Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing
Abstract
:1. Introduction
2. Results
2.1. Genome Sequencing, K-Mer Analysis, and Genome Assembly
2.2. Identification of Microsatellite Motifs
2.3. Mitogenome Assembly and Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Preservation
4.2. Genome Survey Sequencing
4.3. K-Mer Analysis and Genome Assembly
4.4. Microsatellite Identification
4.5. Mitogenome Assembly and Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordan, D.S.; Starks, E.C. A review of the Japanese fishes of the family of Agonidae. Proc. U. S. Natl. Mus. 1904, 27, 575–599. [Google Scholar] [CrossRef]
- Lacepède, B.G.E. Histoire Naturelle des Poissons; Plassan: Paris, France, 1802; Volume 4. [Google Scholar]
- Cuvier, G.; Valenciennes, A. Histoire Naturelle des Poissons. Livre Quatrième; Levrault: Paris, France, 1829; Volume 4. [Google Scholar]
- Barsukov, V.V.; Chen, L.C. Review of the subgenus Sebastiscus (Sebastes, Scorpaenidae) with a description of a new species. Voprosy Ikhtiol 1978, 18, 195–210. [Google Scholar]
- Nakabo, T.; Kai, Y. Sebastidae. Fishes of Japan with Pictorial Keys to the Species, 3rd ed.; Nakabo, T., Ed.; Tokai University Press: Hadano, Japan, 2013; pp. 1933–1938. [Google Scholar]
- Morishita, S.; Kawai, T.; Motomura, H. Sebastiscus vibrantus, a new species of rockfish (Sebastidae) from Indonesia and Taiwan. Ichthyol. Res. 2018, 65, 423–432. [Google Scholar] [CrossRef]
- Jia, C.H.; Gao, T.X.; Xu, S.Y.; Song, N. A new record of Sebastiscus tertius (Scorpaenoidei: Sebastidae) in Chinese mainland coastal waters in morphological characters and DNA barcoding. Oceanol. Limnol. Sin. 2020, 51, 252–259, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Jia, C.; Zhang, X.; Xu, S.; Yang, T.; Yanagimoto, T.; Gao, T. Comparative analysis of the complete mitochondrial genomes of three rockfishes (Scorpaeniformes, Sebastiscus) and insights into the phylogenetic relationships of Sebastidae. Biosci. Rep. 2020, 40, BSR20203379. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, Y.; Liu, J. Gene-associated microsatellite markers confirm panmixia and indicate a different pattern of spatially varying selection in the endangered Japanese eel Anguilla japonica. J. Oceanol. Limnol. 2020, 38, 1572–1583. [Google Scholar] [CrossRef]
- Nikolic, N.; Duthoy, S.; Destombes, A.; Bodin, N.; West, W.; Puech, A.; Bourjea, J. Discovery of genome-wide microsatellite markers in Scombridae: A pilot study on Albacore Tuna. PLoS ONE 2015, 10, e0141830. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, B.; Kirkness, E.F.; Loh, Y.H.; Halpern, A.L.; Lee, A.P.; Johnson, J.; Dandona, N.; Viswanathan, L.D.; Tay, A.; Venter, J.C.; et al. Survey sequencing and comparative analysis of the Elephant Shark (Callorhinchus milii) Genome. PLoS Biol. 2007, 5, e101. [Google Scholar] [CrossRef]
- Xu, S.Y.; Song, N.; Xiao, S.J.; Gao, T.X. Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus. Biosci. Rep. 2020, 40, BSR20192252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, X.X.; Shan, X.X.; Shi, Q. Research advances in the genomics and applications for molecular breeding of aquaculture animals. Aquaculture 2020, 526, 735357. [Google Scholar] [CrossRef]
- Xu, T.J.; Cheng, Y.Z.; Liu, X.Z.; Shi, G.; Wang, R.X. The complete mitochondrial genome of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae): Genome characterization and phylogenetic considerations. Mol. Biol. 2011, 45, 434–445. [Google Scholar] [CrossRef]
- Xu, S.; Yanagimoto, T.; Song, N.; Cai, S.; Gao, T.; Zhang, X. Population genomics reveals possible genetic evidence for parallel evolution of Sebastiscus marmoratus in the northwestern Pacific Ocean. Open Biol. 2019, 9, 190028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; Yuan, J.; Zhou, L.; Sun, L.; Sun, Y.; Yang, S.; Li, M.; Zeng, S.; Huang, B.; Wang, D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE 2013, 8, e63604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.; Li, Z.; Dong, Z.; Huang, Y.; Du, T.; Chen, H.; Jiang, D.; Deng, S.; Zhang, Y.; Wanida, S.; et al. Transcriptome analysis of male and female mature gonads of silver sillago (Sillago sihama). Genes 2019, 10, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.L.; Wu, J.J.; Wang, Z.W.; Li, G.H.; Zhou, L.; Gui, J.F. Microsatellite polymorphism and genetic differentiation of different populations screened from genome survey sequencing in red-tail catfish (Hemibagrus wyckioides). Aquac. Rep. 2021, 19, 100614. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, D.; Li, M.; Mustapha, U.F.; Tian, C.; Chen, H.; Huang, Y.; Deng, S.; Wu, T.; Zhu, C.; et al. Genome survey of male and female spotted scat (Scatophagus argus). Animals 2019, 9, 1117. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tian, C.; Huang, Y.; Lin, X.; Wang, Y.; Jiang, D.; Zhu, C.; Chen, H.; Li, G. A first insight into a draft genome of silver sillago (Sillago sihama) via genome survey sequencing. Animals 2019, 9, 756. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Sun, Z.; Lou, F.; Gao, T.; Song, N. Genomic characteristics and profile of microsatellite primers for Acanthogobius ommaturus by genome survey sequencing. Biosci. Rep. 2020, 40, BSR20201295. [Google Scholar] [CrossRef]
- Matsuba, C.; Merilä, J. Genome size variation in the common frog Rana temporaria. Hereditas 2006, 143, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, N.W.; Hultgren, K.; Chak, S.T.; Gregory, R.; Rubenstein, D.R. Patterns of genome size variation in snapping shrimp. Genome 2016, 59, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Chor, B.; Horn, D.; Goldman, N.; Levy, Y.; Massingham, T. Genomic DNA k-mer spectra: Models and modalities. Genome Biol. 2009, 10, R108. [Google Scholar] [CrossRef] [Green Version]
- Marcais, G.; Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.Q.; Song, L.X.; Jin, C.Q.; Li, M.; Gong, S.P.; Wang, Y.F. Genome survey and SSR analysis of Apocynum venetum. Biosci. Rep. 2019, 39, BSR20190146. [Google Scholar] [CrossRef] [Green Version]
- Katti, M.V.; Ranjekar, P.K.; Gupta, V.S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 2001, 18, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Tan, Z.; Zeng, G.; Peng, J. Comprehensive analysis of simple sequence repeats in pre-miRNAs. Mol. Biol. Evol. 2010, 27, 2227–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.Y.; Zhang, H.; Gao, T.X. Comprehensive whole genome survey analyses of male and female brown-spotted flathead fish platycephalus sp.1. Genomics 2020, 112, 4742–4748. [Google Scholar] [CrossRef] [PubMed]
- Groves, P.; Shields, G.F. Phylogenetics of the Caprinae based on cytochrome b sequence. Mol. Phylogenet. Evol. 1996, 5, 467–476. [Google Scholar] [CrossRef]
- Yan, C.J.; Duanmu, X.Y.; Zeng, L.; Liu, B.; Song, Z.Y. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 2019, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.L.; Graziano, S.L.; Seitz, A.C. Fine-scale population genetic structure in Alaskan Pacific halibut (Hippoglossus stenolepis). Conserv. Genet. 2010, 11, 999–1012. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, G.Q.; Miao, Z.Q.; Shui, B.N.; Gao, T.X. Complete mitochondrial genome sequence of the spiny head croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations. Mol. Biol. Rep. 2012, 39, 4249–4259. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Y.Y.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae). PeerJ 2018, 6, e4595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepien, C.A. Molecular Systematics of Fishes. In Molecules and Morphology in Studies of Fish Evolution; Carol, A.S., Thomas, D.K., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 1–11. [Google Scholar] [CrossRef]
- Miya, M.; Nishida, M. Use of mitogenomic information in teleostean molecular phylogenetics: A tree-based exploration under the maximum parsimony optimality criterion. Mol. Phylogenet. Evol. 2000, 17, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Tokimura, M. Genetic and morphological identification of Sebastiscus tertius in the East China Sea (Scorpaeniformes: Scorpaenidae). Ichthyol. Res. 2001, 48, 247–255. [Google Scholar] [CrossRef]
- Liu, B.; Shi, Y.; Yuan, J.; Hu, X.; Zhang, H.; Li, N.; Li, Z.; Chen, Y.; Mu, D.; Fan, W. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant. Biol. 2013, 35, 62–67. [Google Scholar] [CrossRef]
- Luo, R.B.; Liu, B.H.; Xie, Y.L.; Li, Z.Y.; Huang, W.H.; Yuan, J.Y.; He, G.Z.; Chen, Y.X.; Pan, Q.; Liu, Y.J.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1, 18. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Jordan, D.; Tao, Y.; Godwin, I.; Henzell, R.; Cooper, M.; McIntyre, C. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Allio, R.; Schomaker-Bastos, A.; Romiguier, J.; Prosdocimi, F.; Nabholz, B.; Delsuc, F. Mitofinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 2020, 20, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Lawson Handley, L.; Read, D.S.; Winfield, I.J.; Kimbell, H.; Johnson, H.; Li, J.; Hahn, C.; Blackman, R.; Wilcox, R.; Donnelly, R.; et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 2013, 30, 2531–2540. [Google Scholar] [CrossRef]
- Sato, Y.; Miya, M.; Fukunaga, T.; Sado, T.; Iwasaki, W. MitoFish and MiFish Pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 2018, 35, 1553–1555. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 6, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
Species | Clean Data 1 (bp) | Q20 2 | Q30 3 | GC Content (%) |
---|---|---|---|---|
S. albofasciatus | 40,142,938,530 | 97.03 | 92.46 | 40.64 |
S. tertius | 41,927,858,708 | 96.99 | 92.31 | 40.77 |
S. marmoratus | 87,553,495,520 | 96.08 | 90.72 | 43.00 |
Species | K-Mer Depth | Genome Size (Mb) | Heterozygous Ratio (%) | Repeat Ratio (%) |
---|---|---|---|---|
S. albofasciatus | 21 | 802.49 | 0.68 | 30.59 |
S. tertius | 22 | 786.79 | 0.33 | 28.93 |
S. marmoratus | 83 | 776.00 | 0.94 | 39.94 |
Species | Total Length (bp) | Total Number | Max Length (bp) | N50 Length (bp) | N90 Length (bp) | |
---|---|---|---|---|---|---|
S. albofasciatus | Contig | 528,030,961 | 1,342,756 | 12,292 | 628 | 157 |
Scaffold | 544,202,783 | 322,389 | 24,591 | 2257 | 595 | |
S. tertius | Contig | 541,266,830 | 1,285,695 | 13,369 | 715 | 162 |
Scaffold | 537,925,372 | 292,865 | 28,906 | 2462 | 608 | |
S. marmoratus | Contig | 545,203,705 | 1,519,309 | 31,830 | 569 | 142 |
Scaffold | 442,737,491 | 301,745 | 31,807 | 1677 | 265 |
S. albofasciatus | S. tertius | S. marmoratus | |
---|---|---|---|
Total number of sequences examined | 533,972 | 531,582 | 880,807 |
Total size of examined sequences (bp) | 622,320,988 | 634,375,421 | 618,186,550 |
Total number of identified SSRs | 346,510 | 382,140 | 319,533 |
Number of SSR containing sequences | 188,050 | 207,292 | 210,193 |
Number of sequences containing more than 1 SSR | 78,166 | 87,618 | 61,681 |
Number of SSRs present in compound formation | 31,111 | 31,522 | 21,646 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Yang, T.; Yanagimoto, T.; Gao, T. Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing. Curr. Issues Mol. Biol. 2021, 43, 2048-2058. https://doi.org/10.3390/cimb43030141
Jia C, Yang T, Yanagimoto T, Gao T. Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing. Current Issues in Molecular Biology. 2021; 43(3):2048-2058. https://doi.org/10.3390/cimb43030141
Chicago/Turabian StyleJia, Chenghao, Tianyan Yang, Takashi Yanagimoto, and Tianxiang Gao. 2021. "Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing" Current Issues in Molecular Biology 43, no. 3: 2048-2058. https://doi.org/10.3390/cimb43030141
APA StyleJia, C., Yang, T., Yanagimoto, T., & Gao, T. (2021). Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing. Current Issues in Molecular Biology, 43(3), 2048-2058. https://doi.org/10.3390/cimb43030141