Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. miRNA Extraction and Expression
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Identification of MDD-Associated miRNAs
3.3. ROC Curves Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fries, G.R.; Zhang, W.; Benevenuto, D.; Quevedo, J. MicroRNAs in Major Depressive Disorder. In Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders; Guest, P.C., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 1118, pp. 175–190. ISBN 978-3-030-05541-7. [Google Scholar]
- Navneet Bain, S.A. Major Depressive Disorder. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559078/ (accessed on 18 September 2023).
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major Depressive Disorder. Nat. Rev. Dis. Primer 2023, 9, 44. [Google Scholar] [CrossRef]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major Depressive Disorder. Nat. Rev. Dis. Primer 2016, 2, 16065. [Google Scholar] [CrossRef] [PubMed]
- Chand SP, A.H. Depression. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lohoff, F.W. Overview of the Genetics of Major Depressive Disorder. Curr. Psychiatry Rep. 2010, 12, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Enatescu, I.; Kalinovic, R.; Giurgi-Oncu, C.; Poroch, V.; Stratulat, I.S.; Vlad, G.; Neda-Stepan, O.; Simu, M.; Papava, I.; Oancea, R.; et al. Study on the Role of Inflammatory Markers and Type D Personality on Symptom Profiles and Severity in Patients with Major Depressive Disorder. Appl. Sci. 2020, 10, 5615. [Google Scholar] [CrossRef]
- Enatescu, V.-R.; Enatescu, I.; Craina, M.; Gluhovschi, A.; Papava, I.; Romosan, R.; Marian, C.; Oprea, A.; Bernad, E. State and Trait Anxiety as a Psychopathological Phenomenon Correlated with Postpartum Depression in a Romanian Sample: A Pilot Study. J. Psychosom. Obstet. Gynecol. 2014, 35, 55–61. [Google Scholar] [CrossRef]
- Almeida, M.I.; Reis, R.M.; Calin, G.A. MicroRNA History: Discovery, Recent Applications, and next Frontiers. Mutat. Res. Mol. Mech. Mutagen. 2011, 717, 1–8. [Google Scholar] [CrossRef]
- Prodan-Bărbulescu, C.; Şeclăman, E.P.; Enătescu, V.; Faur, I.F.; Ghenciu, L.A.; Tuţac, P.; Paşca, P.; Grigoriţă, L.O. Evaluating the Connec-tion between MicroRNAs and Long Non-Coding RNAs for the Establishment of the Major Depressive Disorder Diagnosis. Biomedicines 2024, 12, 516. [Google Scholar] [CrossRef]
- Brosius, J.; Raabe, C.A. What Is an RNA? A Top Layer for RNA Classification. RNA Biol. 2016, 13, 140–144. [Google Scholar] [CrossRef]
- Santosh, B.; Varshney, A.; Yadava, P.K. Non-coding RNAs: Biological Functions and Applications. Cell Biochem. Funct. 2015, 33, 14–22. [Google Scholar] [CrossRef]
- Yanas, A.; Liu, K.F. RNA Modifications and the Link to Human Disease. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 626, pp. 133–146. ISBN 978-0-12-818669-5. [Google Scholar]
- Hombach, S.; Kretz, M. Non-Coding RNAs: Classification, Biology and Functioning. In Non-Coding RNAs in Colorectal Cancer; Slaby, O., Calin, G.A., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; Volume 937, pp. 3–17. ISBN 978-3-319-42057-8. [Google Scholar]
- Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, L.-A.; R Murphy, P. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiol-ogy and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Gröger, L.; Tschernig, T.; Solomon, J.; Laham, O.; Schaum, N.; Wagner, V.; Kern, F.; Schmartz, G.P.; Li, Y.; et al. miRNATis-sueAtlas2: An Update to the Human miRNA Tissue Atlas. Nucleic Acids Res. 2022, 50, D211–D221. [Google Scholar] [CrossRef]
- Serafini, G.; Pompili, M.; Hansen, K.F.; Obrietan, K.; Dwivedi, Y.; Amore, M.; Shomron, N.; Girardi, P. MicroRNAs: Fundamental Regula-tors of Gene Expression in Major Affective Disorders and Suicidal Behavior? Front. Cell. Neurosci. 2013, 7, 208. [Google Scholar] [CrossRef][Green Version]
- Homorogan, C.; Nitusca, D.; Seclaman, E.; Enatescu, V.; Marian, C. Uncovering the Roles of MicroRNAs in Major Depressive Disorder: From Candidate Diagnostic Biomarkers to Treatment Response Indicators. Life 2021, 11, 1073. [Google Scholar] [CrossRef]
- Wang, H. MicroRNAs, Multiple Sclerosis, and Depression. Int. J. Mol. Sci. 2021, 22, 7802. [Google Scholar] [CrossRef]
- Bian, Q.; Chen, J.; Wu, J.; Ding, F.; Li, X.; Ma, Q.; Zhang, L.; Zou, X.; Chen, J. Bioinformatics Analysis of a TF-miRNA-lncRNA Regulatory Network in Major Depressive Disorder. Psychiatry Res. 2021, 299, 113842. [Google Scholar] [CrossRef] [PubMed]
- Gecys, D.; Dambrauskiene, K.; Simonyte, S.; Patamsyte, V.; Vilkeviciute, A.; Musneckis, A.; Butkute-Sliuoziene, K.; Lesauskaite, V.; Zemaitis, L.; Usaite, D.; et al. Circulating Hsa-Let-7e-5p and Hsa-miR-125a-5p as Possible Biomarkers in the Diagnosis of Major Depression and Bipolar Disorders. Dis. Markers 2022, 2022, 3004338. [Google Scholar] [CrossRef]
- Maffioletti, E.; Cattaneo, A.; Rosso, G.; Maina, G.; Maj, C.; Gennarelli, M.; Tardito, D.; Bocchio-Chiavetto, L. Peripheral Whole Blood microRNA Alterations in Major Depression and Bipolar Disorder. J. Affect. Disord. 2016, 200, 250–258. [Google Scholar] [CrossRef]
- Yan, X.; Zeng, D.; Zhu, H.; Zhang, Y.; Shi, Y.; Wu, Y.; Tang, H.; Li, D. MiRNA-532-5p Regulates CUMS-Induced Depression-Like Behaviors and Modulates LPS-Induced Proinflammatory Cytokine Signaling by Targeting STAT3. Neuropsychiatr. Dis. Treat. 2020, 16, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Clayton, S.A.; Jones, S.W.; Kurowska-Stolarska, M.; Clark, A.R. The Role of microRNAs in Glucocorticoid Action. J. Biol. Chem. 2018, 293, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, Y. Emerging Role of microRNAs in Major Depressive Disorder: Diagnosis and Therapeutic Implications. Dialogues Clin. Neurosci. 2014, 16, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Pinchi, E.; Frati, P.; Arcangeli, M.; Volonnino, G.; Tomassi, R.; Santoro, P.; Cipolloni, L. MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis. Curr. Neuropharmacol. 2020, 18, 319–331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, T.; Jiang, L.; Kong, L.; Yang, J. MicroRNA-29c-3p acts as a tumor suppressor gene and inhibits tumor progression in hepatocellular carcinoma by targeting TRIM31. Oncol. Rep. 2020, 43, 953–964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frankel, D.; Delecourt, V.; Novoa-Del-Toro, E.-M.; Robin, J.D.; Airault, C.; Bartoli, C.; Carabalona, A.; Perrin, S.; Mazaleyrat, K.; De Sandre-Giovannoli, A.; et al. miR-376a-3p and miR-376b-3p overexpression in Hutchinson-Gilford progeria fibroblasts inhibits cell proliferation and induces premature senescence. Iscience 2022, 25, 103757. [Google Scholar] [CrossRef]
Variables | Patients with MDD (n = 10) | Healthy Controls (n = 8) |
---|---|---|
Age in years (median) | 43.7 | 41.75 |
Male/Female | 3/7 | 2/6 |
Number | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
BM 1 | hsa-mir-29c-3p | 3.72 | 0.017 |
BM 2 | hsa-mir-200a-3p | 2.08 | 0.027 |
BM 3 | hsa-mir-18b-5p | 4.28 | 0.036 |
BM 4 | hsa-mir-335-5p | 3.12 | 0.037 |
BM 5 | hsa-mir-15b-5p | 3.38 | 0.038 |
BM 6 | hsa-mir-320c | 3.5 | 0.039 |
BM 7 | hsa-mir-7-5p | 3.32 | 0.040 |
BM 8 | hsa-mir-532-3p | 7.45 | 0.040 |
BM 9 | hsa-mir-376a-3p | 2.45 | 0.042 |
BM 10 | hsa-mir-532-5p | 15.67 | 0.043 |
BM 11 | hsa-mir-136-3p | −2.22 | 0.045 |
BM 12 | hsa-mir-339-5p | 4.87 | 0.045 |
BM 13 | hsa-mir-19a-3p | 2.74 | 0.045 |
BM 14 | hsa-mir-33a-5p | 2.68 | 0.047 |
BM 15 | hsa-mir-483-5p | 3.84 | 0.048 |
BM/miRNA | t | p-Value | |
---|---|---|---|
One-Sided p | Two-Sided p | ||
BM1 hsa-mir-29c-3p | 2.612 | 0.009 | 0.019 |
BM2 hsa-mir-200a-3p | 0.724 | 0.240 | 0.479 |
BM3 hsa-mir-18b-5 | 0.947 | 0.179 | 0.358 |
BM4 hsa-mir-335-5p | 0.844 | 0.205 | 0.411 |
BM5 hsa-mir-15b-5p | 1.726 | 0.035 | 0.071 |
BM6 hsa-mir-320c | 1.936 | 0.042 | 0.084 |
BM7 hsa-mir-7-5p | 2.560 | 0.010 | 0.021 |
BM8 hsa-mir-532-3p | 1.276 | 0.110 | 0.220 |
BM9 hsa-mir-376a-3p | 2.579 | 0.010 | 0.020 |
BM10 hsa-mir-532-5p | 2.242 | 0.020 | 0.040 |
BM11 hsa-mir-136-3p | −2.520 | 0.011 | 0.023 |
BM12 hsa-mir-339-5p | 3.225 | 0.003 | 0.005 |
BM 13 hsa-mir-19a-3p | 1.099 | 0.144 | 0.288 |
BM 14 hsa-mir-33a-5p | 1.594 | 0.065 | 0.131 |
BM15 hsa-mir-483-5p | 2.107 | 0.026 | 0.051 |
Marker | Area ± Std. Error | 95% CI |
---|---|---|
BM1 | 0.83 ± 0.10 | (0.64–1.03) |
BM5 | 0.28 ± 0.12 | (0.04–0.53) |
BM6 | 0.72 ± 0.13 | (0.50–1.00) |
BM7 | 0.73 ± 0.13 | (0.48–0.98) |
BM9 | 0.81 ± 0.10 | (0.61–1.00) |
BM10 | 0.83 ± 0.09 | (0.64–1.00) |
BM11 | 0.78 ± 0.11 | (0.56–1.00) |
BM12 | 0.83 ± 0.09 | (0.64–1.00) |
BM15 | 0.75 ± 0.13 | (0.50–1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodan-Bărbulescu, C.; Ghenciu, L.A.; Şeclăman, E.; Bujor, G.C.; Enătescu, V.; Danila, A.-I.; Dăescu, E.; Rosu, L.M.; Faur, I.F.; Tuţac, P.; et al. Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective. Curr. Issues Mol. Biol. 2024, 46, 10846-10853. https://doi.org/10.3390/cimb46100644
Prodan-Bărbulescu C, Ghenciu LA, Şeclăman E, Bujor GC, Enătescu V, Danila A-I, Dăescu E, Rosu LM, Faur IF, Tuţac P, et al. Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective. Current Issues in Molecular Biology. 2024; 46(10):10846-10853. https://doi.org/10.3390/cimb46100644
Chicago/Turabian StyleProdan-Bărbulescu, Cătălin, Laura Andreea Ghenciu, Edward Şeclăman, Georgeta Cristiana Bujor, Virgil Enătescu, Alexandra-Ioana Danila, Ecaterina Dăescu, Luminioara Maria Rosu, Ionuţ Flaviu Faur, Paul Tuţac, and et al. 2024. "Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective" Current Issues in Molecular Biology 46, no. 10: 10846-10853. https://doi.org/10.3390/cimb46100644
APA StyleProdan-Bărbulescu, C., Ghenciu, L. A., Şeclăman, E., Bujor, G. C., Enătescu, V., Danila, A.-I., Dăescu, E., Rosu, L. M., Faur, I. F., Tuţac, P., Varga, N.-I., Sonia, T., & Duță, C. (2024). Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective. Current Issues in Molecular Biology, 46(10), 10846-10853. https://doi.org/10.3390/cimb46100644