Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; An, J.; Liu, Z.; Zhang, F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front. Oncol. 2022, 12, 783079. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Chen, S.; Luan, Z.; Fan, M.; Wang, Y.; Sun, G.; Dai, G. Immune function of colon cancer associated miRNA and target genes. Front. Immunol. 2023, 14, 1203070. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.R.; Kriegel, A. MiR-146a/b: A family with shared seeds and different roots. Physiol. Genom. 2017, 49, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Li, T.; Wang, L.; Wu, X.; Liu, J.; Xu, Y.; Wei, W. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncol. Lett. 2019, 18, 5033–5042. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Vandenboom, T.G., 2nd; Wang, Z.; Kong, D.; Ali, S.; Philip, P.A.; Sarkar, F.H. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010, 70, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guan, S.; Liu, F.; Chen, X.; Han, L.; Wang, D.; Nesa, E.U.; Wang, X.; Bao, C.; Wang, N.; et al. Prognostic and diagnostic potential of miR-146a in oesophageal squamous cell carcinoma. Br. J. Cancer 2016, 114, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.L.; Chiang, A.; Chang, D.; Ying, S.Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 2008, 14, 417–424. [Google Scholar] [CrossRef]
- Cui, J.Y.; She, K.; Tian, D.; Zhang, P.; Xin, X. miR-146a inhibits proliferation and enhances Chemosensitivity in epithelial ovarian cancer via reduction of SOD2. Oncol. Res. 2016, 23, 275–282. [Google Scholar] [CrossRef]
- Chen, G.; Umelo, I.A.; Lv, S.; Teugels, E.; Fostier, K.; Kronenberger, P.; Dewaele, A.; Sadones, J.; Geers, C.; De Greve, J. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS ONE 2013, 8, e60317. [Google Scholar] [CrossRef]
- Yao, Q.; Cao, Z.; Tu, C.; Zhao, Y.; Liu, H.; Zhang, S. MicroRNA-146a acts as a metastasis suppressor in gastric cancer by targeting WASF2. Cancer Lett. 2013, 335, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Iacona, J.R.; Lutz, C.S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip. Rev. RNA 2019, 10, e1533. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Song, J.; Ding, B.; Cui, Y.; Liang, J.; Han, S. miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol. Rep. 2018, 9, 3015–3024. [Google Scholar] [CrossRef] [PubMed]
- Noorolyai, S.; Baghbani, E.; Aghebati Maleki, L.; Baghbanzadeh Kojabad, A.; Shanehbansdi, D.; Khaze Shahgoli, V.; Mokhtarzadeh, A.; Baradaran, B. Restoration of miR-193a-5p and miR-146 a-5p Expression Induces G1 Arrest in Colorectal Cancer through Targeting of MDM2/p53. Adv. Pharm. Bull. 2020, 10, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Garo, L.P.; Ajay, A.K.; Fujiwara, M.; Gabriely, G.; Raheja, R.; Kuhn, C.; Kenyon, B.; Skillin, N.; Kadowaki-Saga, R.; Saxena, S.; et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat. Commun. 2021, 12, 2419. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Yao, Q.; Zhan, C.; Le-Meng, Z.; Liu, H.; Cai, Y. MicroRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway. Oncotarget 2017, 8, 22674–22684. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, S.; Zavaran Hosseini, A.; Mowla, S.J.; Soleimani, M.; Rakhshani, N.; Malekzadeh, R. MicroRNA-146a induces immune suppression and drug-resistant colorectal cancer cells. Tumor Biol. 2017, 39, 1010428317698365. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.-L.; Jiang, J.-K.; Yang, S.-H.; Huang, T.-S.; Lan, H.-Y.; Teng, H.-W.; Yang, C.-Y.; Tsai, Y.-P.; Lin, C.-H.; Yang, M.-H. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell Biol. 2014, 16, 268–280. [Google Scholar] [CrossRef]
- Runtsch, M.C.; Hu, R.; Alexander, M.; Wallace, J.; Kagele, D.; Petersen, C.; Valentine, J.F.; Welker, N.C.; Bronner, M.P.; Chen, X.; et al. MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget 2015, 6, 28556–28572. [Google Scholar] [CrossRef]
- Monteys, A.M.; Spengler, R.M.; Wan, J.; Tecedor, L.; Lennox, K.A.; Xing, Y.; Davidson, B.L. Structure and activity of putative intronic miRNA promoters. RNA 2010, 16, 495–505. [Google Scholar] [CrossRef]
- Santos-Zas, I.; Lodeiro, M.; Gurriarán-Rodríguez, U.; Bouzo-Lorenzo, M.; Mosteiro, C.S.; Casanueva, F.F.; Casabiell, X.; Pazos, Y.; Camiña, J.P. β-Arrestin signal complex plays a critical role in adipose differentiation. Int. J. Biochem. Cell Biol. 2013, 45, 1281–1292. [Google Scholar] [CrossRef]
- Po, A.; Begalli, F.; Abballe, L.; Alfano, V.; Besharat, Z.M.; Catanzaro, G.; Vacca, A.; Napolitano, M.; Tafani, M.; Giangaspero, F.; et al. β-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017, 2017, 5274171. [Google Scholar] [CrossRef]
- Luttrell, L.M.; Lefkowitz, R.J. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 2002, 115 Pt 3, 455–465. [Google Scholar] [CrossRef]
- Song, Q.; Ji, Q.; Li, Q. The role and mechanism of β-arrestins in cancer invasion and metastasis (Review). Int. J. Mol. Med. 2018, 41, 631–639. [Google Scholar] [CrossRef]
- Jeker, L.T.; Bluestone, J.A. MicroRNA regulation of T-cell differentiation and function. Immunol. Rev. 2013, 253, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Huang, C.; Li, S.; Yang, C.; Xi, Y.; Wang, L.; Zhang, F.; Fu, Y.; Li, D. Hsa-miR- 326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget 2016, 7, 8. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, B.; Kong, Y.; Ma, F.; Hua, Y. miR-326 Inhibits Gastric Cancer Cell Growth Through Downregulating NOB. Oncol. Res. 2017, 25, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wu, H.; Xia, J.; Li, Y.; Zhang, Y.; Huang, K.; Wagar, N.; Yoon, Y.; Cho, H.T.; Scala, S.; et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010, 79, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Hui-Yang, J.; Tao, Y. Enzalutamide-Induced Upregulation of PCAT6 Promotes Prostate Cancer Neuroendocrine Differentiation by Regulating miR-326/HNRNPA2B1 Axis. Front. Oncol. 2021, 11, 650054. [Google Scholar]
- Wang, L.; Guo, J.; Li, F. Research progress of miRNA-326 in malignant tumors. J. Gastroenterol. Res. Pract. 2023, 3, 1133. [Google Scholar]
- Pan, Y.J.; Wan, J.; Wang, C.B. MiR-326: Promising Biomarker for Cancer. Cancer Manag. Res. 2019, 11, 10411–10418. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Hui, H.; Wang, L.J.; Wang, H.; Liu, Q.F.; Han, S.X. MicroRNA-326 functions as a tumor suppressor in colorectal cancer by targeting the nin one binding protein. Oncol. Rep. 2015, 33, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Huertes, S. Study of the Role of mir-326 in Colorectal Cancer. Ph.D. Dissertation, Universidad Autónoma de Madrid, Madrid, Spain, 2023. [Google Scholar]
- GraphPad Prism Version 10.0.0 for Windows, GraphPad Software, Boston, MA, USA. Available online: www.graphpad.com (accessed on 17 May 2022).
- Addinsoft. XLSTAT Statistical and Data Analysis Solution. New York, NY, USA, 2022. Available online: https://www.xlstat.com (accessed on 18 May 2024).
- Tong, Z.; Cui, Q.; Wang, J.; Zhou, Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019, 47, D253–D258. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas. Available online: https://www.cancer.gov/tcga (accessed on 10 January 2023).
- Human Protein Atlas. Available online: https://www.proteinatlas.org (accessed on 10 January 2023).
- Bonke, M.; Turunen, M.; Sokolova, M.; Vähärautio, A.; Kivioja, T.; Taipale, M.; Björklund, M.; Taipale, J. Transcriptional networks controlling the cell cycle. G3 2013, 3, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Okawa, S.; Nicklas, S.; Zickenrott, S.; Schwamborn, J.C.; Del Sol, A. A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers. Stem Cell Rep. 2016, 13, 307–315. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Qin, G.; Mallik, S.; Mitra, R.; Li, A.; Jia, P.; Eischen, C.M.; Zhao, Z. MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors. Sci Rep. 2020, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Huang, L.; Zheng, Y.; Huang, H.; Chen, L.; Chi, L. Expression of miR-146a in colon cancer and its significance. Nan Fang Yi Ke Da Xue Xue Bao 2014, 34, 396–400. (In Chinese) [Google Scholar] [PubMed]
- Maralani, M.; Shanehbandi, D.; Asadi, M.; Hashemzadeh, S.; Hajiasgharzadeh, K.; Mashhadi Abdolahi, H.; Baradaran, B.; Peeters, M. Expression profiles of miR-196, miR-132, miR-146a, and miR-134 in human colorectal cancer tissues in accordance with their clinical significance: Comparison regarding KRAS mutation. Wien. Klin. Wochenschr. 2021, 133, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Omrane, I.; Kourda, N.; Stambouli, N.; Privat, M.; Medimegh, I.; Arfaoui, A.; Uhrhammer, N.; Bougatef, K.; Baroudi, O.; Bouzaienne, H.; et al. MicroRNAs 146a and 147b biomarkers for colorectal tumor’s localization. BioMed Res. Int. 2014, 2014, 584852. [Google Scholar] [CrossRef]
- Farc, O.; Berindan-Neagoe, I.; Zaharie, F.; Budisan, L.; Zanoaga, O.; Cristea, V. A role for serum cytokines and cell adhesion molecules in the non-invasive diagnosis of colorectal cancer. Oncol. Lett. 2022, 24, 323. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Okamura, S.; Yamaji, T.; Iwasaki, M.; Tsugane, S.; Shetty, V.; Koizumi, T. Plasma cytokine levels and the presence of colorectal cancer. PLoS ONE 2019, 14, e0213602. [Google Scholar] [CrossRef] [PubMed]
- Kantola, T.; Klintrup, K.; Väyrynen, J.P.; Vornanen, J.; Bloigu, R.; Karhu, T.; Herzig, K.H.; Näpänkangas, J.; Mäkelä, J.; Karttunen, T.J.; et al. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br. J. Cancer 2012, 107, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Gregorova, J.; Vychytilova-Faltejskova, P.; Sevcikova, S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers 2021, 13, 1333. [Google Scholar] [CrossRef]
- Ma, J.; Wang, T.; Guo, R.; Yang, X.; Yin, J.; Yu, J.; Xiang, Q.; Pan, X.; Zu, X.; Peng, C.; et al. MicroRNA-133a and microRNA-326 co-contribute to hepatocellular carcinoma 5-fluorouracil and cisplatin sensitivity by directly targeting B-cell lymphoma-extra large. Mol. Med. Rep. 2015, 12, 6235–6240. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, L.; Peng, Y.; Yang, Y.; Fan, T.; Jiang, X.; Dai, J.; Ouyang, J. The Role of miR-326 in Adipogenic Differentiation of Human Adipose-Derived Stem Cells by Targeting C/EBPα in vitro. Anat. Rec. 2020, 303, 2054–2060. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.; Candido, S.V.; Pilarz, M.S.; Sicinska, E.; Bronson, R.T.; Bowden, M.; Lachowicz, I.A.; Mulry, K.; Fassl, A.; Han, R.C.; et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc. Natl. Acad. Sci. USA 2017, 114, 10660–10665. [Google Scholar] [CrossRef] [PubMed]
- Farc, O.; Budisan, L.; Berindan-Neagoe, I.; Braicu, C.; Zanoaga, O.; Zaharie, F.; Cristea, V. A Group of Tumor-Suppressive micro-RNAs Changes Expression Coordinately in Colon Cancer. Curr. Issues Mol. Biol. 2023, 45, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Concepcion, J.; Uprety, D.; Adjei, A.A. Challenges in the Use of Targeted Therapies in Non-Small Cell Lung Cancer. Cancer Res. Treat. 2022, 54, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xing, Y.; Li, B.; Li, X.; Liu, B.; Wang, Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. Mol. Med. 2022, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, S.; Xin, Q.; Zhang, Y.; Wang, K.; Li, M. Recent progress of CDK4/6 inhibitors’ current practice in breast cancer. Cancer Gene Ther. 2024. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.G.R.J.; Hershorn, O.; Singh, H.; Park, J.; Helewa, R.M. Sampling errors in the diagnostic of colorectal cancer is associated with delay to surgery: A retrospective cohort study. Surg. Endosc. 2022, 36, 4893–4902. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Shen, Q.; DuPré, E.; Kim, H.; Hilsenbeck, S.; Brown, P.H. cFos is critical for MCF-7 breast cancer cell growth. Oncogene 2005, 24, 6516–6524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef]
- Kuang, C.; Tong, J.; Ermine, K.; Cai, M.; Dai, F.; Hao, S.; Giles, F.; Huang, Y.; Yu, J.; Zhang, L. Dual inhibition of BET and HAT/p300 suppresses colorectal cancer via DR5- and p53/PUMA-mediated cell death. Front. Oncol. 2022, 12, 1018775. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
1. Mean age (years) | 67.51 (11.4) | |
2. Sex | Male | 21 (46.66%) |
Female | 24 (53.33%) | |
3. Tumor histology | Adenocarcinoma | 45 (100%) |
4. Tumor TNM stage | 1 | 6 (13.33%) |
2 | 19 (42.22%) | |
3–4 | 20 (44.44%) | |
5. Tumor WHO grade | 1 | 9 (20%) |
2 | 27 (60%) | |
3 | 9 (20%) | |
6. Tumor location | Right colon | 21 (46.66%) |
Left colon | 19 (42.22%) | |
Rectum | 5 (11.11) | |
7. Comorbid conditions | Inflammatory conditions (RA, IBD) | 0 (0%) |
Diabetes mellitus | 5 (11.11%) | |
Cirrhosis | 1 (2.22) | |
Ascites | 1 (2.22) | |
CKD | 1 (2.22) | |
Chronic bronchitis | 2 (4.44) |
miR-146a Network | miR-326 Network | |||
---|---|---|---|---|
No. | Module (Hub Gene) | Functions (KEGG Pathways) | Module (Hub Gene) | Functions (KEGG Pathways) |
1 | FOS | MAPK signaling pathway Pathways in cancer Osteoclastic differentiation Colorectal cancer Cytokine–cytokine receptor interaction Apoptosis | FOS | MAPK signaling pathway Pathways in cancer Osteoclastic differentiation Colorectal cancer Cytokine–cytokine receptor interaction Apoptosis |
2 | MYC | Cell cycle Antigen processing P53 signaling pathway Cell adhesion molecules Colorectal cancer | MYC | Cell cycle Antigen processing P53 signaling pathway Cell adhesion molecules Colorectal cancer |
3 | ERG | Leukocytes transendothelial migration Cell adhesion molecules Pathways in cancer NK-mediated cytotoxicity Rheumatoid arthritis | ERG | Leukocytes transendothelial migration Cell adhesion molecules Pathways in cancer NK-mediated cytotoxicity Rheumatoid arthritis |
4 | TP53 | P53 pathway Cell cycle NLR pathway Pathways in cancer | TP53 | P53 pathway Cell cycle NLR pathway Pathways in cancer |
5 | NFIC | ECM-ligand interaction Focal adhesion Steroid hormone biosynthesis Purine metabolism | NFIC | ECM-ligand interaction Focal adhesion Steroid hormone biosynthesis Purine metabolism |
7 | HDAC2 | p53 signaling pathway TGFβ signaling pathway Cell cycle Transcription misregulation in cancer | HDAC2 | P53 signaling pathway TGFβ signaling pathway Cell cycle Transcription misregulation in cancer |
8 | STAT3 | Jak-STAT signaling pathway Influenza A Hepatitis C Complement and coagulation cascade P53 signaling Pathways in cancer | STAT3 | Jak-STAT signaling pathway Influenza A Hepatitis C Complement and coagulation cascade P53 signaling Pathways in cancer |
9 | GATA2 | Asthma Fatty acid metabolism FCεRI pathway Leucocyte transendothelial migration | GATA2 | Asthma Fatty acid metabolism FCεRI pathway Leucocyte transendothelial migration |
10 | HIF1A | Pathways in cancer Glycolysis, gluconeogenesis Toxoplasmosis TLR signaling pathway | HIF1A | Pathways in cancer Glycolysis, gluconeogenesis Toxoplasmosis TLR signaling pathway |
11 | miR-335 | Cytokine–cytokine receptor interaction | miR-335 | Cytokine–cytokine receptor interaction |
12 | CTNNB1 | Colorectal cancer Pathways in cancer Adheens junction WNT signaling pathway | EOMES | P53 signaling pathway Hepatitis C Cell cycle |
13 | TAF1 | Erbb signaling pathway HTLV1 infection | EGR1 | Glycosamine degradation HTLV1 infection Focal adhesion Autoimmune thyroid disease |
14 | GABPA1 | Calcium signaling pathway | CREB1 | Dopaminergic synapse Antigen processing and presentation Complement and coagulation cascade Calcium signaling pathway Fatty acid biosynthesis |
15 | POU2F2 | Antigen processing Cell adhesion molecules | MYCN | Antigen processing and presentation Epstein Barr virus infection Cell cycle NK mediated cytotoxicity Neutrophylin signaling |
16 | MITF | Melanogenesis Pathways in cancer BCR signaling pathway | MAX | Cell adhesion molecules Cytokine–cytokine receptor interaction Regulation of actin cytoskeleton Leukocyte transepithelial migration Tight junction |
17 | FOSL1 | ECM-receptor interaction Cytokine–cytokine receptor interaction Cell cycle TLR signaling pathway Pathways in cancer | E2F1 | Cell cycle P53 signaling pathway Rig-1-like receptor pathway Pathways in cancer |
18 | BRCA1 | Measles JAK-STAT signaling pathway Tuberculosis TLR signaling pathway | EP300 | Pathways in cancer HTLV-1 infection Cell cycle TGFβ signaling pathway Bile secretion Notch signaling pathway |
19 | MXI1 | Cytokine–cytokine receptor interaction Measles Regulation of actin cytoskeleton Leukocyte transendothelial migration Tight junction | PML | Pathways in cancer Colorectal cancer P53 signaling pathway Apoptosis |
20 | EED | Cell cycle Pathways in cancer Oocyte meiosis p53 signaling pathway Rheumatoid arthritis Linoleic acid metabolism | ZBTB7A | Glycolysis/gluconeogenesis Pentose phosphate pathway Pyruvate metabolism P53 signaling pathway Cell cycle Pathways in cancer |
21 | USF1 | Leishmaniasis Antigen processing and presentation Glycolysis-gluconeogenesis | NR3C1 | Phenylalanine metabolism P53 signaling pathway |
22 | NCOR1 | Transcription misregulation in cancer PPAR signaling pathway P53 signaling pathway Adherens junction | NRF1 | RNA transport Citrate cycle Mucin glycan A biosynthesis |
23 | HSF1 | Legionellosis NK mediated cytotoxicity | XBP1 | Protein processing in the endoplasmic reticulum Aminoacid metabolism |
24 | NFKB1 | Cytokine–cytokine receptor interaction Chemokine signaling pathway NLR pathway Intestinal immune network for IgA secretion | RELA | Cytokine–cytokine receptor interaction Chemokine signaling pathway NLR pathway Apoptosis Intestinal immune network for IgA secretion |
25 | STAT1 | TLR receptor signaling Hepatitis C Cytokine-receptor interaction JAK-STAT pathway Intestinal immune network for IgA secretion |
MiRNA | Pathway (KEGG) | FDR |
---|---|---|
miR-146a module | TLR signaling | 0.029 |
Adherens junction | 0.029 | |
Notch signaling pathway | 0.029 | |
Axon guidance | 0.029 | |
RIG-1 receptor signaling | 0.029 | |
Colorectal cancer | 0.029 | |
Apoptosis | 0.029 | |
Neutrophin signaling pathway | 0.029 | |
Pertussis | 0.029 | |
Chagas disease | 0.030 | |
WNT signaling pathway | 0.047 | |
miR-326 module | Hedgehog signaling pathway | 0.111 |
Insulin pathway signaling | 0.263 | |
Vibrio cholerae infection | 0.308 | |
Tight junction | 0.308 | |
Fatty acid biosynthesis | 0.501 | |
Notch signaling pathway | 0.501 | |
Dorso-ventral axis formation | 0.55 | |
Complement and coagulation cascade | 0.55 | |
Adherens junction | 0.55 | |
B-cell receptor signaling pathway | 0.55 | |
Transcriptional misregulation in cancer | 0.55 | |
TGFβ signaling pathway | 0.556 | |
Systemic lupus erythematosus | 0.559 | |
FCγR-mediated phagocytosis | 0.608 | |
Regulation of actin cytoskeleton | 0.608 |
Correlation | Normal Tissue | Tumoral Tissue |
---|---|---|
MiR-146a-miR-326 | 0.844 * | 0.797 * |
Pathway | FDR |
---|---|
Pathways in cancer | 3.6 × 10−10 |
Transcriptional misregulation in cancer | 5 × 10−9 |
Th17 differentiation | 7.1 × 10−9 |
PD-1 expression and PD-L regulation in cancer | 1.7 × 10−7 |
Colorectal cancer | 7.9 × 10−6 |
MAPK pathway | 3.6 × 10−5 |
Micro-RNAs in cancer | 6.9 × 10−5 |
Clinical Parameter | Micro-RNA | AUC | Sensitivity | Specificity | |
---|---|---|---|---|---|
TNM stage | Stages 1–2 | miR-146a | 0.655 | 0.76 | 0.56 |
miR-326 | 0.808 | 0,91 | 0.68 | ||
miR146a_ + miR-326 | 0.824 | 0.76 | 0.89 | ||
Stages 3–4 | miR-146a | 0.741 | 0.69 | 0.80 | |
miR-326 | 0.850 | 0.91 | 0.77 | ||
miR146a_ + miR-326 | 0.872 | 0.91 | 0.76 | ||
Tumor location | Right colon | miR-146a | 0.742 | 0.60 | 0.86 |
miR-326 | 0.878 | 0.91 | 0.72 | ||
miR146a_ + miR-326 | 0.888 | 0.952 | 0.76 | ||
Left colon+ rectum | miR-146a | 0.651 | 0.778 | 0.583 | |
miR-326 | 0.781 | 0.911 | 0.625 | ||
miR146a_ + miR-326 | 0.807 | 0.75 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farc, O.; Budisan, L.; Zaharie, F.; Țăulean, R.; Vălean, D.; Talvan, E.; Neagoe, I.B.; Zănoagă, O.; Braicu, C.; Cristea, V. Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Curr. Issues Mol. Biol. 2024, 46, 7065-7085. https://doi.org/10.3390/cimb46070421
Farc O, Budisan L, Zaharie F, Țăulean R, Vălean D, Talvan E, Neagoe IB, Zănoagă O, Braicu C, Cristea V. Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Current Issues in Molecular Biology. 2024; 46(7):7065-7085. https://doi.org/10.3390/cimb46070421
Chicago/Turabian StyleFarc, Ovidiu, Liviuta Budisan, Florin Zaharie, Roman Țăulean, Dan Vălean, Elena Talvan, Ioana Berindan Neagoe, Oana Zănoagă, Cornelia Braicu, and Victor Cristea. 2024. "Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer" Current Issues in Molecular Biology 46, no. 7: 7065-7085. https://doi.org/10.3390/cimb46070421
APA StyleFarc, O., Budisan, L., Zaharie, F., Țăulean, R., Vălean, D., Talvan, E., Neagoe, I. B., Zănoagă, O., Braicu, C., & Cristea, V. (2024). Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Current Issues in Molecular Biology, 46(7), 7065-7085. https://doi.org/10.3390/cimb46070421