impact of female gender on prognosis in type 2 diabetic patients with ischemic stroke. Eur. Neurol. 2006, 56, 6–12. [Google Scholar] [CrossRef]
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef]
- Ménégaut, L.; Laubriet, A.; Crespy, V.; Leleu, D.; Pilot, T.; Van Dongen, K.; de Barros, J.-P.P.; Gautier, T.; Petit, J.-M.; Thomas, C.; et al. Inflammation and oxidative stress markers in type 2 diabetes patients with Advanced Carotid atherosclerosis. Cardiovasc. Diabetol. 2023, 22, 248. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010, 87, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.S.; Merkler, A.E.; Iadecola, C. Inflammation, Autoimmunity, Infection, and Stroke: Epidemiology and Lessons from Therapeutic Intervention. Stroke 2020, 51, 711–718. [Google Scholar] [CrossRef]
- den Hertog, H.M.; van Rossum, J.A.; van der Worp, H.B.; van Gemert, H.M.; de Jonge, R.; Koudstaal, P.J.; Dippel, D.W. C-reactive protein in the very early phase of acute ischemic stroke: Association with poor outcome and death. J. Neurol. 2009, 256, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Aref, H.M.A.; Fahmy, N.A.; Khalil, S.H.; Ahmed, M.F.; ElSadek, A.; Abdulghani, M.O. Role of interleukin-6 in ischemic stroke outcome. Egypt. J. Neurol. Psychiatry Neurosurg. 2020, 56, 12. [Google Scholar] [CrossRef]
- Nam, K.-W.; Kwon, H.-M.; Lee, Y.-S. Clinical significance of D-dimer levels during acute period in ischemic stroke. Thromb. J. 2023, 21, 55. [Google Scholar] [CrossRef]
- Peycheva, M.; Deneva, T.; Zahariev, Z. The role of fibrinogen in acute ischaemic stroke. Neurol. Neurochir. Pol. 2021, 55, 74–80. [Google Scholar] [CrossRef]
- Prasad, M.K.; Marandi, S.; Mishra, B.; Guria, R.T.; Kumar, A.; Birua, H.; Ray, H.N.; Dungdung, A.; Kumar, D.; Maitra, S. Association of Fibrinogen with Ischemic Stroke: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e34335. [Google Scholar] [CrossRef]
- Ayala-Guerrero, L.; García-delaTorre, P.; Sánchez-García, S.; Guzmán-Ramos, K. Serum Levels of Glial Fibrillary Acidic Protein Association with Cognitive Impairment and Type 2 Diabetes. Arch. Med. Res. 2022, 53, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Saxena, K.; Verma, M.; Bharosay, A. Correlative study between neuron-specific enolase and blood sugar level in ischemic stroke patients. J. Neurosci. Rural. Pract. 2011, 2, 50–54. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Liu, X.; Du, X.; Deng, B. Levels of serum S100B are associated with cognitive dysfunction in patients with type 2 diabetes. Aging 2020, 12, 4193–4203. [Google Scholar] [CrossRef]
- Sosibo, A.M.; Mzimela, N.C.; Ngubane, P.S.; Khathi, A. Prevalence and correlates of pre-diabetes in adults of mixed ethnicities in the South African population: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0278347. [Google Scholar] [CrossRef]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Gidey, G.; Hiruy, M.; Teklu, D.; Ramanathan, K.; Amare, H. Prevalence of Prediabetes and Related Modifiable Cardiovascular Risk Factors Among Employees of Ayder Comprehensive Specialized Hospital, Tigray, Northern Ethiopia. Diabetes Metab. Syndr. Obes. 2023, 16, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Sosibo, A.M.; Mzimela, N.C.; Ngubane, P.S.; Khathi, A. Prevalence of pre-diabetes in adults aged 25–45 years in a Durban-based clinical setting, South Africa: A retrospective study. Prim. Care Diabetes 2023, 17, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Mijajlović, M.D.; Aleksić, V.M.; Šternić, N.M.; Mirković, M.M.; Bornstein, N.M. Role of prediabetes in stroke. Neuropsychiatr. Dis. Treat. 2017, 13, 259–267. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Feng, S.; Yang, M.; Liu, S.; He, Y.; Deng, S.; Gong, Y. Oxidative stress as a bridge between age and stroke: A narrative review. J. Intensive Med. 2023, 3, 313–319. [Google Scholar] [CrossRef]
- Kezerle, L.; Tsadok, M.A.; Akriv, A.; Senderey, A.B.; Bachrach, A.; Leventer-Roberts, M.; Haim, M. Pre-Diabetes Increases Stroke Risk in Patients with Nonvalvular Atrial Fibrillation. J. Am. Coll. Cardiol. 2021, 77, 875–884. [Google Scholar] [CrossRef]
- Jansen van Vuuren, J.; Pillay, S.; Naidoo, A. Circulating Biomarkers in Long-Term Stroke Prognosis: A Scoping Review Focusing on the South African Setting. Cureus 2022, 14, e23971. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Pagana, K.; Pagana, T.; Pagana, T. Mosby’s Diagnostic & Laboratory Test Reference, 14th ed.; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Yin, J.-X.; Agbana, Y.L.; Sun, Z.-S.; Fei, S.-W.; Zhao, H.-Q.; Zhou, X.-N.; Chen, J.-H.; Kassegne, K. Increased interleukin-6 is associated with long COVID-19: A systematic review and meta-analysis. Infect. Dis. Poverty 2023, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Killeen, R.B.; Kok, S.J. D-Dimer Test. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ben Abdesselam, O.; Vally, J.; Adem, C.; Foglietti, M.-J.; Beaudeux, J.-L. Reference Values for Serum S-100B Protein Depend on the Race of Individuals. Clin. Chem. 2003, 49, 836–837. [Google Scholar] [CrossRef]
- Tybirk, L.; Hviid, C.V.B.; Knudsen, C.S.; Parkner, T. Serum GFAP-reference interval and preanalytical properties in Danish adults. Clin. Chem. Lab. Med. 2022, 60, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Zhang, W.; Xu, H.; Ling, Y.; Zhang, Q.; Pan, S. Correction of serum NSE reference intervals includes the unidentified hemolysis sample: 1-year data analysis from healthcare individuals. J. Clin. Lab. Anal. 2019, 33, e22997. [Google Scholar] [CrossRef]
- Gassasse, Z.; Smith, D.; Finer, S.; Gallo, V. Association between urbanisation and type 2 diabetes: An ecological study. BMJ Glob. Health 2017, 2, e000473. [Google Scholar] [CrossRef]
- van Sloten, T.T.; Sedaghat, S.; Carnethon, M.R.; Launer, L.J.; Stehouwer, C.D.A. Cerebral microvascular complications of type 2 diabetes: Stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020, 8, 325–336. [Google Scholar] [CrossRef]
- Freeman, A.M.; Acevedo, L.A.; Pennings, N. Insulin Resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights 2016, 11, 95–104. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Stanimirovic, J.; Radovanovic, J.; Banjac, K.; Obradovic, M.; Essack, M.; Zafirovic, S.; Gluvic, Z.; Gojobori, T.; Isenovic, E.R. Role of C-Reactive Protein in Diabetic Inflammation. Mediat. Inflamm. 2022, 2022, 3706508. [Google Scholar] [CrossRef]
- Badimon, L.; Peña, E.; Arderiu, G.; Padró, T.; Slevin, M.; Vilahur, G.; Chiva-Blanch, G. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front. Immunol. 2018, 9, 430. [Google Scholar] [CrossRef]
- Fonseca, J.E.; Santos, M.J.; Canhão, H.; Choy, E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun. Rev. 2009, 8, 538–542. [Google Scholar] [CrossRef]
- Zhang, H.; Dhalla, N.S. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, M.; Wang, C.; Liu, Y.; Naruse, K.; Takahashi, K. The Mechanisms of the Development of Atherosclerosis in Prediabetes. Int. J. Mol. Sci. 2021, 22, 4108. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Avgerinos, E.D.; Liapis, C.D. An Update on Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes. Biomark. Med. 2010, 4, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.C.; Chusney, G.D.; Thomas, S.M.; Burt, D. Plasma interleukin-6, tumour necrosis factor α and blood cytokine production in type 2 diabetes. Life Sci. 2000, 67, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, M.; Sun, Z.; Wang, X.; Miao, J.; Zheng, Z. The predictive value of TNF-α and IL-6 and the incidence of macrovascular complications in patients with type 2 diabetes. Acta Diabetol. 2012, 49, 3–7. [Google Scholar] [CrossRef]
- Rehman, K.; Akash, M.S.H.; Liaqat, A.; Kamal, S.; Qadir, M.I.; Rasul, A. Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 229–236. [Google Scholar] [CrossRef]
- Dijk, W.; Akkermans, R.; Heijdra, Y.; Weel, C.; Schermer, T.; Scheepers, P.; Lenders, J. The Acute Effect of Cigarette Smoking on the High-Sensitivity CRP and Fibrinogen Biomarkers in Chronic Obstructive Pulmonary Disease Patients. Biomark. Med. 2013, 7, 211–219. [Google Scholar] [CrossRef]
- Feng, D.; Liu, T.; Wang, H.; Karp, E.; Ling, W.; Chen, W.Q. Mediation role of C-reactive protein on the association between smoking quantity and type 2 diabetes in current Chinese smokers. J. Diabetes Res. 2014, 2014, 171538. [Google Scholar] [CrossRef]
- Dina, C.; Tit, D.M.; Radu, A.; Bungau, G.; Radu, A.F. Obesity, Dietary Patterns, and Cardiovascular Disease: A Narrative Review of Metabolic and Molecular Pathways. Curr. Issues Mol. Biol. 2025, 47, 440. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: A review of the pathophysiology and treatment of obesity. Am. J. Cardiovasc. Dis. 2021, 11, 504–529. [Google Scholar] [PubMed]
- Stark, K.; Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Nakae, R.; Murai, Y.; Yokobori, S. Biomarkers in Neurological Injury: Fibrinogen, Fibrinogen/Fibrin Degradation Products (FDPs), and D-dimer. In Biomarkers in Trauma, Injury and Critical Care; Rajendram, R., Preedy, V.R., Patel, V.B., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 43–57. [Google Scholar]
- Zhou, W.; Qu, C.; Liu, X.; Huang, J. Diagnostic value of D-dimer to fibrinogen ratio for pulmonary embolism in postpartum women. BMC Pregnancy Childbirth 2024, 24, 482. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases-Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2021, 23, 193. [Google Scholar] [CrossRef]
- Hou, H.; Xiang, X.; Pan, Y.; Li, H.; Meng, X.; Wang, Y. Association of Level and Increase in D-Dimer with All-Cause Death and Poor Functional Outcome After Ischemic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2021, 10, e018600. [Google Scholar] [CrossRef]
- Vilar, R.; Fish, R.J.; Casini, A.; Neerman-Arbez, M. Fibrin(ogen) in human disease: Both friend and foe. Haematologica 2020, 105, 284–296. [Google Scholar] [CrossRef]
- Bryk-Wiązania, A.H.; Undas, A. Hypofibrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc. Diabetol. 2021, 20, 191. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Fu, Q.; Zhou, L.; Fan, Y.; Liu, F.; Fan, Y.; Zhang, X.; Lin, W.; Wu, X. D-dimer as a predictor of cardiovascular outcomes in patients with diabetes mellitus. BMC Cardiovasc. Disord. 2022, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Arrais, A.; Melo, L.; Norrara, B.; Almeida, M.; Freire, K.; Melo, A.; Oliveira, L.; Vieira Lima, F.; Engelberth, R.; Cavalcante, J.; et al. S100B protein: General characteristics and pathophysiological implications in the Central Nervous System. Int. J. Neurosci. 2022, 132, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- Brozzi, F.; Arcuri, C.; Giambanco, I.; Donato, R. S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase: Implications for Astrocyte Development, Activation, and Tumor Growth. J. Biol. Chem. 2009, 284, 8797–8811. [Google Scholar] [CrossRef]
- Elting, J.W.; de Jager, A.E.; Teelken, A.W.; Schaaf, M.J.; Maurits, N.M.; van der Naalt, J.; Sibinga, C.T.; Sulter, G.A.; De Keyser, J. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J. Neurol. Sci. 2000, 181, 104–110. [Google Scholar] [CrossRef]
- Kawata, K.; Liu, C.Y.; Merkel, S.F.; Ramirez, S.H.; Tierney, R.T.; Langford, D. Blood biomarkers for brain injury: What are we measuring? Neurosci. Biobehav. Rev. 2016, 68, 460–473. [Google Scholar] [CrossRef]
- González-García, S.; González-Quevedo, A.; Fernández-Concepción, O.; Peña-Sánchez, M.; Menéndez-Saínz, C.; Hernández-Díaz, Z.; Arteche-Prior, M.; Pando-Cabrera, A.; Fernández-Novales, C. Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin. Biochem. 2012, 45, 1302–1307. [Google Scholar] [CrossRef]
- Singh, H.V.; Pandey, A.; Shrivastava, A.K.; Raizada, A.; Singh, S.K.; Singh, N. Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin. Chim. Acta 2013, 419, 136–138. [Google Scholar] [CrossRef]
- Brahmachari, S.; Fung, Y.K.; Pahan, K. Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J. Neurosci. 2006, 26, 4930–4939. [Google Scholar] [CrossRef] [PubMed]
- Jæger, H.S.; Tranberg, D.; Larsen, K.; Valentin, J.B.; Blauenfeldt, R.A.; Luger, S.; Bache, K.G.; Gude, M.F. Diagnostic performance of Glial Fibrillary Acidic Protein and Prehospital Stroke Scale for identification of stroke and stroke subtypes in an unselected patient cohort with symptom onset < 4.5 h. Scand. J. Trauma Resusc. Emerg. Med. 2023, 31, 1. [Google Scholar] [CrossRef] [PubMed]
- Peretti, D.E.; Boccalini, C.; Ribaldi, F.; Scheffler, M.; Marizzoni, M.; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Frisoni, G.B.; Garibotto, V. Association of glial fibrillary acid protein, Alzheimer’s disease pathology and cognitive decline. Brain 2024, 147, 4094–4104. [Google Scholar] [CrossRef]
- Bezek, S.; Biberthaler, P.; Martinez-Espina, I.; Bogner-Flatz, V. Chapter 11—Pathophysiology and clinical implementation of traumatic brain injury biomarkers: Neuron-specific enolase. In Biomarkers for Traumatic Brain Injury; Wu, A.H.B., Peacock, W.F., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 169–182. [Google Scholar]
- Segura, B.; Jurado, M.A.; Freixenet, N.; Bargalló, N.; Junqué, C.; Arboix, A. White matter fractional anisotropy is related to processing speed in metabolic syndrome patients: A case-control study. BMC Neurol. 2010, 10, 64. [Google Scholar] [CrossRef] [PubMed]







| Fasting Plasma Glucose (IFG) | 2 Hour Plasma Glucose (IGT) | HbA1c% |
|---|---|---|
| 5.6–6.9 mmol/L | 7.8–11.0 mmol/L | 5.7–6.4% |
| Non-Prediabetic | Prediabetic | Type 2 Diabetic | |
|---|---|---|---|
| Age (mean) | 36.13 (33.62–38.64) | 38.91 (37.08–40.75) | 40.34 (38.69–41.99) |
| Sex | |||
| Male | 12 | 20 | 11 |
| Female | 18 | 15 | 24 |
| n | 30 | 35 | 35 |
| Impaired fasting glucose | 5.95 mmol/L | 7.1 mmol/L | 11.6 mmol/L |
| median (IQR) | (5.7–6.2) | (6.8–7.5) | (9.4–14.9) |
| HbA1c% mean | 5.35% (5.29–5.41) | 6.18% (6.04–6.31) | 9.72% (8.80–10.64) |
| Correlation Analysis | Impaired Fasting Glucose vs. S100B | HbA1c vs. S100B |
|---|---|---|
| r | 0.7475 | 0.7458 |
| 95% CI | 0.6093–0.8417 | 0.6068–0.8406 |
| p value | 0.0001 | 0.0001 |
| n | 60 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naicker, Y.; Khathi, A. A Retrospective Assessment of Changes in Stroke Risk-Related Biomarkers in Individuals with Prediabetes from Durban, South Africa: Preliminary Findings. Curr. Issues Mol. Biol. 2025, 47, 884. https://doi.org/10.3390/cimb47110884
Naicker Y, Khathi A. A Retrospective Assessment of Changes in Stroke Risk-Related Biomarkers in Individuals with Prediabetes from Durban, South Africa: Preliminary Findings. Current Issues in Molecular Biology. 2025; 47(11):884. https://doi.org/10.3390/cimb47110884
Chicago/Turabian StyleNaicker, Yerushka, and Andile Khathi. 2025. "A Retrospective Assessment of Changes in Stroke Risk-Related Biomarkers in Individuals with Prediabetes from Durban, South Africa: Preliminary Findings" Current Issues in Molecular Biology 47, no. 11: 884. https://doi.org/10.3390/cimb47110884
APA StyleNaicker, Y., & Khathi, A. (2025). A Retrospective Assessment of Changes in Stroke Risk-Related Biomarkers in Individuals with Prediabetes from Durban, South Africa: Preliminary Findings. Current Issues in Molecular Biology, 47(11), 884. https://doi.org/10.3390/cimb47110884

