Genotype Combinations and Genetic Risk Score Analyses of MTHFR, MTRR, and MTR Polymorphisms in Hypothyroidism Susceptibility: A Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. DNA Isolation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabakoglu, N.T.; Celik, M. Evaluation of Health-Related Quality of Life in Patients with Euthyroid Hashimoto’s Thyroiditis under Long-Term Levothyroxine Therapy: A Prospective Case-Control Study. J. Clin. Med. 2024, 13, 3082. [Google Scholar] [CrossRef]
- Zamwar, U.M.; Muneshwar, K.N. Epidemiology, types, causes, clinical presentation, diagnosis, and treatment of hypothyroidism. Cureus 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Wyne, K.L.; Nair, L.; Schneiderman, C.P.; Pinsky, B.; Antunez Flores, O.; Guo, D.; Barger, B.; Tessnow, A.H. Hypothyroidism Prevalence in the United States: A Retrospective Study Combining National Health and Nutrition Examination Survey and Claims Data, 2009–2019. J. Endocr. Soc. 2022, 7. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Liang, Y.; Chen, X.; Zhou, S.; Fei, W.; Yang, Y.; Que, H. Cancer risk in Hashimoto’s thyroiditis: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 937871. [Google Scholar] [CrossRef]
- Lyu, Z.; Zhang, Y.; Sheng, C.; Huang, Y.; Zhang, Q.; Chen, K. Global burden of thyroid cancer in 2022: Incidence and mortality estimates from GLOBOCAN. Chin. Med. J. 2024, 137, 2567–2576. [Google Scholar] [CrossRef]
- Boutin, A.; Allen, M.D.; Geras-Raaka, E.; Huang, W.; Neumann, S.; Gershengorn, M.C. Thyrotropin receptor stimulates internalization-independent persistent phosphoinositide signaling. Mol. Pharmacol. 2011, 80, 240–246. [Google Scholar] [CrossRef]
- Adan, A.M.; Siyad, M.O.; Jeele, M.O.O. Folic Acid Deficiency in severe hypothyroidism: A Case Report and a Review of Literature. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, H.; Wang, S.; Deng, L.; Li, J.; Qin, A.; Chu, C.; Liu, X. Associations between indicators of lipid and glucose metabolism and hypothyroidism. Lipids Health Dis. 2025, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Tiucă, R.A.; Tiucă, O.M.; Pașcanu, I.M. The role of genetic polymorphisms in differentiated thyroid cancer: A 2023 update. Biomedicines 2023, 11, 1075. [Google Scholar] [CrossRef]
- Zarembska, E.; Ślusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- More, A.; Anjankar, N.; Shrivastava, J.; Nair, N.; Jadhav, R. Correlation of MTHFR C677T Polymorphism with Male Infertility among Indian Population: Case-Control Study. J. Pharm. Bioallied Sci. 2024, 16, S2809–S2814. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Gene: MTHFR Methylenetetrahydrofolate Reductase [Homo Sapiens 526 (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/4524 (accessed on 16 June 2025).
- National Center for Biotechnology Information (NCBI). dbSNP: rs1801133—MTHFR Gene Variant. Available online: https://www.ncbi.nlm.nih.gov/snp/rs1801133 (accessed on 16 June 2025).
- Ren, F.-j.; Fang, G.-y.; Zhang, Z.-y. Association between methylenetetrahydrofolate reductase C677T polymorphisms and male oligozoospermia, asthenozoospermia or oligoasthenozoospermia: A case–control study. Sci. Rep. 2024, 14, 25219. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, S.; Wang, M.; He, J.; Xi, S. Association of MTRR A66G polymorphism with cancer susceptibility: Evidence from 85 studies. J. Cancer 2017, 8, 266. [Google Scholar] [CrossRef]
- Hamed Al-Hassani, O.M. Role of MTHFR C667T and MTRR A66G genes polymorphism with thyroid disorders. J. Phys. Conf. Ser. 2020, 1660, 012007. [Google Scholar] [CrossRef]
- Desai, M.; Chauhan, J.B. Analysis of polymorphisms in genes involved in folate metabolism and its impact on Down syndrome and other intellectual disability. Meta Gene 2017, 14, 24–29. [Google Scholar] [CrossRef]
- Ter Hark, S.E.; Coenen, M.J.; Vos, C.F.; Aarnoutse, R.E.; Nolen, W.A.; Birkenhager, T.K.; van den Broek, W.W.; Schellekens, A.F.; Verkes, R.-J.; Janzing, J.G. A genetic risk score to predict treatment nonresponse in psychotic depression. Transl. Psychiatry 2024, 14, 198. [Google Scholar] [CrossRef]
- Health., RoTMo. e-Nabız Personal Health System. Available online: https://enabiz.gov.tr (accessed on 30 August 2025).
- Garber JRC, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Woeber, K.A. Clinical Practice Guidelines for Hypothyroidism in Adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract. 2012, 18, 988–1028. [Google Scholar] [CrossRef]
- Igo Jr, R.P.; Kinzy, T.G.; Cooke Bailey, J.N. Genetic risk scores. Curr. Protoc. Hum. Genet. 2019, 104, e95. [Google Scholar] [CrossRef] [PubMed]
- Kvaratskhelia, T.; Abzianidze, E.; Asatiani, K.; Kvintradze, M.; Surmava, S.; Kvaratskhelia, E. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in Georgian females with hypothyroidism. Glob. Med. Genet. 2020, 7, 047–050. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Member of the Taylor and Francis Group: London, UK, 2013. [Google Scholar]
- Antonaros, F.; Olivucci, G.; Cicchini, E.; Ramacieri, G.; Pelleri, M.C.; Vitale, L.; Strippoli, P.; Locatelli, C.; Cocchi, G.; Piovesan, A.; et al. MTHFR C677T polymorphism analysis: A simple, effective restriction enzyme--based method improving 546 previous protocols. Mol. Genet. Genom. Med. 2019, 7, e628. [Google Scholar] [CrossRef]
- Arakawa, Y.; Watanabe, M.; Inoue, N.; Sarumaru, M.; Hidaka, Y.; Iwatani, Y. Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR, and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin. Exp. Immunol. 2012, 170, 194–201. [Google Scholar] [CrossRef] [PubMed]
- González-Mercado, M.G.; Rivas, F.; Gallegos-Arreola, M.P.; Morán-Moguel, M.C.; Salazar-Páramo, M.; González-López, L.; Gámez-Nava, J.I.; Muñoz-Valle, J.F.; Medina-Coss, Y.L.R.; González-Mercado, A.; et al. MTRR A66G, RFC1 G80A, and MTHFR C677T and A1298C Polymorphisms and Disease Activity in Mexicans with Rheumatoid Arthritis Treated with Methotrexate. Genet. Test. Mol. Biomark. 2017, 21, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Chen, Y.; Wang, L.; Zhuo, G.; Qiu, C.; Tu, Q.; Mei, J.; Zhang, W.; Qian, X.; Wang, X. Polymorphisms of Genes Involved in the Folate Metabolic Pathway Impact the Occurrence of Unexplained Recurrent Pregnancy Loss. Reprod. Sci. 2015, 22, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Gimenez-Martins, A.P.D.; Castanhole-Nunes, M.M.U.; Nascimento-Filho, C.; Santos, S.P.D.; Galbiatti-Dias, A.L.S.; Fernandes, G.M.M.; Cuzziol, C.I.; Francisco, J.L.E.; Pavarino, É.C.; Goloni-Bertollo, E.M. Association between folate metabolism polymorphisms and breast cancer: A case-control study. Genet. Mol. Biol. 2021, 44, e20200485. [Google Scholar] [CrossRef] [PubMed]
- Tariq, T.; Arshad, A.; Bibi, A.; Aslam, S.; Sohail, A.; Ishaq, B.; Irfan, M. Association of MTR A2756G and MTRR A66G polymorphisms with male infertility: An updated meta-analysis. Am. J. Men’S Health 2023, 17, 15579883231176657. [Google Scholar] [CrossRef]
- Tetik Vardarlı, A.; Zengi, A.; Bozok, V.; Karadeniz, M.; Tamsel, S.; Kucukaslan, A.; Köse, T.; Saygılı, F.; Eroğlu, Z. An Association Study Between Gene Polymorphisms of Folic Acid Metabolism Enzymes and Biochemical and Hormonal Parameters in Acromegaly. Genet. Test. Mol. Biomark. 2015, 19. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, S. Interactions between Polygenetic Variants and Lifestyle Factors in Hypothyroidism: A Hospital-Based 568 Cohort Study. Nutrients 2023, 15, 3850. [Google Scholar] [CrossRef] [PubMed]
- Pokushalov, E.; Ponomarenko, A.; Bayramova, S.; Garcia, C.; Pak, I.; Shrainer, E.; Ermolaeva, M.; Kudlay, D.; Johnson, M.; Miller, R. Effect of Methylfolate, Pyridoxal-5′-Phosphate, and Methylcobalamin (SolowaysTM) Supplementation on Homocysteine and Low-Density Lipoprotein Cholesterol Levels in Patients with Methylenetetrahydrofolate Reductase, Methionine Synthase, and Methionine Synthase Reductase Polymorphisms: A Randomized Controlled Trial. Nutrients 2024, 16, 1550. [Google Scholar] [CrossRef]
- Araszkiewicz, A.F.; Jańczak, K.; Wójcik, P.; Białecki, B.; Kubiak, S.; Szczechowski, M.; Januszkiewicz-Lewandowska, D. MTHFR Gene Polymorphisms: A Single Gene with Wide-Ranging Clinical Implications—A Review. Genes 2025, 16, 441. [Google Scholar] [CrossRef] [PubMed]
- Prauchner, G.R.K.; Ramires Junior, O.V.; Rieder, A.S.; Wyse, A.T.S. Mild hyperhomocysteinemia alters oxidative stress profile via Nrf2, inflammation and cholinesterases in cardiovascular system of aged male rats. Chem. Biol. Interact. 2024, 396, 111028. [Google Scholar] [CrossRef]
- Djuric, D.M.; Todorović, D.; Bajić, Z.; Krneta, S.M.; Šobot, T. Is Homocysteine a Biomarker of Environmental Health Risk and Epigenetic-DNA Methylation: Links to Cardiovascular Pathogenesis and B Vitamins. In Environmental Factors in the Pathogenesis of Cardiovascular Diseases; Djuric, D.M., Agrawal, D.K., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 383–452. [Google Scholar] [CrossRef]
- Wang, L.; Niu, H.; Zhang, J. Homocysteine induces mitochondrial dysfunction and oxidative stress in myocardial ischemia/reperfusion injury through stimulating ROS production and the ERK1/2 signaling pathway. Exp. Ther. Med. 2020, 20, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Pu, D.; Tan, R.; Wu, J. Association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms (C677T and A1298C) with thyroid dysfunction: A meta-analysis and trial sequential analysis. Arch. Endocrinol. Metab. 2022, 66, 551–581. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, A.; Ferrari, S.M.; Elia, G.; Ragusa, F.; Balestri, E.; Botrini, C.; Rugani, L.; Mazzi, V.; Antonelli, A.; Fallahi, P. Hypothyroidism and metabolic cardiovascular disease. Front. Endocrinol. 2024, 15, 1408684. [Google Scholar] [CrossRef]
- Liu, H.; Peng, D. Update on dyslipidemia in hypothyroidism: The mechanism of dyslipidemia in hypothyroidism. Endocr. Connect. 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jin, C.; Wang, H.; Lai, Y.; Li, J.; Shan, Z. Subclinical hypothyroidism increases insulin resistance in normoglycemic people. Front. Endocrinol. 2023, 14, 1106968. [Google Scholar] [CrossRef]
- Mathieu, S.; Briend, M.; Abner, E.; Couture, C.; Li, Z.; Bossé, Y.; Thériault, S.; Esko, T.; Arsenault, B.J.; Mathieu, P. Genetic association and Mendelian randomization for hypothyroidism highlight immune molecular mechanisms. iScience 2022, 25, 104992. [Google Scholar] [CrossRef]
- Garg, M.; Panigrahi, I.; Patial, A.; Attri, S.; Sharma, G.; Kapoor, H. P059: Influence of MTHFR polymorphisms and folate pathway metabolites on comorbidities in Down syndrome. Genet. Med. Open 2025, 3, 102903. [Google Scholar] [CrossRef]
- Sterenborg, R.B.T.M.; Steinbrenner, I.; Li, Y.; Bujnis, M.N.; Naito, T.; Marouli, E.; Galesloot, T.E.; Babajide, O.; Andreasen, L.; Astrup, A.; et al. Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications. Nat. Commun. 2024, 15, 888. [Google Scholar] [CrossRef]
GRS Range | GRS Category | Patient Group | Control Group | Total | OR (Patient) | p-Value |
---|---|---|---|---|---|---|
0–2 | Low | 14 | 42 | 56 | Reference | - |
3–4 | Medium | 60 | 36 | 96 | 5.00 | 0.0001 * |
5–6 | High | 12 | 9 | 21 | 4.00 | 0.0138 * |
Variable | OR: 95% Confidence Interval | p |
---|---|---|
Intercept | - | 0.0028 |
Genetic Risk Score | 1.575; 1.184–2.096 | 0.0018 |
Clinical and Demographic Parameters | Patient Group (n = 86) | Control Group (n = 87) | OR: 95% Confidence Interval | p |
---|---|---|---|---|
Age | 54.779 ± 10.998 | 56.379 ± 11.221 | 1.600; 1.091–4.292 | 0.242 a |
Hypertension (+) | 31 (36.1%) | 10 (11.5%) | 4.340; 1.965–9.585 | <0.001 b |
Diabetes Mellitus (+) | 21 (24.4%) | 7 (8.1%) | 3.692; 1.478–9.227 | 0.003 b |
Cholesterol (+) | 24 (27.9%) | 3 (3.4%) | 10.839; 3.123–37.615 | <0.001 b |
Heart Diseases (+) | 21 (24.4%) | 3 (3.4%) | 9.046; 2.586–31.647 | <0.001 b |
Alcohol (+) | 13 (15.1%) | 8 (9.2%) | 1.759; 0.689–4.486 | 0.119 b |
Smoking (+) | 22 (25.6%) | 9 (10.3%) | 2.979; 1.282–6.922 | 0.006 b |
Polymorphism | Genotype (Reference) | OR: 95% Confidence Interval | p |
---|---|---|---|
MTHFR A1298C | AC vs. AA | 0.689; 0.327–1.452 | 0.327 |
CC vs. AA | 1.056; 0.325–3.429 | 0.928 | |
MTRR A66G | AA vs. GG | 5.795; 1.708–19.665 | 0.005 |
AG vs. GG | 1.268; 0.406–3.960 | 0.683 | |
MTR A2756G | AA vs. GG | 1.189; 0.333–4.250 | 0.790 |
Genotype Distributions | Patient Group (n = 86) | Control Group (n = 87) | p | |
---|---|---|---|---|
MTHFR C677T | CC | 40 (46.5%) | 42 (48.3%) | 0.971 a |
CT | 34 (39.5%) | 33 (37.9%) | ||
TT | 12 (14.0%) | 12 (13.8%) | ||
Genotype distributions | Patient group (n = 86) | Control group (n = 87) | p | |
MTHFR A1298C | CC | 11 (12.8%) | 9 (10.3%) | 0.761 a |
AC | 40 (46.5%) | 45 (51.7%) | ||
AA | 35 (40.7%) | 33 (38.0%) | ||
Genotype distributions | Patient group (n = 86) | Control group (n = 87) | p | |
MTRR A66G | GG | 6 (7.0%) | 15 (17.2%) | <0.001 a* |
AG | 39 (45.3%) | 57 (65.6%) | ||
AA | 41 (47.7%) | 15 (17.2%) | ||
Genotype distributions | Patient group (n = 86) | Control group (n = 87) | p | |
MTR A2756G | GG | 7 (8.2%) | 9 (10.3%) | 0.052 a |
AG | 39 (45.3%) | 24 (27.6%) | ||
AA | 40 (46.5%) | 54 (62.1%) | ||
Genotype distributions | Patient group (n = 86) and Control group (n = 87) | p | ||
MTHFR C677T | CC | OR: 0.932 (0.513–1.692) | 0.408 b | |
CT | OR: 1.070 (0.580–1.973) | 0.414 b | ||
TT | Reference | - | ||
Genotype distributions | Patient group (n = 86) and Control group (n = 87) | p | ||
MTHFR A1298C | CC | Reference | - | |
AC | OR: 0.812 (0.447–1.474) | 0.247 b | ||
AA | OR: 1.123 (0.610–2.068) | 0.355 b | ||
Genotype distributions | Patient group (n = 86) and Control group (n = 87) | p | ||
MTRR A66G | GG | Reference | - | |
AG | OR: 0.437 (0.237–0.806) | 0.004 b* | ||
AA | OR: 4.373 (2.174–8.797) | <0.001 b* | ||
Genotype distributions | Patient group (n = 86) and Control group (n = 87) | p | ||
MTR A2756G | GG | Reference | - | |
AG | OR: 2.178 (1.156–4.104) | 0.008 b* | ||
AA | OR: 0.531 (0.290–0.974) | <0.020 b* |
Gene Variations | Patient Group (n = 86) | Control Group (n = 87) | ||||
---|---|---|---|---|---|---|
Allele | Case | Frequency | Allele | Case | Frequency | |
MTHFR C677T | C | 114 | 0.6628 | C | 117 | 0.6724 |
T | 58 | 0.3372 | T | 57 | 0.3276 | |
Total | 172 | 1.0000 | Total | 174 | 1.0000 | |
Hardy–Weinberg Equilibrium Test: Pearson chi2 = 1.1482 Pr = 0.2839 a* | Hardy–Weinberg Equilibrium Test: Pearson chi2 = 1.6810 Pr = 0.1948 a* | |||||
MTHFR A1298C | C | 62 | 0.3605 | C | 63 | 0.3621 |
A | 110 | 0.6395 | A | 111 | 0.6379 | |
Total | 172 | 1.0000 | Total | 174 | 1.0000 | |
Hardy–Weinberg Equilibrium Test: Pearson chi2 = 0.0067 Pr = 0.9348 a | Hardy–Weinberg Equilibrium Test: Pearson chi2 = 1.2464 Pr = 0.2642 a | |||||
MTRR A66G | G | 51 | 0.2965 | G | 87 | 0.5000 |
A | 121 | 0.3075 | A | 87 | 0.5000 | |
Total | 172 | 1.0000 | Total | 174 | 1.0000 | |
Hardy–Weinberg Equilibrium Test: Pearson chi2 = 0.6512 Pr = 0.4197 a | Hardy–Weinberg Equilibrium Test: Pearson chi2 = 8.3793 Pr = 0.0038 a* | |||||
MTR A2756G | G | 53 | 0.3081 | G | 42 | 0.2414 |
A | 119 | 0.6919 | A | 132 | 0.7586 | |
Total | 172 | 1.0000 | Total | 174 | 1.0000 | |
Hardy–Weinberg Equilibrium Test: Pearson chi2 = 0.3476 Pr = 0.5555 a | Hardy–Weinberg Equilibrium Test: Pearson chi2 = 5.2972 Pr = 0.0214 a* |
MTHFR C677T | DM | HT | CHOL | HD | SM | ALC | Total | p |
---|---|---|---|---|---|---|---|---|
CC | 12 | 10 | 14 | 11 | 5 | 5 | 57 | <0.001 a* |
CT | 7 | 16 | 9 | 8 | 12 | 6 | 58 | |
TT | 2 | 5 | 1 | 2 | 5 | 2 | 17 | |
Total | 21 | 31 | 24 | 21 | 22 | 13 | 132 | |
MTHFR A1298C | DM | HT | CHOL | HD | SM | ALC | Total | p |
CC | 4 | 4 | 4 | 5 | 1 | 1 | 19 | 0.004 a* |
AC | 9 | 16 | 14 | 9 | 9 | 8 | 65 | |
AA | 8 | 11 | 6 | 7 | 12 | 4 | 48 | |
Total | 21 | 31 | 24 | 21 | 22 | 13 | 132 | |
MTRR A66G | DM | HT | CHOL | HD | SM | ALC | Total | p |
GG | 1 | 1 | 0 | 1 | 2 | 1 | 6 | 0.038 a* |
AG | 10 | 17 | 13 | 10 | 8 | 7 | 65 | |
AA | 10 | 13 | 11 | 10 | 12 | 5 | 61 | |
Total | 21 | 31 | 24 | 21 | 22 | 13 | 132 | |
MTR A2756G | DM | HT | CHOL | HD | SM | ALC | Total | p |
GG | 2 | 5 | 3 | 2 | 1 | 0 | 13 | 0.010 a* |
AG | 11 | 13 | 8 | 8 | 10 | 8 | 58 | |
AA | 8 | 13 | 13 | 11 | 11 | 5 | 61 | |
Total | 21 | 31 | 24 | 21 | 22 | 13 | 132 |
Genotype Analysis C677T/A1298C | Patients (n = 86) | Frequency (%) | Controls (n = 87) | Frequency (%) | OR: (95%Cl), p |
CC-CC | 9 | 10.4 | 8 | 9.2 | OR: 1.154 (0.423–3.146), p = 0.389 |
CC-AC | 24 | 27.9 | 21 | 24.1 | OR: 1.216 (0.616–2.403), p = 0.286 |
CC-AA | 10 | 11.6 | 12 | 13.8 | OR: 0.822 (0.335–2.018), p = 0.335 |
CT-AC | 19 | 22.1 | 26 | 30.0 | OR: 0.665 (0.335–1.321), p = 0.122 |
CT-AA | 12 | 14.0 | 11 | 12.6 | OR: 1.120 (0.465–2.697), p = 0.400 |
TT-AA | 12 | 14.0 | 9 | 10.3 | OR: 1.405 (0.560–3.530), p = 0.234 |
Genotype analysis C677T/A2756G | Patients (n = 86) | Frequency (%) | Controls (n = 87) | Frequency (%) | OR: (95%Cl), p |
CC-AG | 25 | 29.1 | 15 | 17.2 | OR: 1.967 (0.952–4.063), p = 0.033 * |
CC-AA | 17 | 19.8 | 27 | 31.0 | OR: 0.548 (0.272–1.101), p = 0.045 * |
CT-GG | 2 | 2.3 | 6 | 7.0 | OR: 0.321 (0.063–1.639), p = 0.086 |
CT-AG | 18 | 20.9 | 9 | 10.3 | OR: 2.294 (0.967–5.441), p = 0.030 * |
CT-AA | 17 | 19.8 | 18 | 20.7 | OR: 0.944 (0.450–1.984), p = 0.440 |
TT-GG | 1 | 1.2 | 3 | 3.5 | OR: 0.329 (0.034–3.231), p = 0.170 |
TT-AA | 6 | 6.9 | 9 | 10.3 | OR: 0.650 (0.221–1.912), p = 0.217 |
Genotype analysis C677T/A66G | Patients (n = 86) | Frequency (%) | Controls (n = 87) | Frequency (%) | OR: (95%Cl), p |
CC-AA | 24 | 27.9 | 12 | 13.8 | OR: 2.419 (1.120–5.227), p = 0.012 †* |
CC-AG | 18 | 20.9 | 18 | 20.6 | OR: 1.015 (0.487–2.114), p = 0.484 |
CC-GG | 4 | 4.6 | 12 | 13.8 | OR: 0.305 (0.094–0.986), p = 0.024 †* |
CT-AA | 17 | 19.8 | 3 | 3.5 | OR: 6.898 (1.941–24.516), p = 0.001 * |
CT-AG | 19 | 22.1 | 30 | 34.5 | OR: 0.539 (0.274–1.058), p = 0.036 * |
TT-AG | 3 | 3.5 | 9 | 10.3 | OR: 0.313 (0.082–1.200), p = 0.045 * |
TT-GG | 1 | 1.2 | 3 | 3.5 | OR: 0.329 (0.034–3.231), p = 0.170 |
Genotype analysis A1298C/A2756G | Patients (n = 86) | Frequency (%) | Controls (n = 87) | Frequency (%) | OR: (95%Cl), p |
CC-AA | 9 | 10.5 | 6 | 7.0 | OR: 1.578 (0.536–4.642), p = 0.204 |
CC-AG | 3 | 3.5 | 3 | 3.5 | OR: 1.012 (0.199–5.159), p = 0.494 |
AC-AA | 15 | 17.4 | 27 | 31.0 | OR: 0.469 (0.229–0.963), p = 0.020 †* |
AC-AG | 25 | 29.1 | 9 | 10.3 | OR: 3.552 (1.545–8.164), p = 0.001 * |
AC-GG | 2 | 2.3 | 9 | 10.3 | OR: 0.206 (0.043–0.985), p = 0.024 †* |
AA-AA | 19 | 22.1 | 21 | 24.1 | OR: 0.891 (0.439–1.808), p = 0.375 |
AA-AG | 13 | 15.1 | 12 | 13.8 | OR: 1.113 (0.477–2.599), p = 0.402 |
Genotype analysis A1298C/A66G | Patients (n = 86) | Frequency (%) | Controls (n = 87) | Frequency (%) | OR: (95%Cl), p |
AA-AA | 18 | 20.9 | 5 | 5.7 | OR: 4.341 (1.532–12.302), p = 0.003 * |
AA-AG | 14 | 16.3 | 26 | 29.8 | OR: 0.456 (0.219–0.950), p = 0.018 †* |
AA-GG | 3 | 3.5 | 2 | 2.3 | OR: 1.536 (0.250–9.430), p = 0.321 |
AC-AA | 17 | 19.8 | 6 | 7.0 | OR: 3.326 (1.243–8.902), p = 0.008 * |
AC-AG | 21 | 24.4 | 33 | 37.9 | OR: 0.529 (0.274–1.018), p = 0.028 * |
AC-GG | 2 | 2.3 | 7 | 8.0 | OR: 0.272 (0.055–1.349), p = 0.055 |
CC-AA | 6 | 7.0 | 3 | 3.5 | OR: 2.100 (0.508–8.682), p = 0.153 |
CC-AG | 4 | 4.6 | 3 | 3.5 | OR: 1.366 (0.296–6.292), p = 0.345 |
CC-GG | 1 | 1.2 | 2 | 2.3 | OR: 0.500 (0.044–5.618), p = 0.287 |
Genotype analysis A2756G/A66G | Patients (n = 86) | Frequency (%) | Controls (n = 87) | Frequency (%) | OR: (95%Cl), p |
AA-AA | 29 | 33.7 | 15 | 17.2 | OR: 2.442 (1.196–4.985), p = 0.007 * |
AA-AG | 14 | 16.3 | 34 | 39.1 | OR: 0.303 (0.148–0.620), p < 0.0001 * |
AA-GG | 1 | 1.2 | 9 | 10.3 | OR: 0.102 (0.013–0.823), p = 0.016 †* |
AG-AA | 12 | 14.0 | 2 | 2.3 | OR: 6.892 (1.494–31.797), p = 0.007 * |
AG-AG | 24 | 27.9 | 9 | 10.3 | OR: 3.355 (1.455–7.736), p = 0.002 * |
AG-GG | 2 | 2.3 | 6 | 7.0 | OR: 0.321 (0.063–1.639), p = 0.086 |
GG-AG | 4 | 4.6 | 12 | 13.8 | OR: 0.305 (0.094–0.986), p = 0.024 †* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabakoglu, N.T.; Ay, A.; Alkanli, N.; Celik, M. Genotype Combinations and Genetic Risk Score Analyses of MTHFR, MTRR, and MTR Polymorphisms in Hypothyroidism Susceptibility: A Case–Control Study. Curr. Issues Mol. Biol. 2025, 47, 794. https://doi.org/10.3390/cimb47100794
Tabakoglu NT, Ay A, Alkanli N, Celik M. Genotype Combinations and Genetic Risk Score Analyses of MTHFR, MTRR, and MTR Polymorphisms in Hypothyroidism Susceptibility: A Case–Control Study. Current Issues in Molecular Biology. 2025; 47(10):794. https://doi.org/10.3390/cimb47100794
Chicago/Turabian StyleTabakoglu, Nilgun Tan, Arzu Ay, Nevra Alkanli, and Mehmet Celik. 2025. "Genotype Combinations and Genetic Risk Score Analyses of MTHFR, MTRR, and MTR Polymorphisms in Hypothyroidism Susceptibility: A Case–Control Study" Current Issues in Molecular Biology 47, no. 10: 794. https://doi.org/10.3390/cimb47100794
APA StyleTabakoglu, N. T., Ay, A., Alkanli, N., & Celik, M. (2025). Genotype Combinations and Genetic Risk Score Analyses of MTHFR, MTRR, and MTR Polymorphisms in Hypothyroidism Susceptibility: A Case–Control Study. Current Issues in Molecular Biology, 47(10), 794. https://doi.org/10.3390/cimb47100794