Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. LC-MS/MS Multiple Reaction Monitoring (MRM) Assay of Polyphenols
2.1.2. Preparation of Extract and Fractionation
2.2. Anti-Inflammatory Activity of P. sacharosa
Animals
2.3. Experimental Design
2.4. Sacrifice and Tissue Processing
2.5. F10 Presence in the Mouse Brain
2.6. cRNA Probes for In Situ Hybridization
2.7. Fluorescent In Situ Hybridization (FISH)
2.8. Immunofluorescence Imaging and Data Analysis
2.9. Confocal Imaging and Data Analysis
2.10. Statistical Analysis
2.11. Theta Oscillation in the Hippocampus in Freely Moving Rats
3. Results
3.1. Phenolic Acid, Flavonoid Identification, and Contents in P. sacharosa Extract
3.2. Presence of F10 in the Mouse Brain
3.3. Analysis of C-Fos and CD14 mRNA + Cells in the Arcuate Nucleus of Mice
3.4. Analysis of GABAA γ2 mRNA Expression in the Dorsal Hippocampus of Male Mice
3.5. Local Field Potential Time–Frequency Domain and Coherence Analyses in the Rat Brain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgRP | Agouti-related peptide |
BP | Bandpass |
BBB | Blood–brain barrier |
BW | Body weight |
CNS | Central nervous system |
DM | Dichromatic mirror |
Dig | Digoxigenin |
DTT | Dithiothreitol |
DW | Dry weight |
EEPs | Ethanolic extract of P. sacharosa |
FFT | Fast Fourier Transform |
F10 | Flavonoid fraction |
FISH | Fluorescent in situ |
GABAA γ2 | GABA A gamma 2 receptor subunit |
IOD | Integrated optical density |
ISS | Isotonic saline solution |
L-Hip | Left hippocampus |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
LFP | Local field potential recording |
LP | Low pass |
LPS | Bacterial lipopolysaccharide |
MBH | Mediobasal hypothalamus |
NPY | Neuropeptide Y |
PEG | Polyethylene glycol |
POMC | Pro-opiomelanocortin |
R-Hip | Right hippocampus |
SDS | Sodium dodecyl sulfate |
SSB | Stainless steel beads |
SSC | Standard saline citrate |
TLC | Thin-layer chromatography |
TLR4 | Toll-like receptor-4 |
TSA | Tyramide Signal Amplification |
UV | Ultraviolet light |
References
- Mukherjee, P.K. Chapter 2—Ethnopharmacology and Ethnomedicine-Inspired Drug Development. In Quality Control and Evaluation of Herbal Drugs; Mukherjee, P.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 29–51. [Google Scholar]
- Welcome, M.O. Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition 2020, 11, 100176. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Das, G.; Lim, K.J.; Tantengco, O.A.G.; Carag, H.M.; Gonçalves, S.; Romano, A.; Das, S.K.; Coy-Barrera, E.; Shin, H.-S.; Gutiérrez-Grijalva, E.P.; et al. Cactus: Chemical, nutraceutical composition and potential bio-pharmacological properties. Phytother. Res. 2021, 35, 1248–1283. [Google Scholar] [CrossRef] [PubMed]
- de Castro Campos Pinto, N.; Scio, E. The Biological Activities and Chemical Composition of Pereskia Species (Cactaceae)—A Review. Plant Foods Hum. Nutr. 2014, 69, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Hajdu, Z.; Hohmann, J. An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. J. Ethnopharmacol. 2012, 139, 838–857. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, R.; Meneses, L.; Bussmann, R.W. Medicinal ethnobotany in Huacareta (Chuquisaca, Bolivia). J. Ethnobiol. Ethnomed. 2012, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Bieski, I.G.; Leonti, M.; Arnason, J.T.; Ferrier, J.; Rapinski, M.; Violante, I.M.; Balogun, S.O.; Pereira, J.F.; Figueiredo Rde, C.; Lopes, C.R.; et al. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol. 2015, 173, 383–423. [Google Scholar] [CrossRef] [PubMed]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Shamsudin, S.H.; Uddin, M.S.; Fahim, T.K.; Zaidul, I.S.M. Ethanol modified supercritical carbon dioxide extraction of antioxidant rich extract from Pereskia bleo. J. Ind. Eng. Chem. 2015, 21, 1314–1322. [Google Scholar] [CrossRef]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I. Phytochemical profile and biological activities of ‘Ora-pro-nobis’ leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food Chem. 2019, 294, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Velasco-Martínez, F.; González-Trujano, M.E.; Cabañas-García, E.; Yáñez-Recendis, N.; Pérez-Molphe-Balch, E.; Sánchez-Jaramillo, E.; Gómez-Aguirre, Y.A. Antinociceptive activity of Pereskia sacharosa Griseb. (Cactaceae) and localization of bioactive compounds in mice brain. Phytomed. Plus 2022, 2, 100331. [Google Scholar] [CrossRef]
- Vu, D.C.; Alvarez, S. Phenolic, carotenoid and saccharide compositions of vietnamese Camellia sinensis teas and herbal teas. Molecules 2021, 26, 6496. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, G.; Mohácsik, P.; Balkhi, M.Y.; Gereben, B.; Lechan, R.M. Endotoxin-induced inflammation down-regulates l-type amino acid transporter 1 (LAT1) expression at the blood–brain barrier of male rats and mice. Fluids Barriers CNS 2015, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, G.; Szabon, J.; Mohácsik, P.; Nouriel, S.S.; Gereben, B.; Fekete, C.; Lechan, R.M. Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology 2015, 156, 1552–1564. [Google Scholar] [CrossRef] [PubMed]
- Chaskiel, L.; Bristow, A.D.; Bluthé, R.M.; Dantzer, R.; Blomqvist, A.; Konsman, J.P. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav. Immun. 2019, 81, 560–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, Y.; Yang, Y.; Liu, J.; Zhu, T.; Huang, H.; Zhou, C. Severe inflammation in new-borns induces long-term cognitive impairment by activation of IL-1β/KCC2 signaling during early development. BMC Med. 2022, 20, 235. [Google Scholar] [CrossRef]
- Sánchez, E.; Singru, P.S.; Fekete, C.; Lechan, R.M. Induction of type 2 iodothyronine deiodinase in the mediobasal hypothalamus by bacterial lipopolysaccharide: Role of corticosterone. Endocrinology 2008, 149, 2484–2493. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates, 2nd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Sánchez-Jaramillo, E.; Wittmann, G.; Menyhért, J.; Singru, P.; Gómez-González, G.B.; Sánchez-Islas, E.; Yáñez-Recendis, N.; Pimentel-Cabrera, J.A.; León-Olea, M.; Gereben, B.; et al. Origin of thyrotropin-releasing hormone neurons that innervate the tuberomammillary nuclei. Brain Struct. Funct. 2022, 227, 2329–2347. [Google Scholar] [CrossRef]
- Sánchez, E.; Uribe, R.M.; Corkidi, G.; Zoeller, R.T.; Cisneros, M.; Zacarias, M.; Morales-Chapa, C.; Charli, J.L.; Joseph-Bravo, P. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology 2001, 74, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Valdés-Cruz, A.; Negrete-Díaz, J.V.; Magdaleno-Madrigal, V.M.; Martínez-Vargas, D.; Fernández-Mas, R.; Almazán-Alvarado, S.; Torres-García, M.E.; Flores, G. Electroencephalographic activity in neonatal ventral hippocampus lesion in adult rats. Synapse 2012, 66, 738–746. [Google Scholar] [CrossRef]
- Egea, M.B.; Pierce, G. Bioactive compounds of barbados gooseberry (Pereskia aculeata Mill.). In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 225–237. [Google Scholar]
- Guerra, R.; Gómez, L.J.; Castillo, U.G.; Toloza, G.; Sánchez-Pérez, J.P.; Avalos, N.; Mejía, J.G.; Núñez, M.J.; Moreno, M.A. Analgesic effect, phytochemical characterization and toxicological analysis of ethanolic extract of Pereskia lychnidiflora leaves. Rev. Peru. Med. Exp. Salud Publica 2018, 35, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Kazama, C.C.; Uchida, D.T.; Canzi, K.N.; de Souza, P.; Crestani, S.; Gasparotto, A., Jr.; Laverde, A., Jr. Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae). J. Ethnopharmacol. 2012, 144, 86–93. [Google Scholar] [CrossRef]
- Maciel, V.B.V.; Yoshida, C.M.P.; Goycoolea, F.M. Agronomic cultivation, chemical composition, functional activities and applications of Pereskia species—A mini review. Curr. Med. Chem. 2019, 26, 4573–4584. [Google Scholar] [CrossRef]
- Mohd-Salleh, S.F.; Ismail, N.; Wan-Ibrahim, W.S.; Tuan Ismail, T.N.N. Phytochemical screening and cytotoxic effects of crude extracts of Pereskia bleo leaves. J. Herbs Spices Med. Plants 2020, 26, 291–302. [Google Scholar] [CrossRef]
- Sri-Nurestri, A.M.; Sim, K.S.; Norhanom, A.W. Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw. (Cactaceae) Leaves. J. Biol. Sci. 2009, 9, 488–493. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, Y.-L.; Yang, H.; Wang, Y.-H.; Du, G.-H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int. Immunopharmacol. 2018, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Cheng, X.; Yang, Y.L.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Res. 2019, 1722, 146361. [Google Scholar] [CrossRef] [PubMed]
- Figueira, I.; Tavares, L.; Jardim, C.; Costa, I.; Terrasso, A.P.; Almeida, A.F.; Govers, C.; Mes, J.J.; Gardner, R.; Becker, J.D.; et al. Blood–brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: An in vitro study. Eur. J. Nutr. 2019, 58, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Quinto-Ortiz, Y.E.; González-Trujano, M.E.; Sánchez-Jaramillo, E.; Moreno-Pérez, G.F.; Jacinto-Gutiérrez, S.; Pellicer, F.; Fernández-Guasti, A.; Hernandez-Leon, A. Pharmacological interaction of quercetin derivatives of Tilia americana and clinical drugs in experimental fibromyalgia. Metabolites 2022, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, L. Autofluorescence in Plants. Molecules 2020, 25, 2393. [Google Scholar] [CrossRef] [PubMed]
- Monago-Maraña, O.; Durán-Merás, I.; Galeano-Díaz, T.; Muñoz de la Peña, A. Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools. Food Chem. 2016, 196, 1058–1065. [Google Scholar] [CrossRef]
- Carballo-Villalobos, A.I.; González-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J. Antihyperalgesic effect of hesperidin improves with diosmin in experimental neuropathic pain. Biomed. Res. Int. 2016, 2016, 8263463. [Google Scholar] [CrossRef]
- Sohn, J.W. Network of hypothalamic neurons that control appetite. BMB Rep. 2015, 48, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Sheng, Z.; Potian, J.; Deak, A.; Rohowsky-Kochan, C.; Routh, V.H. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose. Brain Res. 2016, 1648, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Fekete, C.; Sarkar, S.; Christoffolete, M.A.; Emerson, C.H.; Bianco, A.C.; Lechan, R.M. Bacterial lipopolysaccharide (LPS)-induced type 2 iodothyronine deiodinase (D2) activation in the mediobasal hypothalamus (MBH) is independent of the LPS-induced fall in serum thyroid hormone levels. Brain Res. 2005, 1056, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.-M. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2018, 149, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Rigillo, G.; Vilella, A.; Benatti, C.; Schaeffer, L.; Brunello, N.; Blom, J.M.C.; Zoli, M.; Tascedda, F. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain Behav. Immun. 2018, 74, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Skelly, D.T.; Hennessy, E.; Dansereau, M.A.; Cunningham, C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice. PLoS ONE 2013, 8, e69123. [Google Scholar] [CrossRef]
- Xia, Y.; Yamagata, K.; Krukoff, T.L. Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res. 2006, 1095, 85–95. [Google Scholar] [CrossRef]
- Becskei, C.; Riediger, T.; Hernadfalvy, N.; Arsenijevic, D.; Lutz, T.A.; Langhans, W. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain Behav. Immun. 2008, 22, 56–64. [Google Scholar] [CrossRef]
- Murphy, B.A.; Fioramonti, X.; Jochnowitz, N.; Fakira, K.; Gagen, K.; Contie, S.; Lorsignol, A.; Penicaud, L.; Martin, W.J.; Routh, V.H. Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose. Am. J. Physiol. Cell Physiol. 2009, 296, C746–C756. [Google Scholar] [CrossRef] [PubMed]
- Romero-Juárez, P.A.; Bulcão Visco, D.; Manhães-de-Castro, R.; Urquiza-Martínez, M.V.; Saavedra, L.M.; González-Vargas, M.C.; Mercado-Camargo, R.; de Souza Aquino, J.; Toscano, A.E.; Torner, L.; et al. Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity. Nutr. Neurosci. 2023, 26, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Sarruf, D.A.; Yu, F.; Nguyen, H.T.; Williams, D.L.; Printz, R.L.; Niswender, K.D.; Schwartz, M.W. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology 2009, 150, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Krashes, M.J.; Shah, B.P.; Koda, S.; Lowell, B.B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 2013, 18, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Fekete, C.; Kelly, J.; Mihály, E.; Sarkar, S.; Rand, W.M.; Légrádi, G.; Emerson, C.H.; Lechan, R.M. Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology 2001, 142, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Krashes, M.J.; Shah, B.P.; Madara, J.C.; Olson, D.P.; Strochlic, D.E.; Garfield, A.S.; Vong, L.; Pei, H.; Watabe-Uchida, M.; Uchida, N.; et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 2014, 507, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Ativie, F.; Komorowska, J.A.; Beins, E.; Albayram, O.; Zimmer, T.; Zimmer, A.; Tejera, D.; Heneka, M.; Bilkei-Gorzo, A. Cannabinoid 1 receptor signaling on hippocampal GABAergic neurons influences microglial activity. Front. Mol. Neurosci. 2018, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, T.; Zhou, Y.; Hong, Y.; Zhang, S.; Zhou, Z.; Jiang, A.; Liu, D. Microglia trigger the structural plasticity of GABAergic neurons in the hippocampal CA1 region of a lipopolysaccharide-induced neuroinflammation model. Exp. Neurol. 2023, 370, 114565. [Google Scholar] [CrossRef]
- Hellstrom, I.C.; Danik, M.; Luheshi, G.N.; Williams, S. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-β-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 2005, 15, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Tang, B.; Wang, L.; Huo, Q.; Tan, S.; Misrani, A.; Han, Y.; Li, H.; Hu, H.; Wang, J.; et al. Systemic LPS-induced microglial activation results in increased GABAergic tone: A mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav. Immun. 2022, 99, 53–69. [Google Scholar] [CrossRef]
- Mamad, O.; Islam, M.N.; Cunningham, C.; Tsanov, M. Differential response of hippocampal and prefrontal oscillations to systemic LPS application. Brain Res. 2018, 1681, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Kuo, T.T.; Chu, M.T.; Ma, H.I.; Chiang, Y.H.; Huang, E.Y. Postnatal systemic inflammation exacerbates impairment of hippocampal synaptic plasticity in an animal seizure model. Neuroimmunomodulation 2013, 20, 223–232. [Google Scholar] [CrossRef]
- Rios, J.L.; Schinella, G.R.; Moragrega, I. Phenolics as GABA(A) receptor ligands: An updated review. Molecules 2022, 27, 1770. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.S.; Sri Nurestri, A.M.; Sinniah, S.K.; Kim, K.H.; Norhanom, A.W. Acute oral toxicity of Pereskia bleo and Pereskia grandifolia in mice. Pharmacogn. Mag. 2010, 6, 67–70. [Google Scholar] [CrossRef] [PubMed]
Phenolic Metabolites | Concentration (ng/g) | |
---|---|---|
Flavonoids | ||
Apigenin | nd | |
Apigeninidin | nd | |
Catechin | nd | |
Daidzein | nd | |
Delphinidin | nd | |
Epicatechin | nd | |
Genistein | nd | |
Hesperetin | nd | |
Kaempferol | 66.69 | |
Luteolin | nd | |
Naringenin + Naringenin chalcone | 4.50 | |
Proanthocyanidin A2 | nd | |
Procyanidin B2 | nd | |
Phloretin | nd | |
Quercetin | 152.89 | |
Quercetin-3-galactoside | 482.88 | |
Quercetin-3-glucoside | 5.49 | |
Resveratrol | nd | |
Rutin | nd | |
Phenolic acid | ||
Caffeic acid | 564.78 | |
Chlorogenic acid | 271.02 | |
Cinnamic acid | 2803.64 | |
p-Coumaric acid | 2637.72 | |
Ferulic acid | 1609.37 | |
Gallic acid | 9.92 | |
Protocatechuic acid | nd | |
Syringic acid | 388.83 | |
Vanillic acid | 1237.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado-Fernández, M.F.; Magdaleno-Madrigal, V.M.; Cabañas-García, E.; Mucio-Ramírez, S.; Almazán-Alvarado, S.; Pérez-Molphe-Balch, E.; Gómez-Aguirre, Y.A.; Sánchez-Jaramillo, E. Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Curr. Issues Mol. Biol. 2024, 46, 6885-6902. https://doi.org/10.3390/cimb46070411
Prado-Fernández MF, Magdaleno-Madrigal VM, Cabañas-García E, Mucio-Ramírez S, Almazán-Alvarado S, Pérez-Molphe-Balch E, Gómez-Aguirre YA, Sánchez-Jaramillo E. Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Current Issues in Molecular Biology. 2024; 46(7):6885-6902. https://doi.org/10.3390/cimb46070411
Chicago/Turabian StylePrado-Fernández, María Fernanda, Víctor Manuel Magdaleno-Madrigal, Emmanuel Cabañas-García, Samuel Mucio-Ramírez, Salvador Almazán-Alvarado, Eugenio Pérez-Molphe-Balch, Yenny Adriana Gómez-Aguirre, and Edith Sánchez-Jaramillo. 2024. "Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity" Current Issues in Molecular Biology 46, no. 7: 6885-6902. https://doi.org/10.3390/cimb46070411
APA StylePrado-Fernández, M. F., Magdaleno-Madrigal, V. M., Cabañas-García, E., Mucio-Ramírez, S., Almazán-Alvarado, S., Pérez-Molphe-Balch, E., Gómez-Aguirre, Y. A., & Sánchez-Jaramillo, E. (2024). Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Current Issues in Molecular Biology, 46(7), 6885-6902. https://doi.org/10.3390/cimb46070411