Genetic Basis of Hypertrophic Cardiomyopathy in Cats
Abstract
1. Introduction
2. Gene Mutations
2.1. MYBPC3 Protein Mutation
2.2. Myosin Heavy Chain Mutation
2.3. Alstrom’s Syndrom
2.4. Thin Filaments Mutations
2.5. Occurrence of Genetic Variants
MYBPC3:c.91 G > C [A31P] | Maine coon | [71] |
Pixiebob longhair | ||
Siberian | ||
No-breed | ||
Ragdoll | [32] | |
Munchkin | [72] | |
Scottish fold | ||
MYBPC3:c.2453 C > T [R818W] | American bobtail longhair | [32,71] |
American bobtail shorthair | ||
Highlander | ||
Munchkin | ||
RagaMuffin | ||
No-breed | ||
Ragdoll | ||
MYBPC3:c.220 G > A [A74T] | British shorthair | [32] |
British longhair | ||
Ragdoll | ||
Sphynx | ||
Maine coon | ||
Devon rex | ||
Norwegian forest cats | [68] | |
Persian | ||
Bengalskich | ||
Siberian | ||
Domestic shorthair | [27] | |
MYH7 c.5647 G > A [E1883K] | No-breed | [30] |
TNNT2:c.95-108 G > A | British shorthair | [32] |
British longhair | ||
Ragdoll | ||
Sphynx | ||
Maine coon | ||
Devon rex | ||
Maine coon | [66] | |
ALMS1:c.7384 G > C [G2462R] | Sphynx | [32] |
Devon rex | ||
Maine coon | ||
Ragdoll | ||
British short- or longhair | ||
Two cats with no known breed | [33] | |
American shorthair | [72] | |
Exotic shorthair | ||
Minuet | ||
Munchkin | ||
Scottish fold |
2.6. Effect of Homozygous and Heterozygous Mutation on HCM Phenotype
3. HCM-Related Gene Expression in Cats
4. Other Mechanisms Involved in the Development of HCM
5. Conclusions
Funding
Conflicts of Interest
References
- Payne, J.R.; Borgeat, K.; Connolly, D.J.; Boswood, A.; Dennis, S.; Wagner, T.; Menaut, P.; Maerz, I.; Evans, D.; Simons, V.E.; et al. Prognostic Indicators in Cats with Hypertrophic Cardiomyopathy. Vet. Intern. Med. 2013, 27, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.R.; Brodbelt, D.C.; Fuentes, V.L. Cardiomyopathy Prevalence in 780 Apparently Healthy Cats in Rehoming Centres (the CatScan Study). J. Vet. Cardiol. 2015, 17, S244–S257. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Stern, J.; Meurs, K.M.; Fuentes, V.L.; Connolly, D.J. The Influence of Clinical and Genetic Factors on Left Ventricular Wall Thickness in Ragdoll Cats. J. Vet. Cardiol. 2015, 17, S258–S267. [Google Scholar] [CrossRef] [PubMed]
- Chetboul, V.; Petit, A.; Gouni, V.; Trehiou-Sechi, E.; Misbach, C.; Balouka, D.; Sampedrano, C.C.; Pouchelon, J.-L.; Tissier, R.; Abitbol, M. Prospective Echocardiographic and Tissue Doppler Screening of a Large Sphynx Cat Population: Reference Ranges, Heart Disease Prevalence and Genetic Aspects. J. Vet. Cardiol. 2012, 14, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.A. Feline hypertrophic cardiomyopathy: An update. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Gundler, S.; Tidholm, A.; Häggström, J. Prevalence of Myocardial Hypertrophy in a Population of Asymptomatic Swedish Maine Coon Cats. Acta Vet. Scand. 2008, 50, 22. [Google Scholar] [CrossRef]
- Godiksen, M.T.; Granstrøm, S.; Koch, J.; Christiansen, M. Hypertrophic Cardiomyopathy in Young Maine Coon Cats Caused by the p.A31P cMyBP-C Mutation-the Clinical Significance of Having the Mutation. Acta Vet. Scand. 2011, 53, 7. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.A.; Rivas, V.N.; Kaplan, J.L.; Ueda, Y.; Oldach, M.S.; Ontiveros, E.S.; Kooiker, K.B.; van Dijk, S.J.; Harris, S.P. Hypertrophic Cardiomyopathy in Purpose-Bred Cats with the A31P Mutation in Cardiac Myosin Binding Protein-C. Sci. Rep. 2023, 13, 10319. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Keene, B.W.; Lamb, K.; Schober, K.A.; Chetboul, V.; Luis Fuentes, V.; Wess, G.; Payne, J.R.; Hogan, D.F.; Motsinger-Reif, A.; et al. International Collaborative Study to Assess Cardiovascular Risk and Evaluate Long-term Health in Cats with Preclinical Hypertrophic Cardiomyopathy and Apparently Healthy Cats: The REVEAL Study. Vet. Intern. Med. 2018, 32, 930–943. [Google Scholar] [CrossRef]
- Biasato, I.; Francescone, L.; La Rosa, G.; Tursi, M. Anatomopathological Staging of Feline Hypertrophic Cardiomyopathy through Quantitative Evaluation Based on Morphometric and Histopathological Data. Res. Vet. Sci. 2015, 102, 136–141. [Google Scholar] [CrossRef]
- Novo Matos, J.; Garcia-Canadilla, P.; Simcock, I.C.; Hutchinson, J.C.; Dobromylskyj, M.; Guy, A.; Arthurs, O.J.; Cook, A.C.; Luis Fuentes, V. Micro-Computed Tomography (Micro-CT) for the Assessment of Myocardial Disarray, Fibrosis and Ventricular Mass in a Feline Model of Hypertrophic Cardiomyopathy. Sci. Rep. 2020, 10, 20169. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Liu, S.-K.; Maron, B.J. Echocardiographic Assessment of Spontaneously Occurring Feline Hypertrophic Cardiomyopathy: An Animal Model of Human Disease. Circulation 1995, 92, 2645–2651. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Suzuki, R.; Yuchi, Y.; Fukuoka, H.; Satomi, S.; Teshima, T.; Matsumoto, H. Comparative Study of Myocardial Function in Cases of Feline Hypertrophic Cardiomyopathy with and without Dynamic Left-Ventricular Outflow-Tract Obstruction. Front. Vet. Sci. 2023, 10, 1191211. [Google Scholar] [CrossRef] [PubMed]
- Häggström, J.; Fuentes, V.L.; Wess, G. Screening for Hypertrophic Cardiomyopathy in Cats. J. Vet. Cardiol. 2015, 17, S134–S149. [Google Scholar] [CrossRef] [PubMed]
- Linney, C.J.; Dukes-McEwan, J.; Stephenson, H.M.; López-Alvarez, J.; Fonfara, S. Left Atrial Size, Atrial Function and Left Ventricular Diastolic Function in Cats with Hypertrophic Cardiomyopathy. J. Small Anim. Pract. 2014, 55, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, L.J.; Smith, K.; Fuentes, V.L. Cardiac Pathology Findings in 252 Cats Presented for Necropsy; a Comparison of Cats with Unexpected Death versus Other Deaths. J. Vet. Cardiol. 2015, 17, S329–S340. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.D.; Côté, E. The Feline Cardiomyopathies: 2. Hypertrophic Cardiomyopathy. J. Feline Med. Surg. 2021, 23, 1028–1051. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Sherwood, K.; Payne, J.R.; Luis Fuentes, V.; Connolly, D.J. Plasma Cardiac Troponin I Concentration and Cardiac Death in Cats with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2014, 28, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Dudhia, J.; Luis Fuentes, V.; Connolly, D.J. Circulating Concentrations of a Marker of Type I Collagen Metabolism Are Associated with Hypertrophic Cardiomyopathy Mutation Status in Ragdoll Cats. J. Small Anim. Pract. 2015, 56, 360–365. [Google Scholar] [CrossRef]
- Lu, T.; Côté, E.; Kuo, Y.; Wu, H.; Wang, W.; Hung, Y. Point-of-care N-terminal pro B-type Natriuretic Peptide Assay to Screen Apparently Healthy Cats for Cardiac Disease in General Practice. Vet. Intern. Med. 2021, 35, 1663–1672. [Google Scholar] [CrossRef]
- Van Hoek, I.; Hodgkiss-Geere, H.; Bode, E.F.; Hamilton-Elliott, J.; Mõtsküla, P.; Palermo, V.; Pereira, Y.M.; Culshaw, G.J.; Ivanova, A.; Dukes-McEwan, J. Associations among Echocardiography, Cardiac Biomarkers, Insulin Metabolism, Morphology, and Inflammation in Cats with Asymptomatic Hypertrophic Cardiomyopathy. Vet. Intern. Med. 2020, 34, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ortuño, C.; Sebastián-Marcos, P.; Sabater-Molina, M.; Nicolas-Rocamora, E.; Gimeno-Blanes, J.R.; Fernández del Palacio, M.J. Genetics of Feline Hypertrophic Cardiomyopathy. Clin. Genet. 2020, 98, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Raffle, J.; Matos, J.N.; Piercy, R.J.; Elliott, P.; Connolly, D.J.; Fuentes, V.L.; Psifidi, A. Identification of Novel Genetic Variants Associated with Feline Cardiomyopathy Using Targeted Next-Generation Sequencing. 2024. Available online: https://www.researchsquare.com/article/rs-3943358/v1 (accessed on 25 June 2024).
- Meurs, K.M.; Sanchez, X.; David, R.M.; Bowles, N.E.; Towbin, J.A.; Reiser, P.J.; Kittleson, J.A.; Munro, M.J.; Dryburgh, K.; MacDonald, K.A.; et al. A Cardiac Myosin Binding Protein C Mutation in the Maine Coon Cat with Familial Hypertrophic Cardiomyopathy. Hum. Mol. Genet. 2005, 14, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Norgard, M.M.; Ederer, M.M.; Hendrix, K.P.; Kittleson, M.D. A Substitution Mutation in the Myosin Binding Protein C Gene in Ragdoll Hypertrophic Cardiomyopathy. Genomics 2007, 90, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Norgard, M.M.; Kuan, M.; Haggstrom, J.; Kittleson, M. Analysis of 8 Sarcomeric Candidate Genes for Feline Hypertrophic Cardiomyopathy Mutations in Cats with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2009, 23, 840–843. [Google Scholar] [CrossRef]
- Wess, G.; Schinner, C.; Weber, K.; Küchenhoff, H.; Hartmann, K. Association of A31P and A74T Polymorphisms in the Myosin Binding Protein C3 Gene and Hypertrophic Cardiomyopathy in Maine Coon and Other Breed Cats. J. Vet. Intern. Med. 2010, 24, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.D.; Meurs, K.M.; Harris, S.P. The Genetic Basis of Hypertrophic Cardiomyopathy in Cats and Humans. J. Vet. Cardiol. 2015, 17, S53–S73. [Google Scholar] [CrossRef] [PubMed]
- Schipper, T.; Ohlsson, Å.; Longeri, M.; Hayward, J.J.; Mouttham, L.; Ferrari, P.; Smets, P.; Ljungvall, I.; Häggström, J.; Stern, J.A.; et al. The TNNT2:C.95-108G>A Variant Is Common in Maine Coons and Shows No Association with Hypertrophic Cardiomyopathy. Anim. Genet. 2022, 53, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Schipper, T.; Van Poucke, M.; Sonck, L.; Smets, P.; Ducatelle, R.; Broeckx, B.J.G.; Peelman, L.J. A Feline Orthologue of the Human MYH7 c.5647G>A (p.(Glu1883Lys)) Variant Causes Hypertrophic Cardiomyopathy in a Domestic Shorthair Cat. Eur. J. Hum. Genet. 2019, 27, 1724–1730. [Google Scholar] [CrossRef]
- Heydaryan, S.; Shirani, D.; Ghalyanchi Langeroudi, A.; Bokaie, S.; Hassankhani, M.; Roustaei, A.; Halimiasl, L. Detecting Polymorphism of Myosin-binding Protein C3 Gene in Persian Breed Cat with and without Hypertrophic Cardiomyopathy. Iran. J. Vet. Med. 2024, 18, 215–222. [Google Scholar] [CrossRef]
- Boeykens, F.; Abitbol, M.; Anderson, H.; Dargar, T.; Ferrari, P.; Fox, P.R.; Hayward, J.J.; Häggström, J.; Davison, S.; Kittleson, M.D.; et al. Classification of Feline Hypertrophic Cardiomyopathy-Associated Gene Variants According to the American College of Medical Genetics and Genomics Guidelines. Front. Vet. Sci. 2024, 11, 1327081. [Google Scholar] [CrossRef]
- Meurs, K.M.; Williams, B.G.; DeProspero, D.; Friedenberg, S.G.; Malarkey, D.E.; Ezzell, J.A.; Keene, B.W.; Adin, D.B.; DeFrancesco, T.C.; Tou, S. A Deleterious Mutation in the ALMS1 Gene in a Naturally Occurring Model of Hypertrophic Cardiomyopathy in the Sphynx Cat. Orphanet J. Rare Dis. 2021, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Longeri, M.; Turba, M.E.; Ferrari, P.; Milanesi, R.; Gentilini, F. Allele Drop-Out Cases in Screening of HCM Associated ALMS1 Gene Variant in Italian Sphynx Cats. 2022. Available online: https://air.unimi.it/handle/2434/940550 (accessed on 25 June 2024).
- Turba, M.E.; Ferrari, P.; Milanesi, R.; Gentilini, F.; Longeri, M. HCM-Associated ALMS1 Variant: Allele Drop-out and Frequency in Italian Sphynx Cats. Anim. Genet. 2023, 54, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Fonfara, S.; Kitz, S.; Monteith, G.; Hahn, S.; Kipar, A. Myocardial Transcription of Inflammatory and Remodeling Markers in Cats with Hypertrophic Cardiomyopathy and Systemic Diseases Associated with an Inflammatory Phenotype. Res. Vet. Sci. 2021, 136, 484–494. [Google Scholar] [CrossRef]
- Demeekul, K.; Sukumolanan, P.; Panprom, C.; Thaisakun, S.; Roytrakul, S.; Petchdee, S. Echocardiography and MALDI-TOF Identification of Myosin-Binding Protein C3 A74T Gene Mutations Involved Healthy and Mutated Bengal Cats. Animals 2022, 12, 1782. [Google Scholar] [CrossRef]
- Heling, L.W.H.J.; Geeves, M.A.; Kad, N.M. MyBP-C: One Protein to Govern Them All. J. Muscle Res. Cell Motil. 2020, 41, 91–101. [Google Scholar] [CrossRef]
- Song, T.; Landim-Vieira, M.; Ozdemir, M.; Gott, C.; Kanisicak, O.; Pinto, J.R.; Sadayappan, S. Etiology of Genetic Muscle Disorders Induced by Mutations in Fast and Slow Skeletal MyBP-C Paralogs. Exp. Mol. Med. 2023, 55, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Tudurachi, B.-S.; Zăvoi, A.; Leonte, A.; Țăpoi, L.; Ureche, C.; Bîrgoan, S.G.; Chiuariu, T.; Anghel, L.; Radu, R.; Sascău, R.A.; et al. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 10510. [Google Scholar] [CrossRef]
- Squire, J.M.; Luther, P.K.; Knupp, C. Structural Evidence for the Interaction of C-Protein (MyBP-C) with Actin and Sequence Identification of a Possible Actin-Binding Domain. J. Mol. Biol. 2003, 331, 713–724. [Google Scholar] [CrossRef]
- Sadayappan, S.; de Tombe, P.P. Cardiac Myosin Binding Protein-C: Redefining Its Structure and Function. Biophys. Rev. 2012, 4, 93–106. [Google Scholar] [CrossRef]
- MacDonald, K.A.; Kittleson, M.D.; Kass, P.H.; Meurs, K.M. Tissue Doppler Imaging in Maine Coon Cats with a Mutation of Myosin Binding Protein C with or without Hypertrophy. J. Vet. Intern. Med. 2007, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Marston, S.; Copeland, O.; Gehmlich, K.; Schlossarek, S.; Carrrier, L. How Do MYBPC3 Mutations Cause Hypertrophic Cardiomyopathy? J. Muscle Res. Cell Motil. 2012, 33, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Calaghan, S.C.; Trinick, J.; Knight, P.J.; White, E. A Role for C-Protein in the Regulation of Contraction and Intracellular Ca2+ in Intact Rat Ventricular Myocytes. J. Physiol. 2000, 528, 151. [Google Scholar] [CrossRef] [PubMed]
- Rosas, P.C.; Liu, Y.; Abdalla, M.I.; Thomas, C.M.; Kidwell, D.T.; Dusio, G.F.; Mukhopadhyay, D.; Kumar, R.; Baker, K.M.; Mitchell, B.M.; et al. Phosphorylation of Cardiac Myosin-Binding Protein-C Is a Critical Mediator of Diastolic Function. Circ. Heart Fail. 2015, 8, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Sepp, R.; Hategan, L.; Csányi, B.; Borbás, J.; Tringer, A.; Pálinkás, E.D.; Nagy, V.; Takács, H.; Latinovics, D.; Nyolczas, N.; et al. The Genetic Architecture of Hypertrophic Cardiomyopathy in Hungary: Analysis of 242 Patients with a Panel of 98 Genes. Diagnostics 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.S.; Havndrup, O.; Bundgaard, H.; Larsen, L.A.; Vuust, J.; Pedersen, A.K.; Kjeldsen, K.; Christiansen, M. Genetic and Phenotypic Characterization of Mutations in Myosin-Binding Protein C (MYBPC3) in 81 Families with Familial Hypertrophic Cardiomyopathy: Total or Partial Haploinsufficiency. Eur. J. Hum. Genet. 2004, 12, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Streisinger, G.; Okada, Y.; Emrich, J.; Newton, J.; Tsugita, A.; Terzaghi, E.; Inouye, M. Frameshift Mutations and the Genetic Code. Cold Spring Harb. Symp. Quant. Biol. 1966, 31, 77–84. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, S.J.; Dooijes, D.; dos Remedios, C.; Michels, M.; Lamers, J.M.J.; Winegrad, S.; Schlossarek, S.; Carrier, L.; ten Cate, F.J.; Stienen, G.J.M.; et al. Cardiac Myosin-Binding Protein C Mutations and Hypertrophic Cardiomyopathy: Haploinsufficiency, Deranged Phosphorylation, and Cardiomyocyte Dysfunction. Circulation 2009, 119, 1473–1483. [Google Scholar] [CrossRef]
- Carrier, L.; Mearini, G.; Stathopoulou, K.; Cuello, F. Cardiac Myosin-Binding Protein C (MYBPC3) in Cardiac Pathophysiology. Gene 2015, 573, 188–197. [Google Scholar] [CrossRef]
- Kittleson, M.D.; Meurs, K.M.; Munro, M.J.; Kittleson, J.A.; Liu, S.K.; Pion, P.D.; Towbin, J.A. Familial Hypertrophic Cardiomyopathy in Maine Coon Cats: An Animal Model of Human Disease. Circulation 1999, 99, 3172–3180. [Google Scholar] [CrossRef]
- Godiksen, M.T.N.; Kinnear, C.; Ravnsborg, T.; Hojrup, P.; Granstr, S. Feline Hypertrophic Cardiomyopathy Associated with the p.A31P Mutation in cMyBP-C Is Caused by Production of Mutated cMyBP-C with Reduced Binding to Actin. Open J. Vet. Med. 2013, 2013, 95–103. [Google Scholar] [CrossRef]
- Osváth, S.; Gruebele, M. Proline Can Have Opposite Effects on Fast and Slow Protein Folding Phases. Biophys. J. 2003, 85, 1215–1222. [Google Scholar] [CrossRef]
- Koide, S.; Dyson, H.J.; Wright, P.E. Characterization of a Folding Intermediate of Apoplastocyanin Trapped by Proline Isomerization. Biochemistry 1993, 32, 12299–12310. [Google Scholar] [CrossRef]
- Harris, S.P.; Lyons, R.G.; Bezold, K.L. In the Thick of It: HCM-Causing Mutations in Myosin Binding Proteins of the Thick Filament. Circ. Res. 2011, 108, 751–764. [Google Scholar] [CrossRef]
- Messer, A.E.; Chan, J.; Daley, A.; Copeland, O.; Marston, S.B.; Connolly, D.J. Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus). Front. Physiol. 2017, 8, 348. [Google Scholar] [CrossRef]
- Ripoll Vera, T.; Monserrat Iglesias, L.; Hermida Prieto, M.; Ortiz, M.; Rodriguez Garcia, I.; Govea Callizo, N.; Gómez Navarro, C.; Rosell Andreo, J.; Gámez Martínez, J.M.; Pons Lladó, G.; et al. The R820W Mutation in the MYBPC3 Gene, Associated with Hypertrophic Cardiomyopathy in Cats, Causes Hypertrophic Cardiomyopathy and Left Ventricular Non-Compaction in Humans. Int. J. Cardiol. 2010, 145, 405–407. [Google Scholar] [CrossRef]
- Amm, I.; Sommer, T.; Wolf, D.H. Protein Quality Control and Elimination of Protein Waste: The Role of the Ubiquitin–Proteasome System. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 182–196. [Google Scholar] [CrossRef]
- Bahrudin, U.; Morisaki, H.; Morisaki, T.; Ninomiya, H.; Higaki, K.; Nanba, E.; Igawa, O.; Takashima, S.; Mizuta, E.; Miake, J. Ubiquitin-Proteasome System Impairment Caused by a Missense Cardiac Myosin-Binding Protein C Mutation and Associated with Cardiac Dysfunction in Hypertrophic Cardiomyopathy. J. Mol. Biol. 2008, 384, 896–907. [Google Scholar] [CrossRef]
- Krenz, M.; Sanbe, A.; Bouyer-Dalloz, F.; Gulick, J.; Klevitsky, R.; Hewett, T.E.; Osinska, H.E.; Lorenz, J.N.; Brosseau, C.; Federico, A. Analysis of Myosin Heavy Chain Functionality in the Heart. J. Biol. Chem. 2003, 278, 17466–17474. [Google Scholar] [CrossRef]
- Krenz, M.; Sadayappan, S.; Osinska, H.E.; Henry, J.A.; Beck, S.; Warshaw, D.M.; Robbins, J. Distribution and Structure-Function Relationship of Myosin Heavy Chain Isoforms in the Adult Mouse Heart. J. Biol. Chem. 2007, 282, 24057–24064. [Google Scholar] [CrossRef]
- Collin, G.B.; Marshall, J.D.; Cardon, L.R.; Nishina, P.M. Homozygosity Mapping of Alström Syndrome to Chromosome 2p. Hum. Mol. Genet. 1997, 6, 213–219. [Google Scholar] [CrossRef]
- Chang, K.T.; Taylor, G.P.; Meschino, W.S.; Kantor, P.F.; Cutz, E. Mitogenic Cardiomyopathy: A Lethal Neonatal Familial Dilated Cardiomyopathy Characterized by Myocyte Hyperplasia and Proliferation. Hum. Pathol. 2010, 41, 1002–1008. [Google Scholar] [CrossRef]
- Bruno, S.; Darzynkiewicz, Z. Cell Cycle Dependent Expression and Stability of the Nuclear Protein Detected by Ki-67 Antibody in HL-60 Cells. Cell Prolif. 1992, 25, 31–40. [Google Scholar] [CrossRef]
- McNamara, J.W.; Schuckman, M.; Becker, R.C.; Sadayappan, S. A Novel Homozygous Intronic Variant in TNNT2 Associates with Feline Cardiomyopathy. Front. Physiol. 2020, 11, 608473. [Google Scholar] [CrossRef]
- Mary, J.; Chetboul, V.; Sampedrano, C.C.; Abitbol, M.; Gouni, V.; Trehiou-Sechi, E.; Tissier, R.; Queney, G.; Pouchelon, J.-L.; Thomas, A. Prevalence of the MYBPC3-A31P Mutation in a Large European Feline Population and Association with Hypertrophic Cardiomyopathy in the Maine Coon Breed. J. Vet. Cardiol. 2010, 12, 155–161. [Google Scholar] [CrossRef]
- Longeri, M.; Ferrari, P.; Knafelz, P.; Mezzelani, A.; Marabotti, A.; Milanesi, L.; Pertica, G.; Polli, M.; Brambilla, P.G.; Kittleson, M.; et al. Myosin-Binding Protein C DNA Variants in Domestic Cats (A31P, A74T, R820W) and Their Association with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2013, 27, 275–285. [Google Scholar] [CrossRef]
- Casamian-Sorrosal, D.; Chong, S.K.; Fonfara, S.; Helps, C. Prevalence and Demographics of the MYBPC3-Mutations in Ragdolls and Maine Coons in the British Isles. J. Small Anim. Pract. 2014, 55, 269–273. [Google Scholar] [CrossRef]
- Borgeat, K.; Casamian-Sorrosal, D.; Helps, C.; Luis Fuentes, V.; Connolly, D.J. Association of the Myosin Binding Protein C3 Mutation (MYBPC3 R820W) with Cardiac Death in a Survey of 236 Ragdoll Cats. J. Vet. Cardiol. 2014, 16, 73–80. [Google Scholar] [CrossRef]
- Anderson, H.; Davison, S.; Lytle, K.M.; Honkanen, L.; Freyer, J.; Mathlin, J.; Kyöstilä, K.; Inman, L.; Louviere, A.; Foran, R.C.; et al. Genetic Epidemiology of Blood Type, Disease and Trait Variants, and Genome-Wide Genetic Diversity in over 11,000 Domestic Cats. PLoS Genet. 2022, 18, e1009804. [Google Scholar] [CrossRef]
- Akiyama, N.; Suzuki, R.; Saito, T.; Yuchi, Y.; Ukawa, H.; Matsumoto, Y. Presence of Known Feline ALMS1 and MYBPC3 Variants in a Diverse Cohort of Cats with Hypertrophic Cardiomyopathy in Japan. PLoS ONE 2023, 18, e0283433. [Google Scholar] [CrossRef]
- Marston, S.; Copeland, O.; Jacques, A.; Livesey, K.; Tsang, V.; McKenna, W.J.; Jalilzadeh, S.; Carballo, S.; Redwood, C.; Watkins, H. Evidence from Human Myectomy Samples That MYBPC3 Mutations Cause Hypertrophic Cardiomyopathy Through Haploinsufficiency. Circ. Res. 2009, 105, 219–222. [Google Scholar] [CrossRef]
- Carlos Sampedrano, C.; Chetboul, V.; Mary, J.; Tissier, R.; Abitbol, M.; Serres, F.; Gouni, V.; Thomas, A.; Pouchelon, J.-L. Prospective Echocardiographic and Tissue Doppler Imaging Screening of a Population of Maine Coon Cats Tested for the A31P Mutation in the Myosin-Binding Protein C Gene: A Specific Analysis of the Heterozygous Status. J. Vet. Intern. Med. 2009, 23, 91–99. [Google Scholar] [CrossRef]
- Tallo, C.A.; Duncan, L.H.; Yamamoto, A.H.; Slaydon, J.D.; Arya, G.H.; Turlapati, L.; Mackay, T.F.; Carbone, M.A. Heat Shock Proteins and Small Nucleolar RNAs Are Dysregulated in a Drosophila Model for Feline Hypertrophic Cardiomyopathy. G3 2021, 11, jkaa014. [Google Scholar] [CrossRef]
- Colpitts, M.E.; Caswell, J.L.; Monteith, G.; Joshua, J.; O’Sullivan, M.L.; Raheb, S.; Fonfara, S. Cardiac Gene Activation Varies between Young and Adult Cats and in the Presence of Hypertrophic Cardiomyopathy. Res. Vet. Sci. 2022, 152, 38–47. [Google Scholar] [CrossRef]
- Joshua, J.; Caswell, J.; O’Sullivan, M.L.; Wood, G.; Fonfara, S. Feline Myocardial Transcriptome in Health and in Hypertrophic Cardiomyopathy—A Translational Animal Model for Human Disease. PLoS ONE 2023, 18, e0283244. [Google Scholar] [CrossRef]
- Kitz, S.; Fonfara, S.; Hahn, S.; Hetzel, U.; Kipar, A. Feline Hypertrophic Cardiomyopathy: The Consequence of Cardiomyocyte-Initiated and Macrophage-Driven Remodeling Processes? Vet. Pathol. 2019, 56, 565–575. [Google Scholar] [CrossRef]
- Fonfara, S.; Hetzel, U.; Hahn, S.; Kipar, A. Age- and Gender-Dependent Myocardial Transcription Patterns of Cytokines and Extracellular Matrix Remodelling Enzymes in Cats with Non-Cardiac Diseases. Exp. Gerontol. 2015, 72, 117–123. [Google Scholar] [CrossRef]
- Fonfara, S.; Kitz, S.; Hetzel, U.; Kipar, A. Myocardial Leptin Transcription in Feline Hypertrophic Cardiomyopathy. Res. Vet. Sci. 2017, 112, 105–108. [Google Scholar] [CrossRef]
- Khor, K.H.; Campbell, F.E.; Owen, H.; Shiels, I.A.; Mills, P.C. Myocardial Collagen Deposition and Inflammatory Cell Infiltration in Cats with Pre-Clinical Hypertrophic Cardiomyopathy. Vet. J. 2015, 203, 161–168. [Google Scholar] [CrossRef]
- Rodríguez, J.M.M.; Fonfara, S.; Hetzel, U.; Kipar, A. Feline Hypertrophic Cardiomyopathy: Reduced Microvascular Density and Involvement of CD34+ Interstitial Cells. Vet. Pathol. 2022, 59, 269–283. [Google Scholar] [CrossRef]
- Moturi, S.; Ghosh-Choudhary, S.K.; Finkel, T. Cardiovascular Disease and the Biology of Aging. J. Mol. Cell. Cardiol. 2022, 167, 109–117. [Google Scholar] [CrossRef]
- Ward-Caviness, C.K. Accelerated Epigenetic Aging and Incident Atrial Fibrillation: New Outlook on an Immutable Risk Factor? Circulation 2021, 144, 1912–1914. [Google Scholar] [CrossRef]
- Blagosklonny, M.V. Anti-Aging: Senolytics or Gerostatics (Unconventional View). Oncotarget 2021, 12, 1821–1835. [Google Scholar] [CrossRef]
- Christiansen, L.B.; Dela, F.; Koch, J.; Hansen, C.N.; Leifsson, P.S.; Yokota, T. Impaired Cardiac Mitochondrial Oxidative Phosphorylation and Enhanced Mitochondrial Oxidative Stress in Feline Hypertrophic Cardiomyopathy. Am. J. Physiol.-Heart Circ. Physiol. 2015, 308, H1237–H1247. [Google Scholar] [CrossRef]
- Nacarelli, T.; Lau, L.; Fukumoto, T.; Zundell, J.; Fatkhutdinov, N.; Wu, S.; Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Schultz, D. NAD+ Metabolism Governs the Proinflammatory Senescence-Associated Secretome. Nat. Cell Biol. 2019, 21, 397–407. [Google Scholar] [CrossRef]
- Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: From Growth Signal Integration to Cancer, Diabetes and Ageing. Nat. Rev. Mol. Cell Biol. 2011, 12, 21–35. [Google Scholar] [CrossRef]
- Berg, C.E.; Lavan, B.E.; Rondinone, C.M. Rapamycin Partially Prevents Insulin Resistance Induced by Chronic Insulin Treatment. Biochem. Biophys. Res. Commun. 2002, 293, 1021–1027. [Google Scholar] [CrossRef]
- Lamming, D.W.; Ye, L.; Katajisto, P.; Goncalves, M.D.; Saitoh, M.; Stevens, D.M.; Davis, J.G.; Salmon, A.B.; Richardson, A.; Ahima, R.S.; et al. Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity. Science 2012, 335, 1638–1643. [Google Scholar] [CrossRef]
- Henrique Mazucanti, C.; Victor Cabral-Costa, J.; Rodrigues Vasconcelos, A.; Zukas Andreotti, D.; Scavone, C.; Mitiko Kawamoto, E. Longevity Pathways (mTOR, SIRT, Insulin/IGF-1) as Key Modulatory Targets on Aging and Neurodegeneration. Curr. Top. Med. Chem. 2015, 15, 2116–2138. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Liu, L.; Li, P.; Li, J. Rapamycin Inhibits the mTOR/p70S6K Pathway and Attenuates Cardiac Fibrosis in Adriamycin-Induced Dilated Cardiomyopathy. Thorac. Cardiovasc. Surg 2012, 61, 223–228. [Google Scholar] [CrossRef]
- Qin, W.; Cao, L.; Massey, I.Y. Role of PI3K/Akt Signaling Pathway in Cardiac Fibrosis. Mol. Cell. Biochem. 2021, 476, 4045–4059. [Google Scholar] [CrossRef]
- Gao, X.-M.; Wong, G.; Wang, B.; Kiriazis, H.; Moore, X.-L.; Su, Y.-D.; Dart, A.; Du, X.-J. Inhibition of mTOR Reduces Chronic Pressure-Overload Cardiac Hypertrophy and Fibrosis. J. Hypertens. 2006, 24, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Markby, G.R.; MacNair, A.J.; Tang, K.; Tkacz, M.; Parys, M.; Phadwal, K.; MacRae, V.E.; Corcoran, B.M. TGF-β-induced PI3K/AKT/mTOR Pathway Controls Myofibroblast Differentiation and Secretory Phenotype of Valvular Interstitial Cells through the Modulation of Cellular Senescence in a Naturally Occurring in Vitro Canine Model of Myxomatous Mitral Valve Disease. Cell Prolif. 2023, 56, e13435. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.L.; Rivas, V.N.; Walker, A.L.; Grubb, L.; Farrell, A.; Fitzgerald, S.; Kennedy, S.; Jauregui, C.E.; Crofton, A.E.; McLaughlin, C.; et al. Delayed-Release Rapamycin Halts Progression of Left Ventricular Hypertrophy in Subclinical Feline Hypertrophic Cardiomyopathy: Results of the RAPACAT Trial. J. Am. Vet. Med. Assoc. 2023, 261, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Machka, C.; Lange, S.; Werner, J.; Wacke, R.; Killian, D.; Knueppel, A.; Knuebel, G.; Vogel, H.; Lindner, I.; Roolf, C. Everolimus in Combination with Mycophenolate Mofetil as Pre- and Post-Transplantation Immunosuppression after Nonmyeloablative Hematopoietic Stem Cell Transplantation in Canine Littermates. Biol. Blood Marrow Transplant. 2014, 20, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Kaeberlein, M.; Creevy, K.E.; Promislow, D.E.L. The Dog Aging Project: Translational Geroscience in Companion Animals. Mamm. Genome 2016, 27, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Mouttham, L.; Castelhano, M.G.; Akey, J.M.; Benton, B.; Borenstein, E.; Castelhano, M.G.; Coleman, A.E.; Creevy, K.E.; Crowder, K.; Dunbar, M.D.; et al. Purpose, Partnership, and Possibilities: The Implementation of the Dog Aging Project Biobank. Biomark. Insights 2022, 17, 11772719221137217. [Google Scholar] [CrossRef] [PubMed]
- Yarborough, S.; Fitzpatrick, A.; Schwartz, S.M. Evaluation of Cognitive Function in the Dog Aging Project: Associations with Baseline Canine Characteristics. Sci. Rep. 2022, 12, 13316. [Google Scholar] [CrossRef] [PubMed]
- Rivas, V.N.; Kaplan, J.L.; Kennedy, S.A.; Fitzgerald, S.; Crofton, A.E.; Farrell, A.; Grubb, L.; Jauregui, C.E.; Grigorean, G.; Choi, E. Multi-Omic, Histopathologic, and Clinicopathologic Effects of Once-Weekly Oral Rapamycin in a Naturally Occurring Feline Model of Hypertrophic Cardiomyopathy: A Pilot Study. Animals 2023, 13, 3184. [Google Scholar] [CrossRef]
- Sukumolanan, P.; Phanakrop, N.; Thaisakun, S.; Roytrakul, S.; Petchdee, S. Analysis of the Serum Peptidomics Profile for Cats with Sarcomeric Gene Mutation and Hypertrophic Cardiomyopathy. Front. Vet. Sci. 2021, 8, 771408. [Google Scholar] [CrossRef]
- Meng, R.; Pei, Z.; Zhang, A.; Zhou, Y.; Cai, X.; Chen, B.; Liu, G.; Mai, W.; Wei, J.; Dong, Y. AMPK Activation Enhances PPARα Activity to Inhibit Cardiac Hypertrophy via ERK1/2 MAPK Signaling Pathway. Arch. Biochem. Biophys. 2011, 511, 1–7. [Google Scholar] [CrossRef]
- Muslin, A.J. MAPK Signalling in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Targets. Clin. Sci. 2008, 115, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chang, J.; Li, X.; Wang, J.; Wu, X.; Liu, X.; Zhu, Y.; Yu, X.Y. Association of DNA methylation and transcriptome reveals epigenetic etiology of heart failure. Funct. Integr. Genom. 2022, 22, 89–112. [Google Scholar] [CrossRef]
- Grzeczka, A.; Graczyk, S.; Kordowitzki, P. DNA methylation and telomeres—Their impact on the occurrence of atrial fibrillation during cardiac aging. Int. J. Mol. Sci. 2023, 24, 15699. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tu, X. The genetics and epigenetics of ventricular arrhythmias in patients without structural heart disease. Front. Cardiovasc. Med. 2022, 9, 891399. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, S.; Kim, G.H. Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 2064–2069. [Google Scholar]
- Bartoszuk, U.; Keene, B.W.; Toaldo, M.B.; Pereira, N.; Summerfield, N.; Matos, J.N.; Glaus, T.M. Holter monitoring demonstrates that ventricular arrhythmias are common in cats with decompensated and compensated hypertrophic cardiomyopathy. Vet. J. 2019, 243, 21–25. [Google Scholar] [CrossRef]
- Scolari, F.L.; Faganello, L.S.; Garbin, H.I.; E Mattos, B.P.; Biolo, A. A Systematic Review of microRNAs in Patients with Hypertrophic Cardiomyopathy. Int. J. Cardiol. 2021, 327, 146–154. [Google Scholar] [CrossRef]
- Weber, K.; Rostert, N.; Bauersachs, S.; Wess, G. Serum microRNA Profiles in Cats with Hypertrophic Cardiomyopathy. Mol. Cell. Biochem. 2015, 402, 171–180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzeczka, A.; Graczyk, S.; Pasławski, R.; Pasławska, U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Curr. Issues Mol. Biol. 2024, 46, 8752-8766. https://doi.org/10.3390/cimb46080517
Grzeczka A, Graczyk S, Pasławski R, Pasławska U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Current Issues in Molecular Biology. 2024; 46(8):8752-8766. https://doi.org/10.3390/cimb46080517
Chicago/Turabian StyleGrzeczka, Arkadiusz, Szymon Graczyk, Robert Pasławski, and Urszula Pasławska. 2024. "Genetic Basis of Hypertrophic Cardiomyopathy in Cats" Current Issues in Molecular Biology 46, no. 8: 8752-8766. https://doi.org/10.3390/cimb46080517
APA StyleGrzeczka, A., Graczyk, S., Pasławski, R., & Pasławska, U. (2024). Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Current Issues in Molecular Biology, 46(8), 8752-8766. https://doi.org/10.3390/cimb46080517