Animal Models of Narcolepsy: From Orexin Deficiency to Immune Mechanisms and Regenerative Therapies
Abstract
1. Introduction
| Model | Ref. | Genotype | Phenotype | Advantages and Disadvantages | Translational Potential and Limitations | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SWF | SOREMs | Wakefulness | REM time | Cataplexy | Obesity | |||||||
| Canine | Spontaneous | Canarc-1 | [20] | Mutation in Hcrtr2 gene | + | + | ↓ | + | A: natural model; stable, fully penetrant phenotype; replicates spontaneous disease D: limited availability, ethical constraints, few molecular tools; cost and care; behavioural variability | P: strong face and construct validity; excellent model for cataplexy and receptor-based therapies L: limited scalability and genetic tractability restrict its routine use | ||
| Murine | Knockout | OX−/− | [21] | Prepro- orexin gene knockout | + | + | ↓ | ↑ | + | + | A: highly reproducible; well-characterized; compatible with pharmacological testing D: congenital loss may cause compensatory changes | P: high construct validity for total orexin deficiency; useful for drug screening L: lacks immune and progressive features of human disease |
| OX/AT3 | [15] | Selectively ablation of orexin cells through the expression of ataxin-3 transgene causes apoptosis | + | + | ↓ | ↑ | + | + | A: models time-dependent neuronal loss; consistent phenotype D: transgene expression irreversible; requires breeding colonies | P: mimics degenerative aspects of human narcolepsy; good predictive validity for restorative therapies L: onset earlier than in patients | ||
| OX1R−/− | [22] | Single or double knockout for orexin receptors | + | A: dissects receptor-specific functions D: less severe phenotype in single KOs; redundancy between receptors complicates interpretation | P: useful for validating OX2R-selective agonists L: moderate face validity, as neuronal loss is absent; lacks progressive degeneration | |||||||
| OX2R−/− | [14] | + | + | |||||||||
| OX1R−/−/OX2R−/− | [23] | + | + | ↓ | ↑ | + | ||||||
| O/E3−/− | [24] | O/E3 transcription factor knockout | + | + | ↓ | ↑ | + | A: useful in studying the role of O/E3 in regulating sleep–wake controlling neurons D: embryonic lethality limits behavioral testing; broader developmental issues | P: reveals developmental mechanisms L: elucidates orexin lineage development rather than disease pathogenesis; low direct translational value | |||
| Controlled | OX2R–TD | [25] | loxP-flanked transcription- disrupter gene cassette that prevents expression of OX2R | + | ↓ | + | A: reversible and controllable disruption of OX2R signaling; avoids developmental compensation seen in full knockouts D: requires complex breeding or viral delivery; phenotype milder than in complete receptor or peptide knockouts | P: enables testing of reversible loss of OX2R function and recovery; valuable for validating receptor-targeted drugs L: limited cataplexy and mild sleep–wake instability reduce its face validity compared to full OX2R−/− or OX−/− models | ||||
| OX-tTA TetO-DTA | [26] | Induction of diphtheria toxin A (DTA) in orexin neurons via tetracycline-transactivator system (tTA) | + | + | ↓ | ↑ | + | + | A: temporal control over cell loss; reversible induction; severe phenotype D: requires careful dosing and timing; complex to breed and manage; abrupt degeneration | P: models adult-onset loss with improved construct validity L: abrupt ablation limits chronic adaptation study | ||
| Optogenetic | OX/HaloR | [27] | Expresses halorhodopsin (HaloR) in orexin neurons | ↓ | A: real-time control of neuronal activation or inhibition; causal circuit testing D: needs implantation of optical fibre; not a full narcolepsy phenotype; artificial activation patterns | P: powerful for dissecting network mechanisms L: limited predictive validity for chronic disease or pharmacotherapy | ||||||
| OX/Arch | [28] | Expresses archaerhodopsin-3 (Arch) in orexin neurons | + | ↓ | ↑ | + | ||||||
| OX-tTA TetO-ArchT | [29] | Expresses ArchT using the tet-off (tTA) system | + | ↓ | ||||||||
| Immune-driven | H1N1 infection | [30] | Orexin neuron ablation in Rag1−/− mice through H1N1 infection | + | + | ↓ | ↑ | A: mimics autoimmune mechanisms D: complex to generate; limited immune system representation; incomplete phenotype expression | P: closest mimic of autoimmune etiology in NT1; highly informative for pathogenesis studies L: complex and variable immune response limits reproducibility | |||
| OX-HA | [31] | Expresses hemagglutinin (HA) as a neo-self-antigen in orexin neurons | + | |||||||||
| Zebrafish (Danio rerio) | hcrtr168 | [32] | Mutation in orexin/hypocretin receptor | + | ↓ | A: simple vertebrate model; optical accessibility; high-throughput screening D: lacks REM and cataplexy equivalents | P: conserved orexin pathway enables rapid drug discovery L: low face validity for mammalian narcolepsy | |||||
| Tg[hcrt:nfsB-EGFP] | [33] | Selective ablation of orexin neurons via nitroreductase–metronidazole treatment | ||||||||||
| p2ry11−/− | [34] | Loss-of-function p2ry11 mutant showing reduced hcrt expression and orexin neuron loss | ||||||||||
2. Neurochemical Imbalances in Canine Narcolepsy: Insights from Pharmacology
3. Identifying the Genetic Defect in Canine Narcolepsy: Mutation in the Orexin-2 Receptor
4. Orexin and Narcolepsy
4.1. Orexin Receptors and Their Ligands: Molecular Foundations of Arousal Regulation
4.2. Orexin Neurons as Integrators of Wakefulness Circuitry
4.3. Towards a Paradigm Shift
5. Murine Models of Narcolepsy
5.1. Sleep Attacks and Narcoleptic Phenotypes in Prepro-Orexin Knockout Mice
5.2. Post-Mortem and Biomarker Evidence in Humans
5.3. The Orexin/Ataxin-3 (ATAX) Model: Neuronal Ablation and Disease Evolution
5.4. Receptor Genetics: Parsing Orexin Receptors (OX1R and OX2R) Contributions
6. Other Rodent Models Informing Pathogenesis
6.1. Neuronal Transcription Factor O/E3 and Orexin Lineage Differentiation
6.2. Autoimmunity, Human Leukocyte Antigen (HLA), and T-Cell Biology
6.3. Distinct Yet Intertwined: Melanin-Concentrating Hormone and Orexin Neurons
6.4. Dual Ablation of Orexin and Melanin-Concentrating Hormone Neurons
6.5. Translational Inflexion: From Models to Disease Modification
6.6. Challenges of IMMUNE-Mediated and Regenerative Models
7. Non-Mammalian Models of Narcolepsy
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CSF | Cerebrospinal fluid |
| EEG | Electroencephalography |
| EMG | Electromyography |
| HLA | Human Leukocyte Antigen |
| REM | Rapid Eye Movement |
| NT1 | Narcolepsy Type 1 |
| NT2 | Narcolepsy Type 2 |
| MCH | Melanin-Concentrating Hormone |
| EDS | Excessive Daytime Sleepiness |
| CD8 | Cluster of Differentiation 8 (cytotoxic T cell subset) |
References
- Ortega-Robles, E.; Guerra-Crespo, M.; Ezzeldin, S.; Santana-Roman, E.; Palasz, A.; Salama, M.; Arias-Carrion, O. Orexin Restoration in Narcolepsy: Breakthroughs in Cellular Therapy. J. Sleep Res. 2025, 5, e70083. [Google Scholar] [CrossRef]
- Arias-Carrion, O. Preclinical models of insomnia: Advances, limitations, and future directions for drug discovery. Expert. Opin. Drug Discov. 2025, 20, 1061–1074. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, C.L.A.; Adamantidis, A.; Burdakov, D.; Han, F.; Gay, S.; Kallweit, U.; Khatami, R.; Koning, F.; Kornum, B.R.; Lammers, G.J.; et al. Narcolepsy—Clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat. Rev. Neurol. 2019, 15, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Westphal, C. Eigetumliche mit Einschlafen verbundene Anfalle. Arch. Psychiatr. Nervenkr. 1877, 7, 631–635. [Google Scholar]
- Gélineau, J.B.E. De la narcolepsie. Gaz. Hop. Civ. Mil. 1880, 53, 626–637. [Google Scholar]
- Kornum, B.R.; Knudsen, S.; Ollila, H.M.; Pizza, F.; Jennum, P.J.; Dauvilliers, Y.; Overeem, S. Narcolepsy. Nat. Rev. Dis. Primers 2017, 3, 16100. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sagili, H. Etiopathogenesis and neurobiology of narcolepsy: A review. J. Clin. Diagn. Res. 2014, 8, 190–195. [Google Scholar] [CrossRef]
- Maycock, T.J.; Rossor, T.; Vanegas, M.; Gringras, P.; Jungbluth, H. Child Neurology: Common Occurrence of Narcolepsy Type 1 and Myasthenia Gravis. Neurology 2024, 103, e209598. [Google Scholar] [CrossRef]
- Vringer, M.; Zhou, J.; Gool, J.K.; Bijlenga, D.; Lammers, G.J.; Fronczek, R.; Schinkelshoek, M.S. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med. Rev. 2024, 78, 101993. [Google Scholar] [CrossRef]
- Latorre, D.; Sallusto, F.; Bassetti, C.L.A.; Kallweit, U. Narcolepsy: A model interaction between immune system, nervous system, and sleep-wake regulation. Semin. Immunopathol. 2022, 44, 611–623, Correction in Semin. Immunopathol. 2022, 44, 739. [Google Scholar] [CrossRef]
- Ollila, H.M.; Sharon, E.; Lin, L.; Sinnott-Armstrong, N.; Ambati, A.; Yogeshwar, S.M.; Hillary, R.P.; Jolanki, O.; Faraco, J.; Einen, M.; et al. Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy. Nat. Commun. 2023, 14, 2709. [Google Scholar] [CrossRef]
- Stephansen, J.B.; Olesen, A.N.; Olsen, M.; Ambati, A.; Leary, E.B.; Moore, H.E.; Carrillo, O.; Lin, L.; Han, F.; Yan, H.; et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018, 9, 5229. [Google Scholar] [CrossRef]
- Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P.J.; Nishino, S.; Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999, 98, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Tokita, S.; Williams, S.C.; Kisanuki, Y.Y.; Marcus, J.N.; Lee, C.; Elmquist, J.K.; Kohlmeier, K.A.; et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: Molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 2003, 38, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Hara, J.; Beuckmann, C.T.; Nambu, T.; Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Sugiyama, F.; Yagami, K.; Goto, K.; Yanagisawa, M.; et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001, 30, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Bonvalet, M.; Ollila, H.M.; Ambati, A.; Mignot, E. Autoimmunity in narcolepsy. Curr. Opin. Pulm. Med. 2017, 23, 522–529. [Google Scholar] [CrossRef]
- Abad, V.C. Pharmacological options for narcolepsy: Are they the way forward? Expert. Rev. Neurother. 2023, 23, 819–834. [Google Scholar] [CrossRef]
- Huang, L.; Lai, X.; Liang, X.; Chen, J.; Yang, Y.; Xu, W.; Qin, Q.; Qin, R.; Huang, X.; Xie, M.; et al. A promise for neuronal repair: Reprogramming astrocytes into neurons in vivo. Biosci. Rep. 2024, 44, BSR20231717, Correction in Biosci. Rep. 2024, 44, BSR-2023-1717_COR. [Google Scholar] [CrossRef]
- Merkle, F.T.; Maroof, A.; Wataya, T.; Sasai, Y.; Studer, L.; Eggan, K.; Schier, A.F. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 2015, 142, 633–643. [Google Scholar] [CrossRef]
- Nishino, S. Canine models of narcolepsy. In The Orexin/Hypocretin System: Physiology and Pathophysiology; Nishino, S., Sakurai, T., Eds.; Humana Press: Totowa, NJ, USA, 2006; pp. 233–253. [Google Scholar]
- Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; Elmquist, J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 1999, 98, 437–451. [Google Scholar] [CrossRef]
- Kisanuki, Y.; Chemelli, R.; Sinton, C.; Williams, S.; Richardson, J.; Hammer, R.; Yanagisawa, M. The role of orexin receptor type-1 (OX1R) in the regulation of sleep. Sleep 2000, 23, A91. [Google Scholar]
- Kisanuki, Y.Y.; Chemelli, R.M.; Tokita, S.; Willie, J.T.; Sinton, C.M.; Yanagisawa, M. Behavioral and polysomnographic characterization of orexin-1 receptor and orexin-2 receptor double knockout mice. Sleep 2001, 24, A22. [Google Scholar]
- De La Herrán-Arita, A.K.; Zomosa-Signoret, V.C.; Millán-Aldaco, D.A.; Palomero-Rivero, M.; Guerra-Crespo, M.; Drucker-Colín, R.; Vidaltamayo, R. Aspects of the narcolepsy-cataplexy syndrome in O/E3-null mutant mice. Neuroscience 2011, 183, 134–143. [Google Scholar] [CrossRef]
- Mochizuki, T.; Arrigoni, E.; Marcus, J.N.; Clark, E.L.; Yamamoto, M.; Honer, M.; Borroni, E.; Lowell, B.B.; Elmquist, J.K.; Scammell, T.E. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc. Natl. Acad. Sci. USA 2011, 108, 4471–4476. [Google Scholar] [CrossRef]
- Tabuchi, S.; Tsunematsu, T.; Black, S.W.; Tominaga, M.; Maruyama, M.; Takagi, K.; Minokoshi, Y.; Sakurai, T.; Kilduff, T.S.; Yamanaka, A. Conditional ablation of orexin/hypocretin neurons: A new mouse model for the study of narcolepsy and orexin system function. J. Neurosci. 2014, 34, 6495–6509. [Google Scholar] [CrossRef]
- Tsunematsu, T.; Kilduff, T.S.; Boyden, E.S.; Takahashi, S.; Tominaga, M.; Yamanaka, A. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J. Neurosci. 2011, 31, 10529–10539. [Google Scholar] [CrossRef]
- Williams, R.H.; Tsunematsu, T.; Thomas, A.M.; Bogyo, K.; Yamanaka, A.; Kilduff, T.S. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J. Neurosci. 2019, 39, 9435–9452. [Google Scholar] [CrossRef]
- Tsunematsu, T.; Tabuchi, S.; Tanaka, K.F.; Boyden, E.S.; Tominaga, M.; Yamanaka, A. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav. Brain Res. 2013, 255, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Tesoriero, C.; Codita, A.; Zhang, M.D.; Cherninsky, A.; Karlsson, H.; Grassi-Zucconi, G.; Bertini, G.; Harkany, T.; Ljungberg, K.; Liljeström, P.; et al. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc. Natl. Acad. Sci. USA 2016, 113, E368–E377. [Google Scholar] [CrossRef]
- Bernard-Valnet, R.; Yshii, L.; Quériault, C.; Nguyen, X.H.; Arthaud, S.; Rodrigues, M.; Canivet, A.; Morel, A.L.; Matthys, A.; Bauer, J.; et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl. Acad. Sci. USA 2016, 113, 10956–10961. [Google Scholar] [CrossRef] [PubMed]
- Yokogawa, T.; Marin, W.; Faraco, J.; Pézeron, G.; Appelbaum, L.; Zhang, J.; Rosa, F.; Mourrain, P.; Mignot, E. Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants. PLoS Biol. 2007, 5, e277. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, I.; Yelin-Bekerman, L.; Nicenboim, J.; Vatine, G.; Appelbaum, L. Genetic Ablation of Hypocretin Neurons Alters Behavioral State Transitions in Zebrafish. J. Neurosci. 2012, 32, 12961. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.-F.; Wang, Y.-C.; Liu, A.; Xiao, Q.-W.; Hu, M.-C.; Sun, M.-Z.; Hao, H.-Y.; Gao, Q.; Zhao, X.; et al. Deficiency of P2RY11 causes narcolepsy and attenuates the recruitment of neutrophils and macrophages in the inflammatory response in zebrafish. Cell Biol. Toxicol. 2024, 40, 36. [Google Scholar] [CrossRef]
- Mignot, E.J. History of narcolepsy at Stanford University. Immunol. Res. 2014, 58, 315–339. [Google Scholar] [CrossRef]
- Black, J.; Reaven, N.L.; Funk, S.E.; McGaughey, K.; Ohayon, M.M.; Guilleminault, C.; Ruoff, C. Medical comorbidity in narcolepsy: Findings from the Burden of Narcolepsy Disease (BOND) study. Sleep Med. 2017, 33, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Nishino, S.; Okura, M.; Mignot, E. Narcolepsy: Genetic predisposition and neuropharmacological mechanisms. REVIEW ARTICLE. Sleep Med. Rev. 2000, 4, 57–99. [Google Scholar] [CrossRef]
- Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 1998, 50, S16–S22. [Google Scholar] [CrossRef]
- de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., 2nd; et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front. Mol. Neurosci. 2018, 11, 220. [Google Scholar] [CrossRef]
- Mahler, S.V.; Smith, R.J.; Moorman, D.E.; Sartor, G.C.; Aston-Jones, G. Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res. 2012, 198, 79–121. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kurimoto, E.; Joyal, A.A.; Koike, T.; Kimura, H.; Scammell, T.E. An orexin agonist promotes wakefulness and inhibits cataplexy through distinct brain regions. Curr. Biol. 2025, 35, 2088–2099 e2084. [Google Scholar] [CrossRef]
- Scammell, T.E. Narcolepsy. N. Engl. J. Med. 2015, 373, 2654–2662. [Google Scholar] [CrossRef]
- Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev. 2012, 92, 1087–1187. [Google Scholar] [CrossRef]
- Sutcliffe, J.G.; de Lecea, L. The hypocretins: Setting the arousal threshold. Nat. Rev. Neurosci. 2002, 3, 339–349. [Google Scholar] [CrossRef]
- Ripley, B.; Overeem, S.; Fujiki, N.; Nevsimalova, S.; Uchino, M.; Yesavage, J.; Di Monte, D.; Dohi, K.; Melberg, A.; Lammers, G.J.; et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 2001, 57, 2253–2258. [Google Scholar] [CrossRef]
- Postiglione, E.; Barateau, L.; Pizza, F.; Lopez, R.; Antelmi, E.; Rassu, A.L.; Vandi, S.; Chenini, S.; Mignot, E.; Dauvilliers, Y.; et al. Narcolepsy with intermediate cerebrospinal level of hypocretin-1. Sleep 2022, 45, zsab285. [Google Scholar] [CrossRef]
- Thannickal, T.C.; Moore, R.Y.; Nienhuis, R.; Ramanathan, L.; Gulyani, S.; Aldrich, M.; Cornford, M.; Siegel, J.M. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000, 27, 469–474. [Google Scholar] [CrossRef]
- Shan, L.; Linssen, S.; Harteman, Z.; den Dekker, F.; Shuker, L.; Balesar, R.; Breesuwsma, N.; Anink, J.; Zhou, J.; Lammers, G.J.; et al. Activated Wake Systems in Narcolepsy Type 1. Ann. Neurol. 2023, 94, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, R.K.; Yamanaka, A.; Kilduff, T.S. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021, 44, zsaa278. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Andrews, N.; Stellitano, L.; Stowe, J.; Winstone, A.M.; Shneerson, J.; Verity, C. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: Retrospective analysis. BMJ 2013, 346, f794. [Google Scholar] [CrossRef] [PubMed]
- Sarkanen, T.O.; Alakuijala, A.P.E.; Dauvilliers, Y.A.; Partinen, M.M. Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis. Sleep Med. Rev. 2018, 38, 177–186. [Google Scholar] [CrossRef]
- Latorre, D.; Kallweit, U.; Armentani, E.; Foglierini, M.; Mele, F.; Cassotta, A.; Jovic, S.; Jarrossay, D.; Mathis, J.; Zellini, F.; et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 2018, 562, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.W.; Holm, A.; Kristensen, N.P.; Bjerregaard, A.M.; Bentzen, A.K.; Marquard, A.M.; Tamhane, T.; Burgdorf, K.S.; Ullum, H.; Jennum, P.; et al. CD8(+) T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat. Commun. 2019, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Konadhode, R.R.; Pelluru, D.; Blanco-Centurion, C.; Zayachkivsky, A.; Liu, M.; Uhde, T.; Glen, W.B., Jr.; van den Pol, A.N.; Mulholland, P.J.; Shiromani, P.J. Optogenetic stimulation of MCH neurons increases sleep. J. Neurosci. 2013, 33, 10257–10263. [Google Scholar] [CrossRef] [PubMed]
- Izawa, S.; Chowdhury, S.; Miyazaki, T.; Mukai, Y.; Ono, D.; Inoue, R.; Ohmura, Y.; Mizoguchi, H.; Kimura, K.; Yoshioka, M.; et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2019, 365, 1308–1313. [Google Scholar] [CrossRef]
- Hung, C.J.; Ono, D.; Kilduff, T.S.; Yamanaka, A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. eLife 2020, 9, e54275. [Google Scholar] [CrossRef]
- Evans, R.; Kimura, H.; Alexander, R.; Davies, C.H.; Faessel, H.; Hartman, D.S.; Ishikawa, T.; Ratti, E.; Shimizu, K.; Suzuki, M.; et al. Orexin 2 receptor-selective agonist danavorexton improves narcolepsy phenotype in a mouse model and in human patients. Proc. Natl. Acad. Sci. USA 2022, 119, e2207531119. [Google Scholar] [CrossRef]
- Dauvilliers, Y.; Plazzi, G.; Mignot, E.; Lammers, G.J.; Del Rio Villegas, R.; Khatami, R.; Taniguchi, M.; Abraham, A.; Hang, Y.; Kadali, H.; et al. Oveporexton, an Oral Orexin Receptor 2-Selective Agonist, in Narcolepsy Type 1. N. Engl. J. Med. 2025, 392, 1905–1916. [Google Scholar] [CrossRef]
- Scammell, T.E. The neurobiology, diagnosis, and treatment of narcolepsy. Ann. Neurol. 2003, 53, 154–166. [Google Scholar] [CrossRef]
- Nirogi, R.; Jayarajan, P.; Benade, V.; Abraham, R.; Goyal, V.K. Hits and misses with animal models of narcolepsy and the implications for drug discovery. Expert Opin. Drug Discov. 2024, 19, 755–768. [Google Scholar] [CrossRef]
- AlAhmady, N.F.; Alkhulaifi, F.M. Neurotransmitters, genetics, and animal models in narcolepsy: A comprehensive overview. In Narcolepsy; BaHammam, A.S., Sharafkhaneh, A., Pandi-Perumal, S.R., Eds.; Academic Press: Dordrecht, The Netherlands, 2025; pp. 41–77. [Google Scholar] [CrossRef]
- van der Hoeven, A.E.; Fronczek, R.; Schinkelshoek, M.S.; Roelandse, F.W.C.; Bakker, J.A.; Overeem, S.; Bijlenga, D.; Lammers, G.J. Intermediate hypocretin-1 cerebrospinal fluid levels and typical cataplexy: Their significance in the diagnosis of narcolepsy type 1. Sleep 2022, 45, zsac052. [Google Scholar] [CrossRef]
- Deng, Q.; Li, Y.; Sun, Z.; Gao, X.; Zhou, J.; Ma, G.; Qu, W.-M.; Li, R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci. Biobehav. Rev. 2024, 164, 105810. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.H.; Bassetti, C.L.A. Gender differences in narcolepsy: What are recent findings telling us? Sleep 2022, 45, zsac126. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.; Ruppert, E.; Gropp, C.-M.; Bourgin, P. Non-circadian direct effects of light on sleep and alertness: Lessons from transgenic mouse models. Sleep Med. Rev. 2013, 17, 445–452. [Google Scholar] [CrossRef] [PubMed]

| Models and Mechanisms | Therapies and Future Directions |
|---|---|
| Genetic and neuronal models—including prepro-orexin knockouts, orexin/ataxin-3 ablations, receptor mutants, and canine Hcrtr2 lines—have redefined narcolepsy as a disorder of orexin deficiency. These models provided face validity and mechanistic depth but remain locked in descriptive paradigms. | Small-molecule OX2R agonists—Danavorexton and oveporexton deliver the first truly mechanism-targeted therapies in sleep medicine, improving vigilance and reducing cataplexy. They signal a pivot from symptom management toward disease modification. |
| Immune relevance—Human HLA signatures, autoreactive T cells, and Orexin-HA mice prove that adaptive immunity can selectively erase orexin neurons. This finding reframes narcolepsy type 1 (NT1) as an autoimmune encephalopathy, placing it within the broader landscape of organ-specific autoimmunity. | Gene therapy—Viral orexin delivery or receptor reconstitution offers the possibility of durable circuit repair, with narcolepsy positioned to become the first neuropsychiatric disease amenable to one-time molecular correction. |
| Circuit tools, including optogenetics, chemogenetics, and conditional ablations, have mapped the causal architecture of sleep–wake transitions. Nevertheless, their artificial timing and reversibility risk trivialize a degenerative, chronic disorder into an on–off switch. | Cellular therapies—including stem-cell–derived hypothalamic neurons, astrocyte-to-neuron reprogramming, and patient-specific organoids—foreshadow a regenerative neurology, where lost arousal circuits are rebuilt rather than merely pharmacologically bypassed. |
| Phenotypic blind spots—Current models exaggerate cataplexy and under-represent narcolepsy type 2 (NT2), where partial orexin dysfunction, vigilance instability, and cognitive–autonomic burden dominate. Without NT2-specific paradigms, therapeutic discovery risks serving only a fraction of patients. | Integrative approaches—including multi-omics, systems biology, and AI-driven digital phenotyping—promise to bridge the gap between laboratory models and real-world heterogeneity, stratify patients, define novel biomarkers, and accelerate precision trials. |
| Trajectory—The field must break from its descriptive past. From genetic models anchoring orexin deficiency → to mechanistic circuit dissection → to immune-mediated causality → to regenerative and precision interventions. | Central Goal—To shift narcolepsy from a “managed” chronic disorder into one of the first preventable and curable neuropsychiatric conditions—a test case for how neuroscience can move from symptom palliation to circuit restoration and disease prevention. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Carrión, O.; Ortega-Robles, E. Animal Models of Narcolepsy: From Orexin Deficiency to Immune Mechanisms and Regenerative Therapies. Curr. Issues Mol. Biol. 2025, 47, 874. https://doi.org/10.3390/cimb47110874
Arias-Carrión O, Ortega-Robles E. Animal Models of Narcolepsy: From Orexin Deficiency to Immune Mechanisms and Regenerative Therapies. Current Issues in Molecular Biology. 2025; 47(11):874. https://doi.org/10.3390/cimb47110874
Chicago/Turabian StyleArias-Carrión, Oscar, and Emmanuel Ortega-Robles. 2025. "Animal Models of Narcolepsy: From Orexin Deficiency to Immune Mechanisms and Regenerative Therapies" Current Issues in Molecular Biology 47, no. 11: 874. https://doi.org/10.3390/cimb47110874
APA StyleArias-Carrión, O., & Ortega-Robles, E. (2025). Animal Models of Narcolepsy: From Orexin Deficiency to Immune Mechanisms and Regenerative Therapies. Current Issues in Molecular Biology, 47(11), 874. https://doi.org/10.3390/cimb47110874
