Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparations
2.2. Whole-Exome Sequencing
2.3. Bioinformatic Data Analysis and Variant Calling in Patient Exomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marini, J.C.; Forlino, A.; Bächinger, H.P.; Bishop, N.J.; Byers, P.H.; De Paepe, A.; Fassier, F.; Fratzl-Zelman, N.; Kozloff, K.M.; Krakow, D.; et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 2017, 3, 17052. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, M.; Tsuji, S.; Katsura, D.; Kasahara, K.; Kimura, F.; Murakami, T. Current Overview of Osteogenesis Imperfecta. Medicina 2021, 57, 464. [Google Scholar] [CrossRef] [PubMed]
- Osteogenesis Imperfecta Federation Europe (OIFE). Bamberg, 12 February 2008. Available online: https://ec.europa.eu/health/ph_threats/non_com/docs/R396_en.pdf (accessed on 10 April 2024).
- Forlino, A.; Cabral, W.A.; Barnes, A.M.; Marini, J.C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 2012, 7, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Rossi, V.; Lee, B.; Marom, R. Osteogenesis imperfecta: Advancements in genetics and treatment. Curr. Opin. Pediatr. 2019, 31, 708–715. [Google Scholar] [CrossRef]
- Strevel, E.L.; Papaioannou, A.; Adachi, J.D.; McNamara, M. Case report: Osteogenesis imperfecta Elusive cause of fractures. Can. Fam. Physician 2005, 51, 1655–1657. [Google Scholar] [PubMed]
- Marom, R.; Rabenhorst, B.M.; Morello, R. Management of Endocrine Disease: Osteogenesis Imperfecta: An Update on Clinical Features and Therapies. Eur. J. Endocrinol. 2020, 183, R95–R106. [Google Scholar] [CrossRef] [PubMed]
- Bailleul-Forestier, I.; Berdal, A.; Vinckier, F.; de Ravel, T.; Fryns, J.P.; Verloes, A. The genetic basis of inherited anomalies of the teeth. Part 2: Syndromes with significant dental involvement. Eur. J. Med. Genet. 2008, 51, 383–408. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.R.; Weis, M.A. Bone Collagen: New clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif. Tissue Int. 2013, 93, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Lapunzina, P.; Aglan, M.; Temtamy, S.; Caparrós-Martín, J.A.; Valencia, M.; Letón, R.; Martínez-Glez, V.; Elhossini, R.; Amr, K.; Vilaboa, N.; et al. Identification of a frameshift mutation in Osterix in a patient with recessive Osteogenesis imperfecta. Am. J. Hum. Genet. 2010, 87, 110–114. [Google Scholar] [CrossRef]
- Zhytnik, L.; Maasalu, K.; Duy, B.H.; Pashenko, A.; Khmyzov, S.; Reimann, E.; Prans, E.; Kõks, S.; Märtson, A. De novo and inherited pathogenic variants in collagen-related osteogenesis imperfecta. Mol. Genet. Genom. Med. 2019, 7, e559. [Google Scholar] [CrossRef]
- Ergun, M.A.; Bilgili, G.; Hamurcu, U.; Ertan, A. Whole exome sequencing reveals a mutation in an osteogenesis imperfecta patient. Meta Gene 2017, 11, 137–140. [Google Scholar] [CrossRef]
- KAPA HyperExome Probes. Available online: https://sequencing.roche.com/global/en/products/group/kapa-hyperexome.html (accessed on 10 April 2024).
- The QuantiFluor® dsDNA System. Available online: https://worldwide.promega.com/products/rna-analysis/dna-and-rna-quantitation/quantifluor-dsdna-system (accessed on 10 April 2024).
- Bioanalyzer High Sensitivity DNA Analysis. Available online: https://www.agilent.com/cs/library/usermanuals/public/2100_Bioanalyzer_HSDNA_QSG.pdf (accessed on 10 April 2024).
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Available online: https://www.broadinstitute.org/gatk/events/slides/1506/GATKwr8-D-4-Manual_filtering.pdf (accessed on 10 April 2024).
- Auton, A.; Salcedo, T. The 1000 Genomes Project; Springer: New York, NY, USA, 2015; pp. 71–85. [Google Scholar]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Barbitoff, Y.A.; Skitchenko, R.K.; Poleshchuk, O.I.; Shikov, A.E.; Serebryakova, E.A.; Nasykhova, Y.A.; Polev, D.E.; Shuvalova, A.R.; Shcherbakova, I.V.; Fedyakov, M.A.; et al. Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. Mol. Genet. Genom. Med. 2019, 7, e964. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP v2.0: A Database of Human Non-synonymous SNVs and Their Functional Predictions and Annotations. Hum. Mutat. 2013, 34, E2393–E2402. [Google Scholar] [CrossRef] [PubMed]
- Ghodsi, M.; Amiri, S.; Hassani, H.; Ghodsi, Z. An enhanced version of Cochran-Armitage trend test for genome-wide association studies. Meta Gene 2016, 9, 225–229. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- NM_000088.4(COL1A1):c.3505G>A (p.Gly1169Ser) AND Osteogenesis Imperfecta Type I. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000490739/ (accessed on 10 April 2024).
- Tsuneyoshi, T.; Westerhausen, A.; Constantinou, C.D.; Prockop, D.J. Substitutions for glycine alpha 1-637 and glycine alpha 2-694 of type I procollagen in lethal osteogenesis imperfecta. The conformational strain on the triple helix introduced by a glycine sub-stitution can be transmitted along the helix. J. Biol. Chem. 1991, 266, 15608–15613. [Google Scholar] [CrossRef]
- Higuchi, Y.; Hasegawa, K.; Futagawa, N.; Yamashita, M.; Tanaka, H.; Tsukahara, H. Genetic analysis in Japanese patients with osteogenesis imperfecta: Genotype and phenotype spectra in 96 probands. Mol. Genet. Genom. Med. 2021, 9, e1675. [Google Scholar] [CrossRef]
- COL1A2C.739-2A>G. Clinvar. Available online: https://clinvarminer.genetics.utah.edu/variants-by-gene/COL1A2/significance/pathogenic (accessed on 10 April 2024).
- Clinvar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/1806510 (accessed on 10 April 2024).
- Bonafe, L.; Cormier-Daire, V.; Hall, C.; Lachman, R.; Mortier, G.; Mundlos, S.; Nishimura, G.; Sangiorgi, L.; Savarirayan, R.; Sillence, D.; et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. Part A 2015, 167, 2869–2892. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, R.; Alazami, A.M.; Alshammari, M.J.; Faqeih, E.; Alhashmi, N.; Mousa, N.; Alsinani, A.; Ansari, S.; Alzahrani, F.; Al-Owain, M.; et al. Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J. Med. Genet. 2012, 49, 630–635. [Google Scholar] [CrossRef]
- Matsushiro, M.; Harada, D.; Ueyama, K.; Kashiwagi, H.; Ishiura, Y.; Yamada, H.; Seino, Y. Intracranial aneurysm as a possible complication of osteogenesis imperfecta: A case series and literature review. Endocr. J. 2023, 70, 697–702. [Google Scholar] [CrossRef]
- Etich, J.; Leßmeier, L.; Rehberg, M.; Sill, H.; Zaucke, F.; Netzer, C.; Semler, O. Osteogenesis imperfecta—Pathophysiology and therapeutic options. Mol. Cell. Pediatr. 2020, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Terajima, M.; Taga, Y.; Nakamura, T.; Guo, H.-F.; Kayashima, Y.; Maeda-Smithies, N.; Parag-Sharma, K.; Kim, J.S.; Amelio, A.L.; Mizuno, K.; et al. Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci. Rep. 2022, 12, 14256. [Google Scholar] [CrossRef]
- Lv, F.; Xu, X.-J.; Wang, J.-Y.; Liu, Y.; Asan; Wang, J.-W.; Song, L.-J.; Song, Y.-W.; Jiang, Y.; Wang, O.; et al. Two novel mutations in TMEM38B result in rare autosomal recessive osteogenesis imperfecta. J. Hum. Genet. 2016, 61, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Caengprasath, N.; Theerapanon, T.; Porntaveetus, T.; Shotelersuk, V. MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders. J. Transl. Med. 2021, 19, 114. [Google Scholar] [CrossRef]
- Mendoza-Londono, R.; Fahiminiya, S.; Majewski, J.; Tétreault, M.; Nadaf, J.; Kannu, P.; Sochett, E.; Howard, A.; Stimec, J.; Dupuis, L.; et al. Recessive osteogenesis imperfecta caused by missense mutations in SPARC. Am. J. Hum. Genet. 2015, 96, 979–985. [Google Scholar] [CrossRef]
- Pyott, S.M.; Tran, T.T.; Leistritz, D.F.; Pepin, M.G.; Mendelsohn, N.J.; Temme, R.T.; Fernandez, B.A.; Elsayed, S.M.; Elsobky, E.; Verma, I.; et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am. J. Hum. Genet. 2013, 92, 590–597. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Huang, J.; Wu, D.; Li, T.; Guo, L.-J.; Guo, Q.-N.; Wang, H.-D.; Wang, R.-L.; Wang, Y. Collagen Type I Alpha 1 mutation causes osteogenesis imperfecta from mild to perinatal death in a Chinese family. Chin. Med. J. 2016, 129, 88–91. [Google Scholar] [CrossRef]
- Marini, J.C.; Forlino, A.; Cabral, W.A.; Barnes, A.M.; Antonio, J.D.S.; Milgrom, S.; Hyland, J.C.; Körkkö, J.; Prockop, D.J.; De Paepe, A.; et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 2007, 28, 209–221. [Google Scholar] [CrossRef] [PubMed]
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000490739/ (accessed on 10 April 2024).
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/802335/?o (accessed on 10 April 2024).
- ClinVar. Available online: https://clinvarminer.genetics.utah.edu/variants-by-gene/COL1A2/significance/pathogenic (accessed on 10 April 2024).
- Bodian, D.L.; Chan, T.-F.; Poon, A.; Schwarze, U.; Yang, K.; Byers, P.H.; Kwok, P.-Y.; Klein, T.E. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: Implications for genotype–phenotype relationships. Hum. Mol. Genet. 2009, 18, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Shaw, K.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014, 133, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clinvar. Available online: https://clinvarminer.genetics.utah.edu/submissions-by-variant/NM_000089.4 (accessed on 10 April 2024).
- Lin, X.; Hu, J.; Zhou, B.; Zhang, Q.; Jiang, Y.; Wang, O.; Xia, W.; Xing, X.; Li, M. Genotype–phenotype relationship and comparison between eastern and western patients with osteogenesis imperfecta. J. Endocrinol. Investig. 2023, 47, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Maioli, M.; Gnoli, M.; Boarini, M.; Tremosini, M.; Zambrano, A.; Pedrini, E.; Mordenti, M.; Corsini, S.; D’eufemia, P.; Versacci, P.; et al. Genotype–phenotype correlation study in 364 osteogenesis imperfecta Italian patients. Eur. J. Hum. Genet. 2019, 27, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Aglan, M.S.; Hosny, L.; El-Houssini, R.; Abdelhadi, S.; Salem, F.; ElBanna, R.A.S.; Awad, S.A.; Zaki, M.E.; Temtamy, S.A. A scoring system for the assessment of clinical severity in osteogenesis imperfecta. J. Child. Orthop. 2012, 6, 29–35. [Google Scholar] [CrossRef]
- Glotov, O.S.; Chernov, A.N.; Glotov, A.S. Human Exome Sequencing and Prospects for Predictive Medicine: Analysis of International Data and Own Experience. J. Pers. Med. 2023, 13, 1236. [Google Scholar] [CrossRef]
Patient No. | Gene, Coverage | Gene Variant | Pathogenicity; Pathogenic Criteria | OI Type | Gender |
---|---|---|---|---|---|
1 | COL1A1, 90× | c.4123G>A (p.Ala1375Thr) ° | VUS; PM, PP3, PP4 | Type III | Female |
2 | COL1A1, 96× | c.3505G>A (p.Gly1169Ser) | Pathogenic; PS4, PM1, PM2, PP1, PP2, PP3, PP5 | Type III (family history) | Female |
3 | COL1A1, 79× | c.769G>A (p.Gly257Arg) ° | Pathogenic; PS4, PM2, PM5, PP2, PP3, PP5 | Type III | Female |
4 | COL1A1, 85× | c.4114A>T (p.Asn1372Tyr) * | VUS; PM2, PP3, PP4 | Type III (family history) | Male |
5 | COL1A2, 129× | c.2035G>A (p.Gly679Ser) ° | Likely pathogenic; PM2, PM5, PP3, PP4, PP5 | Type III | Male |
6 | COL1A2, 82× | c.739-2A>T °* | Likely pathogenic; PVS1, PM2 | Type III | Female |
Patient No. | Clinical Manifestations | Age of Onset | Phenotype | Fractures | Biochemistry | Other Medication |
---|---|---|---|---|---|---|
1 | By 1 month of age: 6 fractures (low trauma or in atypical locations) | After birth | By 7 years and 1 month: short stature (−2.57 sd), overweight (−2.5 sd BMI), prominent frontal eminence, varus deformity of the lower extremities | After-birth fractures: left humerus, left femur and fibula, both radial bones. Compression fractures of the Th11-L2 vertebrae, ribs 3 to 10 on the right Fractures by 7 years and 1 month: at 6 and 10 months, fractures of the right leg and left arm, respectively | By 7 years and 1 month: Ca, P, and AP in the reference range. High level of 25-(OH)VitD3 in the anamnesis (overdose of cholecalciferol) | Calcium and cholecalciferol |
2 | By 1 month of age: 4 fractures (low trauma or in atypical locations) | In utero | By 3 months: blue sclera, varus deformity of the lower extremities and ribs | In utero fractures: left femur Fractures by 3 months: both femurs and both tibias | By 3 months: Ca and P in the reference range. High level of AP | Calcium and cholecalciferol |
3 | By 2 years of age: 12 fractures (low trauma or in atypical locations) | 1 month | By 3 years and 4 months: height (−1.65 sd), weight (−1.25 sd BMI). Scoliosis of the thoracic and lumbar spine, asymmetrical leg length, deformation of the right hip. Varus deformity of the humerus, legs, and thighs | Fractures at 1 month: both femurs By 3 years and 4 months: multiple fractures of long tubular bones; compression fractures of Th5-Th9, 12th, and L2 vertebrae; fracture of the left clavicle (together more than 19th) | By 3 years and 4 months: low Ca and AP, high 25-(OH)VitD3 level in the anamnesis (overdose of cholecalciferol) | Calcium and cholecalciferol |
4 | By 1 month of age: 7 fractures (low trauma or in atypical locations) | In utero | By 3 months: short stature (−3.9 sd), low weight (−2.53 sd IBM), prominent frontal eminence | In utero fractures: left femur, ribs, right humerus Fractures by 3 months: ribs 5, 6, 7, 8, and 9; both radius, both femurs, right femur in 2 positions, right humerus in 2 positions | By 3 months: Ca, P, and AP in the reference range | Calcium and cholecalciferol |
5 | By 13 years of age: 9 fractures (low trauma or in atypical locations) | 12 months | By 13 years: normal height (0.47 with BMI), overweight (+2.5 with BMI). Blue sclera, asymmetrical leg length, disproportionate physique (short torso), hypodontia, joint hypermobility, signs of connective tissue dysplasia | Fracture at 1 year: left tibia Fractures by 13 years: at 3 years—temporal bone and compression fracture of vertebrae Th6 and 8; at 10 years—bone of the left forearm; at 11 years—right tibia; at 12 years—left radius and right femoral neck; at 13 years—left tibia | By 13 years: Ca, P, and AP in the reference range, low 25-(OH)VitD3 and parathyroid hormone levels in the anamnesis | Calcium and cholecalciferol |
6 | By 2 years of age: 3 fractures (low trauma or in atypical locations) | 1 month | Fracture at 1 month: left forearm Fractures by 2 years: fracture of both lower extremities | By 2 years: Ca, P, and AP in the reference range | Cholecalciferol |
Type | Gene | Inheritance | Gene Product | Clinical Presentation |
---|---|---|---|---|
I | COL1A1 | AD | Collagen type I, α1-chain |
|
II | COL1A1, COL1A2 | AD | Collagen type I, α1- and α2-chain |
|
III | COL1A1, COL1A2 | AD | Collagen type I, α1- and α2-chain |
|
IV | COL1A1, COL1A2 | AD | Collagen type I, α1- and α2-chain |
|
V | IFITM5 | AD | Interferon-induced transmembrane protein 5 |
|
VI | SERPINF1 | AR | Serpin peptidase inhibitor |
|
VII | CRTAP | AR | Cartilage protein |
|
VIII | LEPRE1 | AR | Prolyl 3-hydroxylase 1 |
|
IX | PPIB | AR | Peptidyl-prolyl isomerase B |
|
X | SERPINF1 | AR | Serpin peptidase inhibitor |
|
XI | FKBP10 | AR | FKBP10 peptidyl-prolyl cis–trans isomerase |
|
XII | SP7 | AR | Zinc finger-containing transcription factor |
|
XII | BMP1 | AR | Bone morphogenetic protein 1 |
|
XIV | TMEM38B | AR | Transmembrane protein 38B |
|
XV | WNT1 | AR | Oncogenic signaling protein |
|
XVI | CREB3L1 | AR | cAMP-responsive element-binding protein 3 |
|
XVII | SPARC | AR | Protein rich in cysteine |
|
XVIII | FAM64A/TENT5A | AR | Mitotic regulator protein/Terminal nucleotidyltransferase |
|
XIX | MBTPS2 | XLR | Membrane-bound transcription factor protease, Site 2 |
|
Unclassified | PLOD2 | AR | Procollagen-lysine 2-oxoglutarate 5-dioxygenase |
|
Unclassified | PLS3 | XLR | Plastin 3 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshevaya, Y.S.; Turkunova, M.E.; Vechkasova, A.O.; Serebryakova, E.A.; Donnikov, M.Y.; Papanov, S.I.; Chernov, A.N.; Kolbasin, L.N.; Kovalenko, L.V.; Glotov, A.S.; et al. Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients. Curr. Issues Mol. Biol. 2024, 46, 4106-4118. https://doi.org/10.3390/cimb46050252
Koshevaya YS, Turkunova ME, Vechkasova AO, Serebryakova EA, Donnikov MY, Papanov SI, Chernov AN, Kolbasin LN, Kovalenko LV, Glotov AS, et al. Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients. Current Issues in Molecular Biology. 2024; 46(5):4106-4118. https://doi.org/10.3390/cimb46050252
Chicago/Turabian StyleKoshevaya, Yulia S., Mariia E. Turkunova, Anastasia O. Vechkasova, Elena A. Serebryakova, Maxim Yu. Donnikov, Svyatoslav I. Papanov, Alexander N. Chernov, Lev N. Kolbasin, Lyudmila V. Kovalenko, Andrey S. Glotov, and et al. 2024. "Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients" Current Issues in Molecular Biology 46, no. 5: 4106-4118. https://doi.org/10.3390/cimb46050252
APA StyleKoshevaya, Y. S., Turkunova, M. E., Vechkasova, A. O., Serebryakova, E. A., Donnikov, M. Y., Papanov, S. I., Chernov, A. N., Kolbasin, L. N., Kovalenko, L. V., Glotov, A. S., & Glotov, O. S. (2024). Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients. Current Issues in Molecular Biology, 46(5), 4106-4118. https://doi.org/10.3390/cimb46050252