Research Progress on the Relationship Between the Intestinal Barrier and Macrophages
Abstract
1. Introduction
2. Literature Search and Screening Strategy
3. Overview of Intestinal Barrier
4. Overview of Intestinal Macrophages
4.1. Origin and Development
4.2. Regional Specialization
5. How Intestinal Barrier Affects Macrophages
6. How Macrophages Affect Intestinal Barrier
6.1. Multiple Signaling Interact to Regulate Intestinal Barrier Function
Function Direction | Key Macrophage Subset/Type | Core Mechanism/Effector Molecule | Main Function/Outcome | References |
---|---|---|---|---|
Barrier Disruption | Pro-inflammatory macrophage | TNF-α, IL-1β (via NOX4/ROS pathway) | Directly degrade tight junction proteins | |
CCL3 | Recruit neutrophils and exacerbate inflammation | |||
Claudin-2 (epithelial expression) | Forms abnormal pores | Increases intestinal permeability, facilitates microbiota translocation, and promotes systemic inflammation | ||
TLR4/NF-κB pathway activation (e.g., by LPS) | TLR4-MyD88 signaling leading to NF-κB activation | Sustains macrophage activation, expands intestinal leakage, and forms a microbiota–macrophage vicious circle | [44,45] | |
Dysfunction in IBD | Overactivation of IL-23/IL-17 pathway | Exacerbates barrier disruption and chronic inflammation | [17,46] | |
Barrier Protection | LGR5+ | Secrete Wnt3a/R-spondin | Activate crypt stem cells and drive crypt regeneration | [33] |
IL-10-dependent subsets | Secrete IL-10 (sensing TLR2/4 signals) | Inhibit hyperinflammation and maintain epithelial tight junction integrity | [43] | |
Anti-inflammatory macrophage | Secrete IL-10 | Activate epithelial JAK1/STAT3 pathway and promote tight junction protein synthesis | [49,50,51] | |
CD11c+ | TGF-β, Retinoic acid | Induce Treg differentiation and prevent abnormal responses to commensal bacteria | [48] | |
LACC1 | Key molecule | Enhance macrophage bacterial clearance and reduce microbiota translocation | [51] | |
Heme-induced anti-inflammatory macrophage | HO-1-dependent and -independent pathways | Repair barrier | [50] | |
Probiotics (e.g., L. paracasei) & EPS | Balance Th17/Treg cells | Promote anti-inflammatory macrophage polarization and enhance mucus layer and tight junctions | [49] | |
GM-CSF | Maintain macrophage homeostasis | Support epithelial repair | [52] |
6.2. Metabolic Crosstalk Critically Maintains Homeostasis
Regulatory Type/Factor | Key Target/Pathway/Molecule | Regulatory Mechanism/Effect | Main Function/Outcome | References |
---|---|---|---|---|
Signaling Pathway Regulation | Tim-3 (macrophages) | Tim-3 deficiency impairs TLR4/NF-κB signaling and induces neutrophil necroptosis | Exacerbates DSS-induced colitis susceptibility | [53] |
PTPN2 (Protein tyrosine phosphatase non-receptor type 2) | Strengthens junctions between macrophages and epithelial cells | Maintains intestinal barrier function; Deficiency disrupts IL-10 signaling and degrades tight junction proteins; Activation restores metabolic crosstalk | [54] | |
MMP23B (Matrix metallopeptidase 23B) | Dexmedetomidine promotes anti-inflammatory macrophage polarization | Enhances intestinal barrier function and reduces mitochondrial dysfunction in diabetic injury | [55] | |
Cth (Cystathionine gamma-lyase) | Enhances efferocytosis via ERK1/2 activation | Promotes intestinal barrier repair in aging-related enteropathy | [56] | |
AKT signaling | Astragaloside IV induces anti-inflammatory macrophage polarization | Decreases inflammatory response in radiation enteritis | [57] | |
TLR2 | Lactobacillus murinus EVs activate anti-inflammatory macrophage polarization | Repair Deoxynivalenol (DON)-induced injury | [58,59] | |
CH25H/25-OHC-NLRP3 pathway | Saikosaponin A blocks this pathway | Inhibits macrophage inflammation | [60] | |
Autophagy-NLRP3 circuit | Saponin VI reprograms macrophage polarization by modulating this circuit | Shifts macrophage polarization balance from pro-inflammatory macrophage toward anti-inflammatory macrophage phenotypes | [61] | |
TLR4/MyD88/NF-κB axis | Excess LPS overstimulation; Microbiome promotes cholestasis-mediated cell death and inflammation via inflammasome activation in macrophages in biliary disease | Exacerbates intestinal leakage | [44] | |
TLR4/NF-κB (IBD) | Hyperactivation drives pro-inflammatory macrophage polarization | Disrupts tight junctions via TNF-α/IL-6 | [63] | |
Mcpip1 (macrophage-specific deficiency) | Dependent on Atf3-Ap1s2 pathway, promotes pro-inflammatory macrophage phenotype, and halts maturation | Exacerbates intestinal inflammation | [63] | |
Metabolic Crosstalk (Core) | Butyrate | Activates macrophage/WNT/ERK signaling pathway | Promotes intestinal mucus barrier repair | |
Synergizes with butyrate-primed anti-inflammatory macrophages | Induces significantly higher expression of goblet cell markers (MUC2, SPDEF) | |||
Under TLR activation, triggers NLRP3 inflammasome formation via GPR43 | [64] | |||
High-fat diet (HFD) | Downregulates butyrate-producing bacteria, impairing macrophage-mediated iron export | Fuels cycles of anemia and inflammation | [68,69] | |
SCFA-producing bacteria | Suppresses JAK/STAT3/FOXO3 axis and drives anti-inflammatory macrophage polarization | Attenuates experimental ulcerative colitis | [66] | |
Propionic acid (from L. johnsonii) | Suppresses pro-inflammatory macrophage polarization through MAPK pathway modulation | Alleviates colitis | [67] | |
Butyrate-melatonin complex | Dual modulation of microbiome and NLRP3/caspase-1 inflammatory pathways, redirecting macrophage polarization | Halts ulcerative colitis progression in mice | [70] | |
Microbial metabolite reprogramming | Reprograms macrophage metabolism (e.g., enhancing oxidative phosphorylation) and inhibits pro-inflammatory responses | [71,72] | ||
Metformin | Inhibits TLR4/NF-κB signaling (reducing TNF-α, IL-6), enhances oxidative phosphorylation metabolism promoting anti-inflammatory macrophage differentiation, synergizes with elevated intestinal SCFAs | Collectively improves intestinal barrier function | [58,59] | |
Cathepsin K (CTSK) | Microbiota-stimulated secretion drives TLR4-dependent anti-inflammatory macrophage polarization | Promotes metastatic progression in colorectal cancer | [13,65] | |
PTPN2/IL-10 (Metabolic Crosstalk) | PTPN2 deficiency in macrophages disrupts IL-10 signaling and leads to degradation of epithelial tight junction proteins; Specific PTPN2 activation or exogenous IL-10 restores metabolic crosstalk | Restores metabolic crosstalk between macrophages and intestinal epithelial cells, thereby ameliorating barrier damage | [54] |
7. Disease
7.1. Inflammatory Bowel Disease (IBD)
7.2. Infection and Sepsis
7.3. Intestinal Tumor
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBD | Inflammatory Bowel Disease |
IECs | Intestinal Epithelial Cells |
ZO-1 | Zona Occludens 1 |
GLP-2 | Glucagon-Like Peptide 2 |
SCFAs | Short-Chain Fatty Acids |
GALT | Gut-Associated Lymphoid Tissue |
SUCNR1 | Succinate Receptor Antagonist 1 |
IELs | Intraepithelial Lymphocytes |
sIgA | Secretory Immunoglobulin A |
FXR | Farnesoid X Receptor |
MUC2 | Mucin2 |
EMPs | Erythro-Myeloid Progenitors |
HSCs | Hematopoietic Stem Cells |
P2X7 | Purinergic 2X7 |
AhR | Aryl Hydrocarbon Receptor |
GPR109A | G Protein-Coupled Receptor 109 A |
MDP | Muramyl Dipeptide |
NOD2 | Nucleotide-Binding Oligomerization Domain 2 |
PTPN2 | Protein Tyrosine Phosphatase Non-Receptor Type 2 |
MMP23B | Matrix Metallopeptidase 23B |
Cth | Cystathionine Gamma-Lyase |
DON | Deoxynivalenol |
SPDEF | Sam Pointed Domain Containing Ets Transcription Factor |
CTSK | Cathepsin K |
EMFs | Embryo-Derived Macrophages |
MoMFs | Monocyte-Derived Macrophages |
MMPs | Matrix Metalloproteinases |
ROS | Reactive Oxygen Species |
ISCs | Intestinal Stem Cells |
NEC | Neonatal Necrotizing Enterocolitis |
TAMs | Tumor-Associated Macrophages |
TLR2 | Toll Like Receptor 2 |
References
- Neurath, M.F.; Artis, D.; Becker, C. The intestinal barrier: A pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 2025, 10, 573–592. [Google Scholar] [CrossRef]
- Rosenblum, D.; Naik, S. Epithelial-immune crosstalk in health and disease. Curr. Opin. Genet. Dev. 2022, 74, 101910. [Google Scholar] [CrossRef]
- Odenwald, M.A.; Turner, J.R. The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 9–21. [Google Scholar] [CrossRef]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Abdalqadir, N.; Adeli, K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms 2022, 10, 2061. [Google Scholar] [CrossRef]
- Ma, J.; Piao, X.; Mahfuz, S.; Long, S.; Wang, J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim. Nutr. 2022, 9, 159–174. [Google Scholar] [CrossRef]
- Sommer, F.; Backhed, F. The gut microbiota--masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Davie, J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003, 133 (Suppl. S7), 2485S–2493S. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.; Samstein, R.M.; Treuting, P.; Liang, Y.; Pils, M.C.; Heinrich, J.M.; Jack, R.S.; Wunderlich, F.T.; Bruning, J.C.; Muller, W.; et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011, 34, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.B.; Fagarasan, S. IgA synthesis: A form of functional immune adaptation extending beyond gut. Curr. Opin. Immunol. 2012, 24, 261–268. [Google Scholar] [CrossRef]
- Vaishnava, S.; Yamamoto, M.; Severson, K.M.; Ruhn, K.A.; Yu, X.; Koren, O.; Ley, R.; Wakeland, E.K.; Hooper, L.V. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334, 255–258. [Google Scholar] [CrossRef]
- Cai, J.; Sun, L.; Gonzalez, F.J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022, 30, 289–300. [Google Scholar] [CrossRef]
- Liang, L.; Liu, L.; Zhou, W.; Yang, C.; Mai, G.; Li, H.; Chen, Y. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin. Sci. 2022, 136, 291–307. [Google Scholar] [CrossRef]
- Gomez Perdiguero, E.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; de Bruijn, M.F.; Geissmann, F.; et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518, 547–551. [Google Scholar] [CrossRef]
- Dick, S.A.; Macklin, J.A.; Nejat, S.; Momen, A.; Clemente-Casares, X.; Althagafi, M.G.; Chen, J.; Kantores, C.; Hosseinzadeh, S.; Aronoff, L.; et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 2019, 20, 29–39, Correction in Nat. Immunol. 2019, 20, 664. [Google Scholar] [CrossRef]
- Hammond, M.D.; Taylor, R.A.; Mullen, M.T.; Ai, Y.; Aguila, H.L.; Mack, M.; Kasner, S.E.; McCullough, L.D.; Sansing, L.H. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci. 2014, 34, 3901–3909. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Suo, Z.; Lin, J.; Cong, Y.; Liu, Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark. Res. 2024, 12, 76. [Google Scholar] [CrossRef]
- Schulz, C.; Gomez Perdiguero, E.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; Wu, B.; Jacobsen, S.E.; Pollard, J.W.; et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shen, W.W.; Shao, W.; Zhao, Q.; Pang, G.Z.; Yang, Y.; Tao, X.F.; Zhang, W.P.; Mei, Q.; Shen, Y.X. MANF ameliorates DSS-induced mouse colitis via restricting Ly6C(hi)CX3CR1(int) macrophage transformation and suppressing CHOP-BATF2 signaling pathway. Acta Pharmacol. Sin. 2023, 44, 1175–1190. [Google Scholar] [CrossRef] [PubMed]
- Bernshtein, B.; Curato, C.; Ioannou, M.; Thaiss, C.A.; Gross-Vered, M.; Kolesnikov, M.; Wang, Q.; David, E.; Chappell-Maor, L.; Harmelin, A.; et al. IL-23-producing IL-10Ralpha-deficient gut macrophages elicit an IL-22-driven proinflammatory epithelial cell response. Sci. Immunol. 2019, 4, eaau6571. [Google Scholar] [CrossRef]
- Bain, C.C.; Bravo-Blas, A.; Scott, C.L.; Gomez Perdiguero, E.; Geissmann, F.; Henri, S.; Malissen, B.; Osborne, L.C.; Artis, D.; Mowat, A.M. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 2014, 15, 929–937, Correction in Nat. Immunol. 2014, 15, 1090. [Google Scholar] [CrossRef]
- Shaw, T.N.; Houston, S.A.; Wemyss, K.; Bridgeman, H.M.; Barbera, T.A.; Zangerle-Murray, T.; Strangward, P.; Ridley, A.J.L.; Wang, P.; Tamoutounour, S.; et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 2018, 215, 1507–1518. [Google Scholar] [CrossRef]
- Bain, C.C.; Mowat, A.M. The monocyte-macrophage axis in the intestine. Cell. Immunol. 2014, 291, 41–48. [Google Scholar] [CrossRef]
- Muller, P.A.; Koscsó, B.; Rajani, G.M.; Stevanovic, K.; Berres, M.-L.; Hashimoto, D.; Mortha, A.; Leboeuf, M.; Li, X.-M.; Mucida, D.; et al. Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility. Cell 2014, 158, 300–313. [Google Scholar] [CrossRef]
- Mass, E.; Nimmerjahn, F.; Kierdorf, K.; Schlitzer, A. Tissue-specific macrophages: How they develop and choreograph tissue biology. Nat. Rev. Immunol. 2023, 23, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Ji, Y.; Gao, H.; Gomes Dos Reis, F.C.; Bandyopadhyay, G.; Jin, Z.; Ly, C.; Chang, Y.J.; Zhang, D.; Kumar, D.; et al. CRIg(+) Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and Insulin Resistance. Gastroenterology 2021, 160, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Ko, I.; Yi, E.J.; Kim, J.; Hong, Y.R.; Lee, W.; Chang, S.Y. NAD(+) modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed. Pharmacother. 2025, 185, 117938. [Google Scholar] [CrossRef] [PubMed]
- Heidbreder, K.; Sommer, K.; Wiendl, M.; Muller, T.M.; Atreya, I.; Hildner, K.; Neurath, M.F.; Zundler, S. Nr4a1-dependent non-classical monocytes are important for macrophage-mediated wound healing in the large intestine. Front. Immunol. 2022, 13, 1040775. [Google Scholar] [CrossRef]
- Capdevila, C.; Miller, J.; Cheng, L.; Kornberg, A.; George, J.J.; Lee, H.; Botella, T.; Moon, C.S.; Murray, J.W.; Lam, S.; et al. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 2024, 187, 3039–3055 e14. [Google Scholar] [CrossRef]
- Amores-Iniesta, J.; Barbera-Cremades, M.; Martinez, C.M.; Pons, J.A.; Revilla-Nuin, B.; Martinez-Alarcon, L.; Di Virgilio, F.; Parrilla, P.; Baroja-Mazo, A.; Pelegrin, P. Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Rep. 2017, 21, 3414–3426. [Google Scholar] [CrossRef]
- Han, C.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Zhang, C.; Guo, L.; Yang, Y. NOX4 promotes mucosal barrier injury in inflammatory bowel disease by mediating macrophages M1 polarization through ROS. Int. Immunopharmacol. 2022, 104, 108361. [Google Scholar] [CrossRef]
- Bauset, C.; Lis-Lopez, L.; Coll, S.; Gisbert-Ferrandiz, L.; Macias-Ceja, D.C.; Seco-Cervera, M.; Navarro, F.; Esplugues, J.V.; Calatayud, S.; Ortiz-Masia, D.; et al. SUCNR1 Mediates the Priming Step of the Inflammasome in Intestinal Epithelial Cells: Relevance in Ulcerative Colitis. Biomedicines 2022, 10, 532. [Google Scholar] [CrossRef]
- Zhu, J.; Luo, L.; Tian, L.; Yin, S.; Ma, X.; Cheng, S.; Tang, W.; Yu, J.; Ma, W.; Zhou, X.; et al. Aryl Hydrocarbon Receptor Promotes IL-10 Expression in Inflammatory Macrophages Through Src-STAT3 Signaling Pathway. Front. Immunol. 2018, 9, 2033. [Google Scholar] [CrossRef] [PubMed]
- Birchenough, G.M.H.; Johansson, M.E.; Gustafsson, J.K.; Bergström, J.H.; Hansson, G.C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015, 8, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yu, M. Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. J. Inflamm. Res. 2021, 14, 3171–3183. [Google Scholar] [CrossRef]
- Johansson, M.E.; Hansson, G.C. Microbiology. Keeping bacteria at a distance. Science 2011, 334, 182–183. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Cadwell, K.; Liu, J.Y.; Brown, S.L.; Miyoshi, H.; Loh, J.; Lennerz, J.K.; Kishi, C.; Kc, W.; Carrero, J.A.; Hunt, S.; et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008, 456, 259–263. [Google Scholar] [CrossRef]
- He, G.W.; Lin, L.; DeMartino, J.; Zheng, X.; Staliarova, N.; Dayton, T.; Begthel, H.; van de Wetering, W.J.; Bodewes, E.; van Zon, J.; et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 2022, 29, 1333–1345 e6. [Google Scholar] [CrossRef]
- Raveenthiraraj, S.; Awanis, G.; Chieppa, M.; O’Connell, A.E.; Sobolewski, A. M1 and M2 Macrophages Differentially Regulate Colonic Crypt Renewal. Inflamm. Bowel Dis. 2024, 30, 1138–1150. [Google Scholar] [CrossRef]
- Teixeira-Coelho, M.; Guedes, J.; Ferreirinha, P.; Howes, A.; Pedrosa, J.; Rodrigues, F.; Lai, W.S.; Blackshear, P.J.; O’Garra, A.; Castro, A.G.; et al. Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages. Eur. J. Immunol. 2014, 44, 856–866. [Google Scholar] [CrossRef]
- Isaacs-Ten, A.; Echeandia, M.; Moreno-Gonzalez, M.; Brion, A.; Goldson, A.; Philo, M.; Patterson, A.M.; Parker, A.; Galduroz, M.; Baker, D.; et al. Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic Liver Disease by Promoting Intestinal Permeability in Mice. Hepatology 2020, 72, 2090–2108. [Google Scholar] [CrossRef]
- Luissint, A.C.; Williams, H.C.; Kim, W.; Flemming, S.; Azcutia, V.; Hilgarth, R.S.; Leary, M.N.O.; Denning, T.L.; Nusrat, A.; Parkos, C.A. Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice. Mucosal Immunol. 2019, 12, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Bain, C.C.; Mowat, A.M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 2014, 260, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Schneider, I.; Allner, C.; Muhl, L.; Melde, M.; Lissner, D.; Mantzivi, E.; Glauben, R.; Vitali, F.; Becker, E.; Atreya, I.; et al. Expression and function of alpha4beta7 integrin predict the success of vedolizumab treatment in inflammatory bowel disease. Transl. Res. 2023, 253, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Denning, T.L.; Wang, Y.C.; Patel, S.R.; Williams, I.R.; Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 2007, 8, 1086–1094. [Google Scholar] [CrossRef]
- Su, Y.; Cui, Z.; Yang, X.; Jiang, Y.; Zhang, W.; Zhang, Y.; Man, C. Lactobacillus paracasei JY062 and its exopolysaccharide enhance the intestinal barrier through macrophage polarization and Th17/Treg cell balance. Food Res. Int. 2024, 197 Pt. 1, 115235. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, B.; Zhang, Z.; Lu, H.; Fan, C.; Qi, Q.; Gao, Y.; Li, H.; Feng, C.; Zuo, J.; et al. Heme protects intestinal mucosal barrier in DSS-induced colitis through regulating macrophage polarization in both HO-1-dependent and HO-1-independent way. FASEB J. 2020, 34, 8028–8043. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.W.; Yan, J.; Ranjan, K.; Zhang, X.; Turner, J.R.; Abraham, C. Myeloid Cell Expression of LACC1 Is Required for Bacterial Clearance and Control of Intestinal Inflammation. Gastroenterology 2020, 159, 1051–1067. [Google Scholar] [CrossRef]
- Dabritz, J. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G455–G465. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, F.; Peng, J.; Chen, H.; Xie, J.; Liu, C.; Xiong, H.; Chen, S.; Xue, G.; Zhou, X.; et al. Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis. Redox Biol. 2024, 70, 103072. [Google Scholar] [CrossRef]
- Spalinger, M.R.; Sayoc-Becerra, A.; Santos, A.N.; Shawki, A.; Canale, V.; Krishnan, M.; Niechcial, A.; Obialo, N.; Scharl, M.; Li, J.; et al. PTPN2 Regulates Interactions Between Macrophages and Intestinal Epithelial Cells to Promote Intestinal Barrier Function. Gastroenterology 2020, 159, 1763–1777 e14. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Guo, X.W.; Zhang, F.F.; Wu, D.H.; Xie, D.; Luo, F.Q. Dexmedetomidine ameliorates diabetic intestinal injury by promoting the polarization of M2 macrophages through the MMP23B pathway. World J. Diabetes 2024, 15, 1962–1978. [Google Scholar] [CrossRef]
- Zhao, X.H.; Yang, T.; Zheng, M.Y.; Zhao, P.; An, L.Y.; Qi, Y.X.; Yi, K.Q.; Zhang, P.C.; Sun, D.L. Cystathionine gamma-lyase (Cth) induces efferocytosis in macrophages via ERK1/2 to modulate intestinal barrier repair. Cell Commun. Signal 2023, 21, 17. [Google Scholar] [CrossRef]
- Li, J.J.; Li, Y.L.; Chu, W.; Li, G.Q.; Zhang, M.; Dong, J.J.; Li, L.; Li, C.H.; Zhang, J.B.; Li, J.W.; et al. Astragaloside IV alleviates cytarabine-induced intestinal mucositis by remodeling macrophage polarization through AKT signaling. Phytomedicine 2023, 109, 154605. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Zuo, M.; Ding, S.; Li, J.; Feng, S.; Xiao, Y.; Tao, S. Novel mechanism by which extracellular vesicles derived from Lactobacillus murinus alleviates deoxynivalenol-induced intestinal barrier disruption. Environ. Int. 2024, 185, 108525. [Google Scholar] [CrossRef]
- Han, D.; Wu, Y.; Lu, D.; Pang, J.; Hu, J.; Zhang, X.; Wang, Z.; Zhang, G.; Wang, J. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis. 2023, 14, 656. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Wang, A.; Zheng, Y.; Lin, J.; Kong, Z.; Tian, Y.; Dong, H.; Zhang, Z.; Song, R. Saikosaponin A ameliorates ulcerative colitis by targeting the CH25H/25-OHC axis to inhibit NLRP3 inflammasome in macrophages. Phytomedicine 2025, 143, 156844. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Liu, B.H.; Cheng, W.W.; Meng, H.; Hou, X.T.; Xue, J.C.; Zhang, H.M.; Zhang, Q.G. Polyphyllin Ⅵ modulates macrophage polarization through autophagy-NLRP3 inflammasome to alleviate inflammatory bowel disease. Phytomedicine 2025, 143, 156640. [Google Scholar] [CrossRef]
- Ahmad, R.; Kumar, B.; Thapa, I.; Talmon, G.A.; Salomon, J.; Ramer-Tait, A.E.; Bastola, D.K.; Dhawan, P.; Singh, A.B. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes 2023, 15, 2282789. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Wu, W.; Chen, H.; Lin, R.; Sun, R.; Gao, X.; Li, G.; He, Q.; Gao, H.; et al. MCPIP1 restrains mucosal inflammation by orchestrating the intestinal monocyte to macrophage maturation via an ATF3-AP1S2 axis. Gut 2023, 72, 882–895. [Google Scholar] [CrossRef]
- Wang, W.; Dernst, A.; Martin, B.; Lorenzi, L.; Cadefau-Fabregat, M.; Phulphagar, K.; Wagener, A.; Budden, C.; Stair, N.; Wagner, T.; et al. Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation. Cell Rep. 2024, 43, 114736. [Google Scholar] [CrossRef]
- Li, R.; Zhou, R.; Wang, H.; Li, W.; Pan, M.; Yao, X.; Zhan, W.; Yang, S.; Xu, L.; Ding, Y.; et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019, 26, 2447–2463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhou, Y.; Xu, J.; Zhang, Y.; Wang, H.; Zhao, C.; Huang, H.; Yang, J.; Huang, C.; Li, Y.; et al. Short-chain fatty acid-producing bacterial strains attenuate experimental ulcerative colitis by promoting M2 macrophage polarization via JAK/STAT3/FOXO3 axis inactivation. J. Transl. Med. 2024, 22, 369. [Google Scholar] [CrossRef]
- Wu, Z.; He, J.; Zhang, Z.; Li, J.; Zou, H.; Tan, X.; Wang, Y.; Yao, Y.; Xiong, W. Propionic Acid Driven by the Lactobacillus johnsonii Culture Supernatant Alleviates Colitis by Inhibiting M1 Macrophage Polarization by Modulating the MAPK Pathway in Mice. J. Agric. Food Chem. 2023, 71, 14951–14966. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Liu, L.; Zhou, Y.; Zhong, K.; Gu, J.; Hu, T.; Yao, Y.; Zhou, C.; Chen, W. High-fat diet promotes colitis-associated tumorigenesis by altering gut microbial butyrate metabolism. Int. J. Biol. Sci. 2023, 19, 5004–5019. [Google Scholar] [CrossRef]
- Xiao, P.; Cai, X.; Zhang, Z.; Guo, K.; Ke, Y.; Hu, Z.; Song, Z.; Zhao, Y.; Yao, L.; Shen, M.; et al. Butyrate Prevents the Pathogenic Anemia-Inflammation Circuit by Facilitating Macrophage Iron Export. Adv. Sci. 2024, 11, e2306571. [Google Scholar] [CrossRef]
- Shao, X.; Mi, X.; Kuai, X.; Zhou, D.; Tai, Q.; Lu, Y.; Zhou, C.; He, S. Microbial Butyrate Modified by Melatonin Alleviates Colon Inflammation by Inhibiting GPR109A/Caspase-1-Dependent Macrophage M1 Polarization. J. Proteome Res. 2025, 24, 1871–1884. [Google Scholar] [CrossRef]
- Chang, Y.; Ou, Q.; Zhou, X.; Nie, K.; Zheng, P.; Liu, J.; Chen, L.; Yan, H.; Guo, D.; Zhang, S. Jianpi Jiedu decoction suppresses colorectal cancer growth by inhibiting M2 polarization of TAMs through the tryptophan metabolism-AhR pathway. Int. Immunopharmacol. 2024, 138, 112610. [Google Scholar] [CrossRef]
- Su, X.; Gao, Y.; Yang, R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022, 11, 2296. [Google Scholar] [CrossRef]
- Zuo, S.; Jiang, L.; Chen, L.; Wang, W.; Gu, J.; Kuai, J.; Yang, X.; Ma, Y.; Han, C.; Wei, W. Involvement of Embryo-Derived and Monocyte-Derived Intestinal Macrophages in the Pathogenesis of Inflammatory Bowel Disease and Their Prospects as Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 690. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Liu, H.; Huang, R.; Yan, X.; Song, M.; Tan, G.; Zhi, F. Ketone body beta-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 2022, 20, 148. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Liu, S.; Cao, J.; Mei, J.; Gong, J.; Chen, J.; Wang, X.; Zhang, R.; Li, X.; et al. Targeted V-type peptide-decorated nanoparticles prevent colitis by inhibiting endosomal TLR signaling and modulating intestinal macrophage polarization. Biomaterials 2025, 314, 122843. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Neurath, M.F.; Zargari, A.; Dieterich Johansson, C.; Knittel, T.; Admyre, C.; Winkler, T.; Hartmann, A.; Schüttler, J.; Langheinrich, M.; et al. The TLR9 Agonist Cobitolimod Induces IL10-Producing Wound Healing Macrophages and Regulatory T Cells in Ulcerative Colitis. J. Crohn’s Colitis 2020, 14, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Chang, R.; Sun, X.; Lu, L.; Gao, H.; Lu, H.; Lin, R.; Xu, X.; Liu, Z.; Zhan, L. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/beta-catenin signaling in mice. Commun. Biol. 2021, 4, 213. [Google Scholar] [CrossRef]
- Korzenik, J.R.; Dieckgraefe, B.K.; Valentine, J.F.; Hausman, D.F.; Gilbert, M.J.; Sargramostim in Crohn’s Disease Study Group. Sargramostim for active Crohn’s disease. N. Engl. J. Med. 2005, 352, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Nighot, M.; Ganapathy, A.S.; Saha, K.; Suchanec, E.; Castillo, E.F.; Gregory, A.; Shapiro, S.; Ma, T.; Nighot, P. Matrix Metalloproteinase MMP-12 Promotes Macrophage Transmigration Across Intestinal Epithelial Tight Junctions and Increases Severity of Experimental Colitis. J. Crohns Colitis 2021, 15, 1751–1765. [Google Scholar] [CrossRef]
- Mansoori Moghadam, Z.; Zhao, B.; Raynaud, C.; Strohmeier, V.; Neuber, J.; Losslein, A.K.; Qureshi, S.; Gres, V.; Ziegelbauer, T.; Baasch, S.; et al. Reactive oxygen species regulate early development of the intestinal macrophage-microbiome interface. Blood 2025, 145, 2025–2040. [Google Scholar] [CrossRef]
- Biton, M.; Haber, A.L.; Rogel, N.; Burgin, G.; Beyaz, S.; Schnell, A.; Ashenberg, O.; Su, C.-W.; Smillie, C.; Shekhar, K.; et al. T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation. Cell 2018, 175, 1307–1320.e22. [Google Scholar] [CrossRef]
- Na, Y.R.; Stakenborg, M.; Seok, S.H.; Matteoli, G. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yu, J.; Zhang, J.; Ye, W.; Yao, J. TLR4/NF-κB-mediated M1 macrophage polarization contributes to the promotive effects of ETS2 on ulcerative colitis. Eur. J. Med. Res. 2025, 30, 668. [Google Scholar] [CrossRef]
- Liu, J.; Niu, D.; Tang, Y.; Zheng, R.; Qin, Y.; Cheng, X.; Pan, S.; Yuan, J.; Shi, X.; Yang, J. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates DSS-induced colitis by inhibiting ERK/NF-kappaB activation in macrophages. Phytomedicine 2025, 139, 156492. [Google Scholar] [CrossRef]
- Gögebakan, Ö.; Osterhoff, M.A.; Schüler, R.; Pivovarova, O.; Kruse, M.; Seltmann, A.-C.; Mosig, A.S.; Rudovich, N.; Nauck, M.; Pfeiffer, A.F.H. GIP increases adipose tissue expression and blood levels of MCP-1 in humans and links high energy diets to inflammation: A randomised trial. Diabetologia 2015, 58, 1759–1768. [Google Scholar] [CrossRef]
- Yin, H.; Ju, Z.; Zhang, X.; Zuo, W.; Yang, Y.; Zheng, M.; Zhang, X.; Liu, Y.; Peng, Y.; Xing, Y.; et al. Inhibition of METTL3 in macrophages provides protection against intestinal inflammation. Cell Mol. Immunol. 2024, 21, 589–603. [Google Scholar] [CrossRef]
- Cicia, D.; Biscu, F.; Iannotti, F.A.; Miraglia, M.; Ferrante, C.; Iaccarino, N.; Cadenas de Miguel, S.; Chiavaroli, A.; Schiano Moriello, A.; De Cicco, P.; et al. Dietary targeting of TRPM8 rewires macrophage immunometabolism reducing colitis severity. Cell Death Dis. 2025, 16, 343. [Google Scholar] [CrossRef]
- Hausmann, A.; Felmy, B.; Kunz, L.; Kroon, S.; Berthold, D.L.; Ganz, G.; Sandu, I.; Nakamura, T.; Zangger, N.S.; Zhang, Y.; et al. Intercrypt sentinel macrophages tune antibacterial NF-kappaB responses in gut epithelial cells via TNF. J. Exp. Med. 2021, 218, e20210862. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Liu, W.; Li, Y.; Chen, K.; Li, H.; Tang, H.; Yin, Y.; Song, Z.; Chen, D. CCL3 aggravates intestinal damage in NEC by promoting macrophage chemotaxis and M1 macrophage polarization. Pediatr. Res. 2023, 94, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gao, L.; Yang, Z.; Wang, F.; Guo, Y.; Wang, B.; Hua, R.; Shang, H.; Xu, J. Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. J. Inflamm. Res. 2021, 14, 1085–1110. [Google Scholar] [CrossRef]
- He, K.J.; Dong, J.H.; Ouyang, X.M.; Huo, Y.N.; Cheng, X.S.; Lin, Y.; Li, Y.; Gong, G.; Liu, J.; Ren, J.L.; et al. Glycerol monolaurate ameliorates DSS-induced acute colitis by inhibiting infiltration of Th17, neutrophils, macrophages and altering the gut microbiota. Front. Nutr. 2022, 9, 911315. [Google Scholar] [CrossRef]
- Liu, B.; Deng, Y.; Duan, Z.; Chu, C.; Wang, X.; Yang, C.; Li, J.; Ding, W. Neutrophil extracellular traps promote intestinal barrier dysfunction by regulating macrophage polarization during trauma/hemorrhagic shock via the TGF-beta signaling pathway. Cell Signal 2024, 113, 110941. [Google Scholar] [CrossRef]
- Chen, X.; Bao, S.; Liu, M.; Han, Z.; Tan, J.; Zhu, Q.; Huang, X.; Tian, X. Inhibition of HMGB1 improves experimental mice colitis by mediating NETs and macrophage polarization. Cytokine 2024, 176, 156537. [Google Scholar] [CrossRef]
- Yang, T.; Xie, S.; Cao, L.; Li, M.; Ding, L.; Wang, L.; Pang, S.; Wang, Z.; Geng, L. Astragaloside Ⅳ Modulates Gut Macrophages M1/M2 Polarization by Reshaping Gut Microbiota and Short Chain Fatty Acids in Sepsis. Shock. 2024, 61, 120–131. [Google Scholar] [CrossRef]
- Tan, T.; Li, J.; Fan, W.; Shang, K.; Yang, C.; Liu, X.; Zhu, S.; Liu, T.; Wang, J.; Li, Y.; et al. Tetrahedral Framework Nucleic Acid Relieves Sepsis-Induced Intestinal Injury by Regulating M2 Macrophages. Cell Prolif. 2025, 58, e13803. [Google Scholar] [CrossRef]
- Xu, Z.; Li, D.; Qu, W.; Yin, Y.; Qiao, S.; Zhu, Y.; Shen, S.; Hou, Y.; Yang, J.; Wang, T. Card9 protects sepsis by regulating Ripk2-mediated activation of NLRP3 inflammasome in macrophages. Cell Death Dis. 2022, 13, 502. [Google Scholar] [CrossRef]
- Wu, X.; Ren, J.; Chen, G.; Wu, L.; Song, X.; Li, G.; Deng, Y.; Wang, G.; Gu, G.; Li, J. Systemic blockade of P2X7 receptor protects against sepsis-induced intestinal barrier disruption. Sci. Rep. 2017, 7, 4364. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, B.; Gao, Q.; Wu, M.; Ma, H.; Bai, J.; Ma, C.; Xie, X.; Gong, Y.; Xu, L.; et al. Intestine-Decipher Engineered Capsules Protect Against Sepsis-induced Intestinal Injury via Broad-spectrum Anti-inflammation and Parthanatos Inhibition. Adv. Sci. 2025, 12, e2412799. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Cao, Y.; Zheng, L.; Wang, T.; Zhao, S.; Chen, J.; Pang, C.; Xia, W.; Xia, Z.; Li, N.; et al. Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling. Front. Immunol. 2022, 13, 922614. [Google Scholar] [CrossRef]
- Hiengrach, P.; Chindamporn, A.; Leelahavanichkul, A. Kazachstania pintolopesii in Blood and Intestinal Wall of Macrophage-Depleted Mice with Cecal Ligation and Puncture, the Control of Fungi by Macrophages during Sepsis. J. Fungi 2023, 9, 1164. [Google Scholar] [CrossRef]
- Jiang, T.T.; Shao, T.-Y.; Ang, W.X.G.; Kinder, J.M.; Turner, L.H.; Pham, G.; Whitt, J.; Alenghat, T.; Way, S.S. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria. Cell Host Microbe 2017, 22, 809–816.e4. [Google Scholar] [CrossRef]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.-P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal microbiota dysbiosis in IBD. Gut 2017, 66, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Hiengrach, P.; Panpetch, W.; Chindamporn, A.; Leelahavanichkul, A. Macrophage depletion alters bacterial gut microbiota partly through fungal overgrowth in feces that worsens cecal ligation and puncture sepsis mice. Sci. Rep. 2022, 12, 9345. [Google Scholar] [CrossRef] [PubMed]
- Panpetch, W.; Phuengmaung, P.; Hiengrach, P.; Issara-Amphorn, J.; Cheibchalard, T.; Somboonna, N.; Tumwasorn, S.; Leelahavanichkul, A. Candida Worsens Klebsiella pneumoniae Induced-Sepsis in a Mouse Model with Low Dose Dextran Sulfate Solution through Gut Dysbiosis and Enhanced Inflammation. Int. J. Mol. Sci. 2022, 23, 7050. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijzen, G.A.; Haskel, Y.; Lu, Q.; Berg, R.D.; van Rooijen, N.; Goris, R.J.; Deitch, E.A. Macrophage elimination increases bacterial translocation and gut-origin septicemia but attenuates symptoms and mortality rate in a model of systemic inflammation. Ann. Surg. 1993, 218, 791–799. [Google Scholar] [CrossRef]
- Han, S.; Bao, X.; Zou, Y.; Wang, L.; Li, Y.; Yang, L.; Liao, A.; Zhang, X.; Jiang, X.; Liang, D.; et al. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci. Adv. 2023, 9, eadg2697. [Google Scholar] [CrossRef]
- Zhou, M.; Li, R.; Lian, G.; Yang, M.; Li, L.; Yin, Z.; Li, G.; Zhao, J.; Tan, R. Tetrahydrocurcumin alleviates colorectal tumorigenesis by modulating the SPP1/CD44 axis and preventing M2 tumor-associated macrophage polarization. Phytomedicine 2025, 141, 156674. [Google Scholar] [CrossRef]
- Yan, J.; Duan, W.; Gao, Q.; Mao, T.; Wang, M.; Duan, J.; Li, J. ENPP2 inhibitor improves proliferation in AOM/DSS-induced colorectal cancer mice via remodeling the gut barrier function and gut microbiota composition. Pharmacol. Res. 2023, 195, 106877. [Google Scholar] [CrossRef]
- Zongo, A.W.; Zogona, D.; Youssef, M.; Ye, S.; Zhan, F.; Li, J.; Li, B. Senegalia macrostachya seed polysaccharides attenuate inflammation-induced intestinal epithelial barrier dysfunction in a Caco-2 and RAW264.7 macrophage co-culture model by inhibiting the NF-kappaB/MLCK pathway. Food Funct. 2022, 13, 11676–11689. [Google Scholar] [CrossRef]
- Xun, J.; Zhou, S.; Lv, Z.; Wang, B.; Luo, H.; Zhang, L.; Yang, L.; Zhang, A.; Wu, X.; Wang, Z.; et al. Dioscin modulates macrophages polarization and MDSCs differentiation to inhibit tumorigenesis of colitis-associated colorectal cancer. Int. Immunopharmacol. 2023, 117, 109839. [Google Scholar] [CrossRef]
- Dong, X.; Qi, M.; Cai, C.; Zhu, Y.; Li, Y.; Coulter, S.; Sun, F.; Liddle, C.; Uboha, N.V.; Halberg, R.; et al. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight 2024, 9, e170428. [Google Scholar] [CrossRef]
- Chai, N.; Xiong, Y.; Zhang, Y.; Cheng, Y.; Shi, W.; Yao, Y.; Sui, H.; Zhu, H. YYFZBJS inhibits colorectal tumorigenesis by remodeling gut microbiota and influence on M2 macrophage polarization in vivo and in vitro. Am. J. Cancer Res. 2021, 11, 5338–5357. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, H.; Deng, Y.; Fang, Q.; Zhang, X.; Ding, S.; Hou, X.; Du, H. Huaier polysaccharides inhibits hepatocellular carcinoma via gut microbiota mediated M2 macrophage polarization. Int. J. Biol. Macromol. 2025, 293, 139357. [Google Scholar] [CrossRef]
- Zhu, Z.; Yi, B.; Tang, Z.; Chen, X.; Li, M.; Xu, T.; Zhao, Z.; Tang, C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023, 23, 1044. [Google Scholar] [CrossRef]
- Di Luccia, B.; Molgora, M.; Khantakova, D.; Jaeger, N.; Chang, H.W.; Czepielewski, R.S.; Helmink, B.A.; Onufer, E.J.; Fachi, J.L.; Bhattarai, B.; et al. TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti-PD-1 tumor immunotherapy. Sci. Immunol. 2024, 9, eadi5374. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.A.; Matheis, F.; Mucida, D. Gut macrophages: Key players in intestinal immunity and tissue physiology. Curr. Opin. Immunol. 2020, 62, 54–61. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Zhu, K.; Liu, Y.; Wang, J. Research Progress on the Relationship Between the Intestinal Barrier and Macrophages. Curr. Issues Mol. Biol. 2025, 47, 813. https://doi.org/10.3390/cimb47100813
Ma S, Zhu K, Liu Y, Wang J. Research Progress on the Relationship Between the Intestinal Barrier and Macrophages. Current Issues in Molecular Biology. 2025; 47(10):813. https://doi.org/10.3390/cimb47100813
Chicago/Turabian StyleMa, Shan, Kecheng Zhu, Yan Liu, and Jizhuang Wang. 2025. "Research Progress on the Relationship Between the Intestinal Barrier and Macrophages" Current Issues in Molecular Biology 47, no. 10: 813. https://doi.org/10.3390/cimb47100813
APA StyleMa, S., Zhu, K., Liu, Y., & Wang, J. (2025). Research Progress on the Relationship Between the Intestinal Barrier and Macrophages. Current Issues in Molecular Biology, 47(10), 813. https://doi.org/10.3390/cimb47100813