Vitamin D Receptor Gene Variants Susceptible to Osteoporosis in Arab Post-Menopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exclusion Criteria
2.3. Anthropometry and Blood Collection
2.4. Biochemical Analysis
2.5. Bone Mass Density (BMD) Measurement
2.6. VDR Genotyping
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saad, F.A. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann. N. Y. Acad. Sci. 2019, 1462, 37–52. [Google Scholar] [CrossRef]
- Sözen, T.; Özışık, L.; Başaran, N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, J.Y.; Ku, S.Y.; Jee, B.C.; Suh, C.S.; Kim, S.H.; Choi, Y.M. Association between osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) gene polymorphisms and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause 2007, 14, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.G.A.; Hussain, S.D.; Wani, K.A.; Yakout, S.M.; Al-Disi, D.; Alokail, M.S.; Reginster, J.Y.; Al-Daghri, N.M. Influence of bone mineral density in circulating adipokines among postmenopausal Arab women. Saudi J. Biol. Sci. 2020, 27, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; de Lange, M.; Andrew, T.; Snieder, H.; MacGregor, A.J.; Spector, T.D. Genetic Variation in Bone Mineral Density and Calcaneal Ultrasound: A Study of the Influence of Menopause Using Female Twins. Osteoporos. Int. 2001, 12, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Bjørnerem, Å.; Bui, M.; Wang, X.; Ghasem-Zadeh, A.; Hopper, J.L.; Zebaze, R.; Seeman, E. Genetic and Environmental Variances of Bone Microarchitecture and Bone Remodeling Markers: A Twin Study. JBMR 2015, 30, 519–527. [Google Scholar] [CrossRef]
- Slemenda, C.W.; Christian, J.C.; Williams, C.J.; Norton, J.A.; Johnston, C.C., Jr. Genetic determinants of bone mass in adult women: A reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. JBMR 1991, 6, 561–567. [Google Scholar] [CrossRef]
- Tylavsky, F.A.; Bortz, A.D.; Hancock, R.L.; Anderson, J.J. Familial resemblance of radial bone mass between premenopausal mothers and their college-age daughters. Calcif. Tissue Int. 1989, 45, 265–272. [Google Scholar] [CrossRef]
- Ansari, M.G.A.; Sabico, S.; Clerici, M.; Khattak, M.N.K.; Wani, K.; Al-Musharaf, S.; Amer, O.E.; Alokail, M.S.; Al-Daghri, N.M. Vitamin D Supplementation is Associated with Increased Glutathione Peroxidase-1 Levels in Arab Adults with Prediabetes. Antioxidants 2020, 9, 118. [Google Scholar] [CrossRef][Green Version]
- Al-Daghri, N.; Al-Attas, O.; Alokail, M.; Alkharfy, K.; Yousef, M.; Nadhrah, H.; Al-Othman, A.; Al-Saleh, Y.; Sabico, S.; Chrousos, G. Hypovitaminosis D and cardiometabolic risk factors among non-obese youth. Open Med. 2010, 5, 752–757. [Google Scholar] [CrossRef][Green Version]
- Al-Daghri, N.M.; Mohammed, A.K.; Bukhari, I.; Rikli, M.; Abdi, S.; Ansari, M.G.A.; Sabico, S.; Hussain, S.D.; Alenad, A.; Al-Saleh, Y.; et al. Efficacy of vitamin D supplementation according to vitamin D-binding protein polymorphisms. Nutrition 2019, 63-64, 148–154. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.; Alokail, M.S.; Alkharfy, K.M.; Draz, H.M.; Agliardi, C.; Mohammed, A.K.; Guerini, F.R.; Clerici, M. Vitamin D Receptor Gene Polymorphisms and HLA DRB1*04 Cosegregation in Saudi Type 2 Diabetes Patients. J. Immunol. 2012, 188, 1325–1332. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mitra, S.; Desai, M.; Khatkhatay, M.I. Vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Indian women. Maturitas 2006, 55, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; Pols, H.A.; Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Al-Daghri, N.M.; Mohammed, A.K.; Al-Attas, O.S.; Ansari, M.G.A.; Wani, K.; Hussain, S.D.; Sabico, S.; Tripathi, G.; Alokail, M.S. Vitamin D Receptor Gene Polymorphisms Modify Cardiometabolic Response to Vitamin D Supplementation in T2DM Patients. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef][Green Version]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alkharfy, K.M.; Khan, N.; Mohammed, A.K.; Vinodson, B.; Ansari, M.G.A.; Alenad, A.; Alokail, M.S. Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene 2014, 542, 129–133. [Google Scholar] [CrossRef]
- Banjabi, A.A.; Al-Ghafari, A.B.; Kumosani, T.A.; Kannan, K.; Fallatah, S.M. Genetic influence of vitamin D receptor gene polymorphisms on osteoporosis risk. Int. J. Health Sci. 2020, 14, 22–28. [Google Scholar]
- Sadat-Ali, M.; Al-Habdan, I.M.; Al-Turki, H.A.; Azam, M.Q. An epidemiological analysis of the incidence of osteoporosis and osteoporosis-related fractures among the Saudi Arabian population. Ann. Saudi Med. 2012, 32, 637–641. [Google Scholar] [CrossRef]
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull. 2020, 133, 105–117. [Google Scholar] [CrossRef]
- Al-Saleh, Y.; Al-Daghri, N.M.; Sabico, S.; Alessa, T.; Al Emadi, S.; Alawadi, F.; Al Qasaabi, S.; Alfutaisi, A.; Al Izzi, M.; Mukhaimer, J.; et al. Diagnosis and management of osteoporosis in postmenopausal women in Gulf Cooperation Council (GCC) countries: Consensus statement of the GCC countries’ osteoporosis societies under the auspices of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Arch. Osteoporos. 2020, 15, 109. [Google Scholar] [CrossRef]
- Chandran, M.; Lau, T.C.; Gagnon-Arpin, I.; Dobrescu, A.; Li, W.; Leung, M.Y.M.; Patil, N.; Zhao, Z. The health and economic burden of osteoporotic fractures in Singapore and the potential impact of increasing treatment rates through more pharmacological options. Arch. Osteoporos. 2019, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Hustmyer, F.G.; Peacock, M.; Hui, S.; Johnston, C.C.; Christian, J. Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J. Clin. Investig. 1994, 94, 2130–2134. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abdi, S.; Binbaz, R.A.; Mohammed, A.K.; Ansari, M.G.A.; Wani, K.; Amer, O.E.; Alnaami, A.M.; Aljohani, N.; Al-Daghri, N.M. Association of RANKL and OPG Gene Polymorphism in Arab Women with and without Osteoporosis. Genes 2021, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.; Yakout, S.M.; Ansari, M.G.A.; Sabico, S.; Hussain, S.D.; Alokail, M.S.; Sheshah, E.; Aljohani, N.J.; Al-Saleh, Y.; Reginster, J.Y.; et al. Metabolic Syndrome in Arab Adults with Low Bone Mineral Density. Nutrients 2019, 11, 1405. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bikle, D.; Vitamin, D. Production, Metabolism and Mechanisms of Action; Updated 11 August 2017, Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK278935/ (accessed on 25 September 2021).
- Miazgowski, T.; Kleerekoper, M.; Felsenberg, D.; Štěpán, J.J.; Szulc, P. Secondary Osteoporosis: Endocrine and Metabolic Causes of Bone Mass Deterioration. J. Osteoporos. 2012, 2012, 907214. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Qin, L.; Liu, Y.; Wang, Y.; Wu, G.; Chen, J.; Ye, W.; Yang, J.; Huang, Q. Computational Characterization of Osteoporosis Associated SNPs and Genes Identified by Genome-Wide Association Studies. PLoS ONE 2016, 11, e0150070. [Google Scholar] [CrossRef]
- Al Anouti, F.; Taha, Z.; Shamim, S.; Khalaf, K.; Al Kaabi, L.; Alsafar, H. An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Rep. 2019, 11, 100216. [Google Scholar] [CrossRef]
- Morrison, N.A.; Yeoman, R.; Kelly, P.J.; Eisman, J.A. Contribution of trans-acting factor alleles to normal physiological variability: Vitamin D receptor gene polymorphism and circulating osteocalcin. Proc. Natl. Acad. Sci. USA 1992, 89, 6665–6669. [Google Scholar] [CrossRef][Green Version]
- Morrison, N.A.; Qi, J.C.; Tokita, A.; Kelly, P.J.; Crofts, L.; Nguyen, T.V.; Sambrook, P.N.; Eisman, J.A. Prediction of bone density from vitamin D receptor alleles. Nature 1994, 367, 284–287. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, D.; Shen, G.; Cui, Y.; Lv, Q.; Wei, F. Association of VDR and OPG gene polymorphism with osteoporosis risk in Chinese postmenopausal women. Climacteric 2019, 22, 208–212. [Google Scholar] [CrossRef]
- Ahmad, I.; Jafar, T.; Mahdi, F.; Arshad, M.; Das, S.K.; Waliullah, S.; Mahdi, A.A. Association of Vitamin D Receptor (FokI and BsmI) Gene Polymorphism with Bone Mineral Density and Their Effect on 25-Hydroxyvitamin D Level in North Indian Postmenopausal Women with Osteoporosis. Indian J. Clin. Biochem. 2018, 33, 429–437. [Google Scholar] [CrossRef]
- Yoldemir, T.; Yavuz, D.G.; Anik, G.; Verimli, N.; Erenus, M. Vitamin D receptor gene polymorphisms in a group of postmenopausal Turkish women: Association wıth bone mineral density. Climacteric 2011, 14, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Ogunkolade, B.W.; Boucher, B.J.; Prahl, J.M.; Bustin, S.A.; Burrin, J.M.; Noonan, K.; North, B.V.; Mannan, N.; McDermott, M.F.; DeLuca, H.F.; et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes 2002, 51, 2294–2300. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jurutka, P.W.; Whitfield, G.K.; Hsieh, J.C.; Thompson, P.D.; Haussler, C.A.; Haussler, M.R. Molecular Nature of the Vitamin D Receptor and its Role in Regulation of Gene Expression. Rev. Endocr. Metab. Disord. 2001, 2, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; van Meurs, J.B.; d’Alesio, A.; Jhamai, M.; Zhao, H.; Rivadeneira, F.; Hofman, A.; van Leeuwen, J.P.; Jehan, F.; Pols, H.A.; et al. Promoter and 3′-Untranslated-Region Haplotypes in the Vitamin D Receptor Gene Predispose to Osteoporotic Fracture: The Rotterdam Study. Am. J. Hum. Genet. 2005, 77, 807–823. [Google Scholar] [CrossRef][Green Version]
- Marozik, P.M.; Tamulaitiene, M.; Rudenka, E.; Alekna, V.; Mosse, I.; Rudenka, A.; Samokhovec, V.; Kobets, K. Association of Vitamin D Receptor Gene Variation with Osteoporosis Risk in Belarusian and Lithuanian Postmenopausal Women. Front. Endocrinol. 2018, 9, 305. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fu, L.; Ma, J.; Yan, S.; Si, Q. A meta-analysis of VDR polymorphisms and postmenopausal osteoporosis. Endocr. Connect. 2020, 9, 882–889. [Google Scholar] [CrossRef]
- Liao, J.L.; Qin, Q.; Zhou, Y.S.; Ma, R.P.; Zhou, H.C.; Gu, M.R.; Feng, Y.P.; Wang, B.Y.; Yang, L. Vitamin D receptor BsmI polymorphism and osteoporosis risk in postmenopausal women: A meta-analysis from 42 studies. Genes Nutr. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, W.; Du, S.; Zhou, Z. Vitamin D receptor BsmI polymorphism and osteoporosis risk in post-menopausal women. Arch. Med. Sci. 2016, 12, 25–30. [Google Scholar] [CrossRef][Green Version]
- Moran, J.M.; Pedrera-Canal, M.; Rodriguez-Velasco, F.J.; Vera, V.; Lavado-Garcia, J.M.; Fernandez, P.; Pedrera-Zamorano, J.D. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women. PeerJ 2015, 3, e953. [Google Scholar] [CrossRef]
- Techapatiphandee, M.; Tammachote, N.; Tammachote, R.; Wongkularb, A.; Yanatatsaneejit, P. VDR and TNFSF11 polymorphisms are associated with osteoporosis in Thai patients. Biomed. Rep. 2018, 9, 350–356. [Google Scholar] [CrossRef]
- Hassan, N.E.; El-Masry, S.A.; Zarouk, W.A.; Eldeen, G.N.; Mosaad, R.M.; Afify, M.A.S.; Aly, M.M.; Khalil, A. Narrative role of vitamin D receptor with osteoporosis and obesity in a sample of Egyptian females: A pilot study. J. Genet. Eng. Biotechnol. 2021, 19, 1–8. [Google Scholar] [CrossRef]
- Yadav, U.; Kumar, P.; Rai, V. Vitamin D receptor (VDR) gene FokI, BsmI, ApaI, and TaqI polymorphisms and osteoporosis risk: A meta-analysis. Egypt. J. Med. Hum. Genet. 2020, 21, 15. [Google Scholar] [CrossRef][Green Version]
- Tanaka, S.; Matsumoto, T. Sclerostin: From bench to bedside. J. Bone Miner. Metab. 2021, 39, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Wijenayaka, A.R.; Yang, D.; Prideaux, M.; Ito, N.; Kogawa, M.; Anderson, P.H.; Morris, H.A.; Solomon, L.B.; Loots, G.G.; Findlay, D.M.; et al. 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion. Mol. Cell. Endocrinol. 2015, 413, 157–167. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, S.; Yu, J.J. Beneath the Minerals, a Layer of Round Lipid Particles Was Identified to Mediate Collagen Calcification in Compact Bone Formation. Biophys. J. 2006, 91, 4221–4229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dragojevič, J.; Zupan, J.; Haring, G.; Herman, S.; Komadina, R.; Marc, J. Triglyceride metabolism in bone tissue is associated with osteoblast and osteoclast differentiation: A gene expression study. J. Bone Miner. Metab. 2013, 31, 512–519. [Google Scholar] [CrossRef]
Parameters | Control N = 300 | Osteoporosis N = 300 | p-Value | p-Value * |
---|---|---|---|---|
General characteristics | ||||
Age (Year) | 53.9 ± 6.1 | 57.8 ± 7.9 | <0.001 | |
BMI (kg/m2) | 34.3 ± 5.9 | 31.5 ± 6.3 | <0.001 | |
Menarche age (year) | 13.1 ± 1.3 | 13.2 ± 1.6 | 0.74 | 0.70 |
Menopause status # | 4.0 (2.0–8.0) | 8.0 (4.0–15.0) | <0.001 | |
WHR | 0.91 ± 0.10 | 0.92 ± 0.10 | 0.62 | 0.77 |
Systolic BP | 126.6 ± 17.5 | 127.9 ± 18.8 | 0.40 | 0.51 |
Diastolic BP | 76.3 ± 11.4 | 75.7 ± 10.7 | 0.50 | 0.89 |
Glucose (mmol/L) | 7.8 ± 3.2 | 7.6 ± 3.3 | 0.57 | 0.88 |
Total Cholesterol (mmol/L) | 4.97 ± 1.06 | 5.05 ± 1.06 | 0.36 | 0.43 |
HDL-cholesterol (mmol/L) | 1.12 ± 0.3 | 1.16 ± 0.4 | 0.16 | 0.58 |
Triglycerides (mmol/L) # | 1.61 (1.25–2.27) | 1.50 (1.17–2.02) | 0.03 | 0.07 |
25(OH)D (nmol/L) # | 61.1 (37.8–84.5) | 66.3 (39.1–93.0) | 0.20 | 0.96 |
Vitamin D binding protein # | 14.1 (5.9–53.8) | 18.6 (5.9–70.1) | 0.51 | 0.1 |
T-Score and BMD | ||||
T-score AP spine # | −0.31± 0.83 | −2.69 ± 0.67 | <0.001 | <0.001 |
T-score dual femur | 0.44 ± 1.0 | −1.08 ± 0.9 | <0.001 | <0.001 |
BMD spine | 1.15 ± 0.13 | 0.86 ± 0.08 | <0.001 | <0.001 |
BMD dual femur left (g/mm2) | 1.15 ± 0.14 | 0.85 ± 0.09 | <0.001 | <0.001 |
BMD dual femur right (g/mm2) | 1.03 ± 0.12 | 0.84 ± 0.12 | <0.001 | <0.001 |
Average BMD | 1.02 ± 0.12 | 0.84 ± 0.12 | <0.001 | <0.001 |
Bone turnover markers | ||||
PTH (pg/mL) # | 12.3 (7.5–21.0) | 15.4 (7.8–34.9) | 0.10 | 0.39 |
OPG (pg/mL) # | 752 (523–995) | 853 (617–1150) | 0.04 | 0.48 |
OPN (ng/mL) # | 2.3 (1.2–3.3) | 2.7 (1.4–4.1) | 0.11 | 0.48 |
SOST(pg/mL) # | 1393 (647–2353) | 1630 (939–2359) | 0.23 | 63 |
FGF23(pg/mL) # | 71.7 (42.5–82.0) | 74.1 (43.6–82.4) | 0.72 | 0.29 |
RANKL (pg/mL) # | 33.1(18.5–61.0) | 28.8 (21.7–48.3) | 0.50 | 0.37 |
Osteocalcin (ng/mL) # | 8.89 (3.2–13.13) | 9.16 (3.45–14.19) | 0.58 | 0.60 |
Inflammatory markers | ||||
IL-4 (pg/mL) # | 7.0 (3.9–10.3) | 4.4 (2.5–9.3) | 0.01 | 0.03 |
IL-1β (pg/mL) # | 1.7 (0.3–2.7) | 1.6 (0.3–2.6) | 0.38 | 0.24 |
Leptin (ng/mL) # | 16.1 (7.3–33.1) | 20.2 (8.3–34.2) | 0.32 | 0.11 |
TGF-β (pg/mL) # | 40,264 (31,466–52,241) | 37,583 (18,102–48,562) | 0.048 | 0.33 |
Parameters | All | Control | Osteoporosis | Unadjusted | Adjusted | ||
---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | * p-Value | ||||
rs7975232 | |||||||
C/C | 83 (13.8) | 51 (17.0) | 32 (10.7) | 0.70 (0.42–1.16) | 0.17 | 0.67 (0.38–1.19) | 0.18 |
A/C | 245 (40.8) | 107 (35.7) | 138 (46.0) | 1.44 (1.01–2.05) | 0.04 | 1.50 (1.01–2.25) | 0.05 |
A/A | 254 (42.3) | 134 (44.7) | 120 (40.0) | 1 | 1 | ||
A | 753 (64.7) | 375 (64.2) | 378 (65.2) | 1 | 1 | ||
C | 411 (35.3) | 209 (35.8) | 202 (34.8) | 0.96 (0.75–1.22) | 0.73 | 0.95 (0.73–1.25) | 0.74 |
rs1544410 | |||||||
T/T | 124 (20.7) | 63 (21.0) | 61 (20.3) | 1.17 (0.74–1.84) | 0.5 | 1.19 (0.71–2.00) | 0.59 |
C/T | 276 (46.0) | 128 (42.7) | 148 (49.3) | 1.39 (0.97–2.03) | 0.08 | 1.65 (1.09–2.50) | 0.02 |
C/C | 190 (31.7) | 104 (34.7) | 86 (28.7) | 1 | 1 | ||
C | 656 (55.6) | 336 (56.9) | 320 (54.2) | 1 | 1 | ||
T | 524 (44.4) | 254 (43.1) | 270 (45.8) | 1.12 (0.89–1.40) | 0.35 | 1.14 (0.88–1.48) | 0.31 |
rs731236 | |||||||
G/G | 119 (19.8) | 52 (17.3) | 67 (22.3) | 1.68 (1.07–2.66) | 0.02 | 1.49 (0.88–2.52) | 0.14 |
A/G | 265 (44.2) | 126 (42.0) | 139 (46.3) | 1.44 (0.99–2.1) | 0.05 | 1.57 (1.03–2.37) | 0.03 |
A/A | 203 (33.8) | 115 (38.3) | 88 (29.3) | 1 | 1 | ||
A | 671 (57.2) | 356 (60.8) | 315 (53.6) | 1 | 1 | ||
G | 503 (42.8) | 230 (39.2) | 273 (46.4) | 1.34 (1.06–1.69) | 0.01 | 1.28 (0.98–1.66) | 0.07 |
rs731236 | GG | AG | AA | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | PMO | p-Value | Control | PMO | p-Value | Control | PMO | p-Value | |
General characteristics | |||||||||
Age (year) | 53.6 ± 6.9 | 59.5 ± 8.7 | <0.01 | 53.5 ± 5.4 | 56.6 ± 7.2 | 0.00 | 54.4 ± 6.6 | 57.8 ± 8.2 | <0.01 |
BMI (kg/m2) | 33.4 ± 6.3 | 30.5 ± 7.2 | 0.03 | 34.5 ± 5.8 | 31.7 ± 5.8 | 0.00 | 34.7 ± 6.0 | 31.8 ± 6.3 | <0.01 |
Menarche age (year) # | 4.0 (2.0–6.0) | 8.0 (4.0–15.0) | <0.01 | 4.0 (2.0–7.0) | 8.0 (4.0–13.0) | 0.00 | 5.0 (3.0–8.0) | 7.0 (4.0–17.0) | <0.01 |
WHR | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.21 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.54 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.55 |
Systolic BP | 122.4 ± 17.5 | 130.0 ± 20.3 | 0.04 | 127.7 ± 17.9 | 128.2 ± 19.0 | 0.86 | 127.6 ± 17.2 | 125.7 ± 17.1 | 0.45 |
Diastolic BP | 75.7 ± 9.8 | 74.7 ± 10.7 | 0.63 | 76.1 ± 11.6 | 76.5 ± 11.1 | 0.83 | 77.0 ± 12.0 | 75.0 ± 9.9 | 0.23 |
Glucose (mmol/L) | 7.2 ± 2.7 | 7.7 ± 3.5 | 0.38 | 8.2 ± 3.5 | 7.6 ± 3.3 | 0.16 | 7.5 ± 3.1 | 7.6 ± 3.1 | 0.82 |
T.Chol (mmol/L) | 4.9 ± 1.0 | 4.8 ± 1.0 | 0.57 | 5.0 ± 1.0 | 5.1 ± 1.1 | 0.36 | 4.9 ± 1.1 | 5.1 ± 1.1 | 0.10 |
HDL-Chol (mmol/L) | 1.1 ± 0.4 | 1.1 ± 0.4 | 0.90 | 1.1 ± 0.3 | 1.2 ± 0.4 | 0.20 | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.42 |
TG (mmol/L) # | 1.6 (1.1–2.1) | 1.7 (1.2–2.1) | 0.73 | 1.7 (1.3–2.3) | 1.5 (1.2–2.1) | 0.02 | 1.6 (1.2–2.2) | 1.5 (1.2–2.0) | 0.44 |
25(OH)D (nmol/L) # | 67 (36–95) | 64 (40–94) | 0.92 | 57 (35–81) | 67 (40–87) | 0.05 | 62 (45–81) | 67 (34–99) | 0.91 |
VDBP # | 7.6 (5.9–40.3) | 16 (6.2–63.7) | 0.27 | 19 (6.0–60.8) | 24 (5.2–125) | 0.78 | 13 (4.1–53) | 10 (5.9–37.3) | 0.79 |
BMD | |||||||||
BMD spine | 1.1 ± 0.1 | 0.8 ± 0.1 | <0.01 | 1.2 ± 0.1 | 0.9 ± 0.1 | 0.00 | 1.2 ± 0.1 | 0.9 ± 0.1 | <0.01 |
BMD DF left | 1.0 ± 0.1 | 0.8 ± 0.2 | <0.01 | 1.0 ± 0.1 | 0.9 ± 0.1 | 0.00 | 1.1 ± 0.1 | 0.8 ± 0.1 | <0.01 |
BMD DF right | 1.0 ± 0.1 | 0.8 ± 0.2 | <0.01 | 1.0 ± 0.1 | 0.9 ± 0.1 | 0.00 | 1.0 ± 0.1 | 0.8 ± 0.1 | 0.00 |
Bone turnover markers | |||||||||
PTH (pg/mL) # | 14 (10–24) | 16 (9–48) | 0.54 | 13 (7–22) | 15 (7–36) | 0.71 | 11 (7–20) | 15 (10–289) | 0.07 |
OPG (pg/mL) # | 752 (549–1168) | 922 (669–1163) | 0.29 | 783 (608–946) | 844 (599–1072) | 0.31 | 673 (465–1031) | 806 (580–1206) | 0.18 |
OPN (pg/mL) # | 2843 (1520–5705) | 2552 (1242–4098) | 0.31 | 2218 (1217–3371) | 2643 (1635–3856) | 0.31 | 2311 (863–3064) | 2902 (1462–3820) | 0.05 |
SOST (pg/mL) # | 1823 (695–2840) | 1540 (674–2680) | 0.64 | 1705 (788–2576) | 1668 (1016–2442) | 0.94 | 1021 (375–1585) | 1615 (1086–2295) | 0.04 |
FGF23 (pg/mL) # | 73 (50–83) | 73 (44–81) | 0.70 | 73 (41–84) | 75 (44–82) | 0.80 | 68 (43–80) | 73 (41–82) | 0.89 |
Osteocalcin (ng/mL) # | 11 (5.2–14.7) | 8.8 (3.8–12.7) | 0.30 | 8.5 (3.1–12.9) | 10 (5.0–14.3) | 0.11 | 8.8 (2.1–14.5) | 8.4 (2.7–14.2) | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, M.G.A.; Mohammed, A.K.; Wani, K.A.; Hussain, S.D.; Alnaami, A.M.; Abdi, S.; Aljohani, N.J.; Al-Daghri, N.M. Vitamin D Receptor Gene Variants Susceptible to Osteoporosis in Arab Post-Menopausal Women. Curr. Issues Mol. Biol. 2021, 43, 1325-1334. https://doi.org/10.3390/cimb43030094
Ansari MGA, Mohammed AK, Wani KA, Hussain SD, Alnaami AM, Abdi S, Aljohani NJ, Al-Daghri NM. Vitamin D Receptor Gene Variants Susceptible to Osteoporosis in Arab Post-Menopausal Women. Current Issues in Molecular Biology. 2021; 43(3):1325-1334. https://doi.org/10.3390/cimb43030094
Chicago/Turabian StyleAnsari, Mohammed. G. A., Abdul Khader Mohammed, Kaiser A. Wani, Syed D. Hussain, Abdullah M. Alnaami, Saba Abdi, Naji J. Aljohani, and Nasser M. Al-Daghri. 2021. "Vitamin D Receptor Gene Variants Susceptible to Osteoporosis in Arab Post-Menopausal Women" Current Issues in Molecular Biology 43, no. 3: 1325-1334. https://doi.org/10.3390/cimb43030094