Açaí (Euterpe oleracea Mart.) Seed Oil and Its Nanoemulsion: Chemical Characterisation, Toxicity Evaluation, Antioxidant and Anticancer Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Obtaining Açaí Oil
2.1.2. Oil Analysis by Gas Chromatography Coupled with Mass Spectrometry (GC-MS)
2.1.3. Quantitative Determination of Total Phenolic Compounds and Flavonoids
2.1.4. Physicochemical Characterisation of E. oleracea Mart. Seed Oil
2.1.5. Obtaining a Nanoemulsion from Euterpe oleracea Mart. Seed Oil
Emulsification Method
Determination of Hydrophilic–Lipophilic Balance (HLB)
2.2. Preliminary Stability Evaluation
2.2.1. Visual Assessment
2.2.2. Centrifugation Test
2.2.3. Temperature Stability Test
2.3. Physicochemical Characterisation of the Nanoemulsion
2.3.1. Average Particle Size and Polydispersity Index (PDI)
2.3.2. Zeta Potential
2.3.3. pH Measurement
2.3.4. Turbidity Measurement
2.4. Morphological Analysis
2.4.1. Clonogenic Assay
2.4.2. Annexin-V Assay
2.4.3. Wound Healing Assay
2.4.4. Evaluation of Antioxidant Activity Using the ABTS and DPPH Methods
2.4.5. Evaluation of the Toxicity of the Oil and Nanoemulsion In Vivo in Swiss Female Mice
Animals and Ethical Aspects
Toxicity Assessment
- Hepatocyte vacuolar degeneration, categorised as mild if restricted to the centrilobular zone or multifocal, and moderate if panlobular or diffuse throughout the organ.
- Presence of hepatitis, graded as mild if confined to the portal or centrilobular spaces, and moderate/severe if characterised by the formation of leukocyte bridges between portal spaces and centrilobular veins or areas of fibrosis.
- Identification of areas of necrosis, described as liquefaction or coagulation necrosis.
- Evaluation of karyomegaly, indicating hepatocytes with nuclei twice the normal diameter and exhibiting a pale and rarefied chromatin pattern.
- Counting of mitotic figures as a sign of cell regeneration, assessed per high magnification field.
- Tubular degeneration, defined by the swelling of cells in the proximal or distal convoluted tubules, necrosis of isolated tubular cells, or loss of cellular vesicles into the tubular lumen (blebbing).
2.5. Evaluation of the Immunological and Inflammatory Response
2.6. Statistical Analysis
3. Results
3.1. Chromatographic Profile of E. oleracea Mart. Seed Oil
3.2. Chemical Quantification of E. oleracea Mart Seed Oil and Nanoemulsion
3.3. Physicochemical Characterisation of E. oleracea Mart. Seed Oil
3.4. Determining the Hydrophilic–Lipophilic Balance (HLB) of Euterpe oleracea Mart. Oil and Formulating Its Nanoemulsion
3.5. Stability Assessment
3.6. Physicochemical Characterisation of the Formulation
3.7. In Vitro Biological Activity of Açaí Seed Oil and Nanoemulsion Based on Açaí Seed Oil
3.7.1. Antioxidant Activity
3.7.2. Antitumour Activity of the Oil
3.8. Açaí Seed Oil Induced Apoptosis in Cervical Cancer Cell Lines
3.9. Açaí Seed Oil Induced Morphological Chances in Cervical Cancer Cell Lines
3.10. Açaí Seed Oil Exerts Effects on Clonogenic Capacity of Cervical Cancer Cell Lines
3.11. Açaí Seed Oil Decreases Invasion and Migration of Cervical Cancer Cell Lines
3.12. Toxixity Analysis In Vitro and In Vivo
Cytotoxicity Assessment with RAW 264.7 Cells
3.13. Effect of Açaí Seed Oil and Nanoemulsion on Animal Spleen Cellularity
3.14. Toxicity Analysis in Female Swiss Mice
3.15. Açaí Seed Oil and Açaí Seed Nanoemulsion Exerts Immunomodulatory Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Lima Yamaguchi, K.K.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015, 179, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.M.J.D.; Esmerino, A.A.; Carvalho, J.L.V.D. Jussaí (Euterpe edulis): A review. Food Sci. Technol. 2022, 42, e08422. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Barbalho, S.M.; Araújo, A.C.; Guiguer, E.L.; Mondal, A.; Bachtel, G.; Bishayee, A. Açaí (Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023, 15, 989. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.V.; de Sousa, E.B.; Silveira, M.F.A.; de Souza, A.R.M.; Alves, V.M.; Nunes, L.B.M.; Barros, S.K.A. Propriedades físico-químicas e tecnológicas da farinha do resíduo de açaí e sua utilização. Res. Soc. Dev. 2021, 10, e17810514517. [Google Scholar] [CrossRef]
- Gouvêa, A.C.M.S.; Araujo, M.C.P.D.; Schulz, D.F.; Pacheco, S.; Godoy, R.L.D.O.; Cabral, L.M.C. Anthocyanins Standards (Cyanidin-3-O-Glucoside and Cyanidin-3-O-Rutinoside) Isolation from Freeze-Dried Açaí (Euterpe oleraceae Mart.) by HPLC. Food Sci. Technol. 2012, 32, 43–46. [Google Scholar] [CrossRef]
- Matta, F.V.; Xiong, J.; Lila, M.A.; Ward, N.I.; Felipe-Sotelo, M.; Esposito, D. Chemical Composition and Bioactive Properties of Commercial and Non-Commercial Purple and White Açaí Berries. Foods 2020, 9, 1481. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.A.C.N.; Costa, J.H.; Pacheco-Fill, T.; Ruiz, A.L.T.G.; Vidal, F.C.B.; Borges, K.R.A.; Guimarães, S.J.A.; Azevedo-Santos, A.P.S.D.; Buglio, K.E.; Foglio, M.A.; et al. Açai (Euterpe oleracea Mart.) Seed Extract Induces ROS Production and Cell Death in MCF-7 Breast Cancer Cell Line. Molecules 2021, 26, 3546. [Google Scholar] [CrossRef] [PubMed]
- Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.F.; Silva, J.R.; Fascineli, M.L.; Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P.; et al. Photodynamic Therapy Mediated by Acai Oil (Euterpe oleracea Mart.ius) in Nanoemulsion: A Potential Treatment for Melanoma. J. Photochem. Photobiol. B 2017, 166, 301–310. [Google Scholar] [CrossRef]
- de Almeida Magalhães, T.S.S.; de Oliveira Macedo, P.C.; Converti, A.; Neves de Lima, Á.A. The Use of Euterpe oleracea Mart. as a New Perspective for Disease Treatment and Prevention. Biomolecules 2020, 10, 813. [Google Scholar] [CrossRef]
- Lira, G.B.; da Costa Lopes, A.S.; de Araújo Nascimento, F.C.; dos Santos Conceição, G.; Brasil, D.D.S.B. Processos de Extração e Usos Industriais de Óleos de Andiroba e Açaí: Uma Revisão. Res. Soc. Dev. 2021, 10, e229101220227. [Google Scholar] [CrossRef]
- Romão, M.H.; de Bem, G.F.; Santos, I.B.; de Andrade Soares, R.; Ognibene, D.T.; de Moura, R.S.; da Costa, C.A.; Resende, Â.C. Açaí (Euterpe oleracea Mart.) Seed Extract Protects against Hepatic Steatosis and Fibrosis in High-Fat Diet-Fed Mice: Role of Local Renin-Angiotensin System, Oxidative Stress and Inflammation. J. Funct. Foods 2020, 65, 103726. [Google Scholar] [CrossRef]
- Tavares, T.B.; Santos, I.B.; de Bem, G.F.; Ognibene, D.T.; da Rocha, A.P.M.; de Moura, R.S.; Resende, A.D.C.; Daleprane, J.B.; da Costa, C.A. Therapeutic Effects of Açaí Seed Extract on Hepatic Steatosis in High-Fat Diet-Induced Obesity in Male Mice: A Comparative Effect with Rosuvastatin. J. Pharm. Pharmacol. 2020, 72, 1921–1932. [Google Scholar] [CrossRef]
- Xavier, G.S.; Teles, A.M.; Moragas-Tellis, C.J.; Chagas, M.D.S.D.S.; Behrens, M.D.; Moreira, W.F.D.F.; Abreu-Silva, A.L.; Calabrese, K.D.S.; Nascimento, M.D.D.S.B.; Almeida-Souza, F. Inhibitory Effect of Catechin-Rich Açaí Seed Extract on LPS-Stimulated RAW 264.7 Cells and Carrageenan-Induced Paw Edema. Foods 2021, 10, 1014. [Google Scholar] [CrossRef]
- Vilhena, J.C.; Lopes de Melo Cunha, L.; Jorge, T.M.; de Lucena Machado, M.; de Andrade Soares, R.; Santos, I.B.; Freitas de Bem, G.; Fernandes-Santos, C.; Ognibene, D.T.; Soares de Moura, R.; et al. Açaí Reverses Adverse Cardiovascular Remodeling in Renovascular Hypertension: A Comparative Effect With Enalapril. J. Cardiovasc. Pharmacol. 2021, 77, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.D.S.; Morgado-Díaz, J.A.; Gehren, A.S.; Vidal, F.C.B.; Fernandes, R.M.T.; Romão, W.; Tose, L.V.; Frazão, F.N.S.; Costa, M.C.P.; Silva, D.F.; et al. Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line. J. Pharm. Pharmacol. 2017, 69, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.A.C.N.; Soares, C.S.; Borges, K.R.A.; Wolff, L.A.S.; Barbosa, M.D.C.L.; Nascimento, M.D.D.S.B.; Carvalho, J.E.D. Ultrastructural changes induced by açaí (Euterpe oleracea Mart.) in MCF-7 breast cancer cell line. Ultrastruct. Pathol. 2022, 46, 511–518. [Google Scholar] [CrossRef]
- de Moraes Arnoso, B.J.; Magliaccio, F.M.; de Araujo, C.A.; de Andrade Soares, R.; Santos, I.B.; de Bem, G.F.; da Costa, C.A. Açaí seed extract (ASE) rich in proanthocyanidins improves cardiovascular remodeling by increasing antioxidant response in obese high-fat diet-fed mice. Chem.-Biol. Interact. 2022, 351, 109721. [Google Scholar] [CrossRef]
- D’Amico, R.; Impellizzeri, D.; Genovese, T.; Fusco, R.; Peritore, A.F.; Crupi, R.; Cordaro, M. Açai berry mitigates Parkinson’s disease progression showing dopaminergic neuroprotection via nrf2-HO1 pathways. Mol. Neurobiol. 2022, 59, 6519–6533. [Google Scholar] [CrossRef]
- Filho, W.E.M.; Almeida-Souza, F.; Vale, A.A.M.; Victor, E.C.; Rocha, M.C.B.; Silva, G.X.; Teles, A.M.; Nascimento, F.R.F.; Moragas-Tellis, C.J.; Chagas, M.D.S.D.S.; et al. Antitumor Effect of Açaí (Euterpe oleracea Mart.) Seed Extract in LNCaP Cells and in the Solid Ehrlich Carcinoma Model. Cancers 2023, 15, 2544. [Google Scholar] [CrossRef]
- da Silva, M.A.C.N.; Souza Wolff, L.A.; Borges, K.R.A.; Vale, A.A.M.; Azevedo-Santos, A.P.S.; Xavier, M.A.P.; Barbosa, M.C.L.; Nascimento, M.D.S.B.; Carvalho, J.E. Açaí (Euterpe oleracea Mart.) byproduct reduces tumor size and modulates inflammation in Ehrlich mice model. J. Funct. Foods 2023, 103, 105474. [Google Scholar] [CrossRef]
- da Silva, M.A.C.N.; Tessmann, J.W.; Borges, K.R.A.; Wolff, L.A.S.; Botelho, F.D.; Vieira, L.A.; Morgado-Diaz, J.A.; Franca, T.C.C.; Barbosa, M.D.C.L.; Nascimento, M.D.D.S.B.; et al. Açaí (Euterpe oleracea Mart.) Seed Oil Exerts a Cytotoxic Role over Colorectal Cancer Cells: Insights of Annexin A2 Regulation and Molecular Modeling. Metabolites 2023, 13, 789. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional do Câncer—INCA. Estimativa 2023. Ministério Da Saúde. Available online: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2023.pdf (accessed on 3 March 2023).
- Jaradat, N.; Al-Maharik, N.; Abdallah, S.; Shawahna, R.; Mousa, A.; Qtishat, A. Nepeta curviflora Essential Oil: Phytochemical Composition, Antioxidant, Anti-Proliferative and Anti-Migratory Efficacy against Cervical Cancer Cells, and α-Glucosidase, α-Amylase and Porcine Pancreatic Lipase Inhibitory Activities. Ind. Crops Prod. 2020, 158, 112946. [Google Scholar] [CrossRef]
- Rezaieseresht, H.; Shobeiri, S.S.; Kaskani, A. Chenopodium Botrys Essential Oil as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells. Iran. J. Pharm. Res. 2020, 19, 341–351. [Google Scholar] [PubMed]
- Nuñez, J.G.; Pinheiro, J.S.; Padilha, G.L.; Garcia, H.O.; Porta, V.; Apel, M.A.; Bruno, A.N. Antineoplastic Potential and Chemical Evaluation of Essential Oils from Leaves and Flowers of Tagetes ostenii Hicken. An. Acad. Bras. Cienc. 2020, 92, e20191143. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.O.; Pacheco, L.A.; Nuñez, J.G.; Pinto, G.C.; La Porta, V.G.; Padilha, G.L.; Ethur, E.M.; Hoehne, L.; Bruno, A.N. Essential Oil of Campomanesia aureas: Chemical Composition and Anti-Neoplastic Potential In-Vitro. Int. J. Pharmacogn. 2020, 7, 361–368. [Google Scholar]
- Loureiro Contente, D.M.; Rocha Pereira, R.; Cruz Rodrigues, A.M.; da Silva, E.O.; Ribeiro-Costa, R.M.; Carrera Silva-Júnior, J.O. Nanoemulsions of Açai Oil: Physicochemical Characterization for Topical Delivery Antifungal Drug. Chem. Eng. Technol. 2020, 43, 1424–1432. [Google Scholar] [CrossRef]
- Sanches, S.C.D.C.; Ré, M.I.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. Organogel of Acai Oil in Cosmetics: Microstructure, Stability, Rheology and Mechanical Properties. Gels 2023, 9, 150. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475. [Google Scholar]
- Lima, A.; Silva, A.M.D.O.; Trindade, R.A.; Torres, R.P.; Mancini-Filho, J. Composição química e compostos bioativos presentes na polpa e na amêndoa de pequi (Caryocar brasiliense Camb). Rev. Bras. Frut. 2007, 29, 695–698. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Folin-Ciocalteu Micro Method for Total Phenol in Wine; Waterhouse Lab, University of California: Davis, CA, USA, 2002. [Google Scholar]
- Woisky, R.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Api. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Físicos e Químicos de Análises de Alimentos, 3rd ed.; IAL: São Paulo, Brazil, 1985; Volume 1. [Google Scholar]
- Fernandez, P.; André, V.; Rieger, J.; Kühnle, A. Nano-Emulsion Formation by Emulsion Phase Inversion. Colloids Surf. A Physicochem. Eng. Asp. 2004, 251, 53–58. [Google Scholar] [CrossRef]
- Rodrigues, E.C.R.; Ferreira, A.M.; Vilhena, J.C.E.; Almeida, F.B.; Cruz, R.A.S.; Florentino, A.C.; Fernandes, C.P. Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Rev. Bras. Farmacogn. 2014, 24, 699–705. [Google Scholar] [CrossRef]
- Griffin, W.C. Classification of Surface-Active Agents by “HLB”. J. Soc. Cosmet. Chem. 1949, 1, 311–325. [Google Scholar]
- Duarte, J.L.; Amado, J.R.; Oliveira, A.E.; Cruz, R.A.; Ferreira, A.M.; Souto, R.N.; Falcão, D.Q.; Carvalho, J.C.; Fernandes, C.P. Evaluation of Larvicidal Activity of a Nanoemulsion of Rosmarinus officinalis Essential Oil. Rev. Bras. Farmacogn. 2015, 25, 189–192. [Google Scholar] [CrossRef]
- Fardous, J.; Omoso, Y.; Joshi, A.; Yoshida, K.; Patwary, M.K.A.; Ono, F.; Ijima, H. Development and Characterization of Gel-in-Water Nanoemulsion as a Novel Drug Delivery System. Mater. Sci. Eng. C 2021, 124, 112076. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, S.; Clarke, S.K.; Nirmala, M.J.; Tyagi, B.K.; Mukherjee, A.; Chandrasekaran, N. Nanoemulsion of Eucalyptus Oil and Its Larvicidal Activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014, 104, 393–402. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; Abreu-Silva, A.L.; Calabrese, K.D.S.; Mendes Filho, N.E.; Mouchrek, A.N.; Almeida-Souza, F. GC-MS Characterization of Antibacterial, Antioxidant, and Antitrypanosomal Activity of Syzygium aromaticum Essential Oil and Eugenol. Evid. Based Complement. Alternat. Med. 2021, 2021, 6663255. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.D.G.; Pérez-Jimenez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS, 1st ed.; Fortaleza-CE: Comunicado Técnico 128; Embrapa Agroindústria Tropical: Brasília, Brazil, 2007. [Google Scholar]
- Qian, H.; Baglamis, S.; Redeker, F.; Raaijman, J.; Hoebe, R.A.; Sheraton, V.M.; Vermeulen, L.; Krawczyk, P.M. High-Content and High-Throughput Clonogenic Survival Assay Using Fluorescence Barcoding. Cancers 2023, 15, 4772. [Google Scholar] [CrossRef] [PubMed]
- Minighin, E.C.; Anastácio, L.R.; Melo, J.O.F.; Labanca, R.A. Açai (Euterpe oleracea) e Suas Contribuições para Alcance da Ingestão Diária Aceitável de Ácidos Graxos Essenciais. Res. Soc. Dev. 2020, 9, e760986116. [Google Scholar] [CrossRef]
- Melo, P.S.; Selani, M.M.; Gonçalves, R.H.; Paulino, J.O.; Massarioli, A.P.; Alencar, S.M. Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Ind. Crop. Prod. 2021, 161, 113204. [Google Scholar] [CrossRef]
- Brasil, Agência Nacional de Vigilância Sanitária—ANVISA, Resolução RDC n° 270, de 22 de Setembro de 2005. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0270_22_09_2005.html (accessed on 28 May 2022).
- Santos, D.S.; da Silva, I.G.; Maria do Carmo, L.B.; Maria do Desterro, S.B. Parâmetros de Qualidade Físico-Química de Óleos e Análise Morfométrica de Frutos e Sementes da Espécie Orbignya phalerata Martius por Região Ecológica. Eclética Química J. 2016, 41, 74–84. [Google Scholar] [CrossRef]
- de Castro, R.C.; Costa, L.F.S.; Martins, G.B.C. Extração e análise de propriedades físico-químicas do óleo de açaí (Euterpe oleracea Mart.). Res. Soc. Dev. 2021, 10, e24610817358. [Google Scholar] [CrossRef]
- Pereira, R.R. Obtenção e Caracterização de Sistemas Líquido Cristalinos Contendo Óleo de Açaí (Euterpe oleraceae Mart.); Universidade Federal do Pará: Belém, Brazil, 2015. [Google Scholar]
- Nascimento, R.J.S.D.; Couri, S.; Antoniassi, R.; Freitas, S.P. Composição em Ácidos Graxos do Óleo da Polpa de Açaí Extraído com Enzimas e com Hexano. Rev. Bras. Frutic. 2008, 30, 498–502. [Google Scholar] [CrossRef]
- Rabelo, C.A.; Taarji, N.; Khalid, N.; Kobayashi, I.; Nakajima, M.; Neves, M.A. Formulation and Characterization of Water-in-Oil Nanoemulsions Loaded with Açaí Berry Anthocyanins: Insights of Degradation Kinetics and Stability Evaluation of Anthocyanins and Nanoemulsions. Food Res. Int. 2018, 106, 542–548. [Google Scholar] [CrossRef]
- McClements, D.J. Edible Nanoemulsions: Fabrication, Properties, and Functional Performance. Soft Matter 2011, 7, 2297–2316. [Google Scholar] [CrossRef]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef]
- Safaya, M.; Rotliwala, Y. Neem Oil Based Nano-Emulsion Formulation by Low Energy Phase Inversion Composition Method: Characterization and Antimicrobial Activity. Mater. Today Proc. 2022, 57, 1793–1797. [Google Scholar] [CrossRef]
- Ombredane, A.S.; Araujo, V.H.; Borges, C.O.; Costa, P.L.; Landim, M.G.; Pinheiro, A.C.; Szlachetka, I.O.; Benedito, L.E.; Espindola, L.S.; Dias, D.J.; et al. Nanoemulsion-Based Systems as a Promising Approach for Enhancing the Antitumoral Activity of Pequi Oil (Caryocar brasilense Cambess.) in Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2020, 58, 101819. [Google Scholar] [CrossRef]
- Campos, M.G.; Webby, R.F.; Markham, K.R.; Mitchell, K.A.; Da Cunha, A.P. Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J. Agric. Food Chem. 2003, 51, 742–745. [Google Scholar] [CrossRef]
- De Marques, E.S.; Froder, J.G.; De Oliveira, P.R.; Perazzo, F.F.; Rosa, P.C.P.; De Gaivão, I.O.N.M.; Mathias, M.I.C.; Maistro, E.L. Cytotoxic Effects of Euterpe oleraceae Fruit Oil (Açaí) in Rat Liver and Thyroid Tissues. Rev. Bras. Farmacogn. 2019, 29, 54–61. [Google Scholar] [CrossRef]
Chemical Quantification | Oil | NE-OEO |
---|---|---|
Total phenolic content (mg EAG g−1) * | 127.40 a ± 0.449 | 146.00 b ± 0.259 |
Total flavonoid content (mg EQ g−1) * | 62.62 a ± 0.930 | 113.80 b ± 0.454 |
Physicochemical Analysis | Average Values + SD |
---|---|
Acidity (% lauric/oleic acid) | 0.3556 ± 0.0003 |
Misture (w/w) | 1.25 ± 1.64 |
Saponification index (mg KOH/oil g) | 189.61 ± 1.04 |
Refractive index (40 °C) | 1.4707 ± 0.00005 |
Residue from incineration (g Ash) | 0.42 ± 0.42 |
Density (g/mL) | 0.928 ± 0.0005 |
Formulations | Span 80% (m/m) | Kolliphor® HS 15% (m/m) | Oil % (m/m) | Solutions Pbs % (m/m) | EHL |
---|---|---|---|---|---|
1 | 4.5 | 0.5 | 10 | 85 | 14.83 |
2 | 4.0 | 1.0 | 10 | 85 | 13.66 |
3 | 3.5 | 1.5 | 10 | 85 | 12.49 |
4 | 3.0 | 2.0 | 10 | 85 | 11.32 |
5 | 2.5 | 2.5 | 10 | 85 | 10.15 |
6 | 2.0 | 3.0 | 10 | 85 | 8.98 |
7 | 1.5 | 3.5 | 10 | 85 | 7.81 |
8 | 1.0 | 4.0 | 10 | 85 | 6.64 |
9 | 0.5 | 4.5 | 10 | 85 | 5.47 |
Sample | Drop Size (nm) | PDI | Zeta Potential (mv) | pH | Turbidity (Abs) |
---|---|---|---|---|---|
NE-OEO | 238.37 ± 3.96 | 0.38 ± 0.38 | −9.59 ± 0.11 | 7.0 ± 0.00. | 0.267± 0.00 |
Tests | Antioxidant Activity (µM ET/g) * | |
---|---|---|
Oil | NE-OEO | |
DPPH | 5.993 a ± 0.1925 | 9.993 b ± 0.5092 |
ABTS | 6.567 a ± 0.1667 | 11.9 b ± 0.2887 |
Tests | EC50 (µg/mL) | ||
---|---|---|---|
Oil | NE-OEO | Trolox | |
DPPH | 375,698 a ± 9054 | 229,845 b ± 10,680 | 10,132 c ± 0.00 |
ABTS | 272,0208 a ± 9913 | 201,2895 b ± 9849 | 4053 b ± 0.00 |
Cell Morphology | Control | Treatment | ||||
---|---|---|---|---|---|---|
HeLa | SiHa | HeLa 24 h | HeLa 48 h | Siha 24 h | Siha 48 h | |
Area | 53.8 ± 30.0 µm2 | 72.2 ± 16.5 µm2 | 430.6 ± 14.4 µm2 | 60.6 ± 19.7 µm2 | 220.6 ± 89.24 µm2 | 60.35 ± 29.9 µm2 |
Perimeter | 28.0 ± 9.9 µm2 | 33.7 ± 5.9 µm2 | 72.7 ± 11.9 µm2 | 27.4 ± 4.7 µm2 | 57.57 ± 19.96 µm2 | 27.0 ± 6.2 µm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, K.R.A.; Wolff, L.A.S.; da Silva, M.A.C.N.; de Carvalho Silva, A.K.; Campos, C.D.L.; Souza, F.S.; Teles, A.M.; Vale, A.Á.M.; Pascoa, H.; Lima, E.M.; et al. Açaí (Euterpe oleracea Mart.) Seed Oil and Its Nanoemulsion: Chemical Characterisation, Toxicity Evaluation, Antioxidant and Anticancer Activities. Curr. Issues Mol. Biol. 2024, 46, 3763-3793. https://doi.org/10.3390/cimb46050235
Borges KRA, Wolff LAS, da Silva MACN, de Carvalho Silva AK, Campos CDL, Souza FS, Teles AM, Vale AÁM, Pascoa H, Lima EM, et al. Açaí (Euterpe oleracea Mart.) Seed Oil and Its Nanoemulsion: Chemical Characterisation, Toxicity Evaluation, Antioxidant and Anticancer Activities. Current Issues in Molecular Biology. 2024; 46(5):3763-3793. https://doi.org/10.3390/cimb46050235
Chicago/Turabian StyleBorges, Katia Regina Assunção, Lais Araújo Souza Wolff, Marcos Antonio Custódio Neto da Silva, Allysson Kayron de Carvalho Silva, Carmem Duarte Lima Campos, Franscristhiany Silva Souza, Amanda Mara Teles, André Álvares Marques Vale, Henrique Pascoa, Eliana Martins Lima, and et al. 2024. "Açaí (Euterpe oleracea Mart.) Seed Oil and Its Nanoemulsion: Chemical Characterisation, Toxicity Evaluation, Antioxidant and Anticancer Activities" Current Issues in Molecular Biology 46, no. 5: 3763-3793. https://doi.org/10.3390/cimb46050235
APA StyleBorges, K. R. A., Wolff, L. A. S., da Silva, M. A. C. N., de Carvalho Silva, A. K., Campos, C. D. L., Souza, F. S., Teles, A. M., Vale, A. Á. M., Pascoa, H., Lima, E. M., de Sousa, E. M., Nunes, A. C. S., Gil da Costa, R. M., Faustino-Rocha, A. I., Cardoso Carvalho, R., & Nascimento, M. d. D. S. B. (2024). Açaí (Euterpe oleracea Mart.) Seed Oil and Its Nanoemulsion: Chemical Characterisation, Toxicity Evaluation, Antioxidant and Anticancer Activities. Current Issues in Molecular Biology, 46(5), 3763-3793. https://doi.org/10.3390/cimb46050235