Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade
Abstract
:1. Introduction
2. List of Chinese Herbs with NMDA-R Blocking Effects
Clinical usage | Pharmaceutical name | Effect |
---|---|---|
Herbs that promote circulation (Section 3.1) | Rhizoma Curcumae Longae | Inhibit Ca2+ response |
Radix Achyranthis Bidentatae | Inhibit Ca2+ response Reduce reactive oxygen species production Inhibit apoptotic enzymes | |
Herba Lycopodii Serrati | Block NMDA-induced current | |
Herbs that promotes blood clotting (Section 3.2) | Radix Notoginseng | Inhibit Ca2+ response Reduce reactive oxygen species production Inhibit apoptotic enzymes |
Herbs that stabilize mood (Section 3.3) | Radix Polygalae | Inhibit Ca2+ response Reduce reactive oxygen species production Reduce excitotoxcity-related cell death |
Semen Zizyphi Spinosae | Inhibit Ca2+ response Reduce reactive oxygen species production Reduce excitotoxcity-related cell death | |
Radix et Rhizoma Valerianae | Reduce excitotoxcity-related cell death | |
Herbs with effects on dizziness, headache and seizure (Section 3.4) | Ramulus Uncariae cum Uncis | Block NMDA-induced current Reduce excitotoxcity-related cell death |
Rhizoma Gastrodiae | Reduce excitotoxcity-related cell death Reduce NMDA-induced glutamate release | |
Semen Cassiae | Inhibit Ca2+ response Reduce excitotoxcity-related cell death | |
Rhizoma Acori | Reduce excitotoxcity-related cell death | |
Herbs that boost the immune system (Section 3.5) | Radix Glycyrrhizae | Inhibit Ca2+ response Inhibit apoptotic enzymes Reduce excitotoxcity-related cell death |
Radix Ginseng | Block NMDA-induced current Inhibit Ca2+ response Reduce excitotoxcity-related cell death | |
Herb with antitussive effects (Section 3.6) | Folium Ginkgo | Block NMDA-induced current |
Herb with antimicrobial effects (Section 3.7) | Radix Scrophulariae | Inhibit Ca2+ response Reduce reactive oxygen species production Reduce excitotoxcity-related cell death |
3. Experimental Evidence of Individual Herbs in Modulating NMDA-R Activity
3.1. Rhizoma Curcumae Longae, Radix Achyranthis Bidentatae, Herba Lycopodii Serrati
3.2. Radix Notoginseng
3.3. Radix Polygalae, Semen Zizyphi Spinosae, Radix et Rhizoma Valerianae
3.4. Ramulus Uncariae cum Uncis, Rhizoma Gastrodiae, Semen Cassiae, Rhizoma Acori
3.5. Radix Glycyrrhizae, Radix Ginseng
3.6. Folium Gingko
3.7. Radix Scrophulariae
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rang, H.P.; Dale, M.M.; Ritter, J.M.; Flower, R.J. Rang and Dale’s Pharmacology, 6th ed.; Elsevier: Philadelphia, PA, USA, 2007; pp. 480–485. [Google Scholar]
- Ogden, K.K.; Traynelis, S.F. New advances in NMDA receptor pharmacology. Trend Pharmacol. Sci. 2011, 32, 726–733. [Google Scholar] [CrossRef]
- Kemp, J.A.; McKernan, R.M. NMDA receptor pathways as drug targets. Nat. Neurosci. Suppl. 2002, 5, 1039–1042. [Google Scholar] [CrossRef]
- Dobrek, L.; Thor, P. Glutamate NMDA receptors in pathophysiology and pharmacotherapy of selected nervous system disease. Postepy. Hig. Med. Dosw. 2011, 65, 338–346. [Google Scholar] [CrossRef]
- Niesters, M.; Dahan, A. Pharmacokinetic and pharmacodynamics considerations for NMDA receptor antagonist in the treatment of chronic neuropathic pain. Expert Opin. Drug Metab. Toxicol. 2012, 8, 1409–1417. [Google Scholar] [CrossRef]
- Mathews, D.C.; Henter, I.D.; Zarate, C.A., Jr. Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 2012, 72, 1313–1333. [Google Scholar] [CrossRef]
- Ghasemi, M.; Schachter, S.C. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 2011, 22, 617–640. [Google Scholar] [CrossRef]
- Santangelo, R.M.; Acker, T.M.; Zimmerman, S.S.; Katzman, B.M.; Strong, K.L.; Traynelis, S.F.; Liotta, D.C. Novel NMDA receptor modulators: an update. Expert Opin. Ther. Patents 2012, 22, 1337–1352. [Google Scholar] [CrossRef]
- Paoletti, P.; Neyton, J. NMDA receptor subunits: function and pharmacology. Curr. Opin Pharmacol. 2007, 7, 39–47. [Google Scholar] [CrossRef]
- Karakas, E.; Simorowski, N.; Furukawa, H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 2011, 475, 249–253. [Google Scholar] [CrossRef]
- Bettini, E.; Sava, A.; Griffante, C.; Carignani, C.; Buson, A.; Capelli, A.M.; Negri, M.; Andreetta, F.; Senar-Sancho, S.A; Guiral, L.; Cardullo, F. Identification and characterization of novel NMDA receptor antagonist selective for NR2A- over NR2B-containing receptors. J. Pharmacol. Exp. Ther. 2010, 335, 636–644. [Google Scholar] [CrossRef]
- Acker, T.M.; Yuan, H.; Hansen, K.B.; Vance, K.M.; Ogden, K.K.; Jensen, H.S.; Burger, P.B.; Mullasseril, P.; Snyder, J.P.; Liotta, D.C.; et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol. Pharmacol. 2011, 80, 782–795. [Google Scholar] [CrossRef]
- Paoletti, P.; Perin-Dureau, F.; Fayyazuddin, A.; Le Goff, A.; Callebaut, I.; Neyton, J. Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit. Neuron 2000, 28, 911–925. [Google Scholar] [CrossRef]
- Costa, B.M.; Irvine, M.W.; Fang, G.; Eaves, R.J.; Mayo-Martin, M.B.; Skifter, D.A.; Jane, D.E.; Monaghan, D.T. A novel family of negative and positive allosteric modulators of NMDA receptors. J. Pharmacol. Exp. Ther. 2010, 335, 614–621. [Google Scholar] [CrossRef]
- Hansen, K.B.; Traynelis, S.F. Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors. J. Neurosci. 2011, 31, 3650–3661. [Google Scholar] [CrossRef]
- Paoletti, P.; Ascher, P.; Neyton, J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 1997, 17, 5711–5725. [Google Scholar]
- Mott, D.D.; Doherty, J.J.; Zhang, S.; Washburn, M.S.; Fendley, M.J.; Lyuboslavsky, P.; Traynelis, S.F.; Dingledine, R. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat. Neurosci. 1998, 1, 659–667. [Google Scholar] [CrossRef]
- Choi, Y.B.; Lipton, S.A. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 1999, 23, 171–180. [Google Scholar] [CrossRef]
- Martinowich, K.; Jimenez, D.V.; Zarate, C.A., Jr; Manji, H.K. Rapid antidepressant effects: moving right along. Mol. Psychiatry 2013. [Google Scholar] [CrossRef]
- Jin, R.; Clark, S.; Weeks, A.M.; Dudman, J.T.; Gouaux, E.; Partin, K.M. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 2005, 25, 9027–9036. [Google Scholar] [CrossRef]
- Balannik, V.; Menniti, F.S.; Paternain, A.V.; Lerma, J.; Stern-Bach, Y. Molecular mechanism of AMPA receptor noncompetitive antagonism. Neuron 2005, 48, 279–288. [Google Scholar] [CrossRef]
- Wu, T-Y.; Chen, C-P.; Jinn, T-R. Traditional Chinese medicines and Alzheimer’s disease. Taiwan J. Obstet. Gynecol. 2011, 50, 131–135. [Google Scholar] [CrossRef]
- Jesky, R.; Hailong, C. Are herbal compounds the next frontier for alleviating learning and memory impairments? An integrative look at memory, dementia and the promising therapeutics of traditional Chinese medicines. Phytother. Res. 2011, 25, 1105–1118. [Google Scholar] [CrossRef]
- Chen, J.K.; Chen, T.T. Chinese medical herbology and pharmacology; Art of Medicine Press: City of Industry, CA, USA, 2003; pp. 31–1074. [Google Scholar]
- Matteucci, A.; Frank, C.; Domenici, M.R.; Balduzzi, M.; Paradisi, S.; Carnovale-Scalzo, D.; Scorcia, G.; Malchiodi-Albedi, F. Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D-aspartate-induced intracellular Ca2+ increase. Exp. Brain Res. 2005, 167, 641–648. [Google Scholar] [CrossRef]
- Swope, S.L.; Moss, S.J.; Raymond, L.A.; Huganir, R.L. Regulation of ligand-gated ion channels by protein phosphorylation. Adv. Second Messenger Phosphoprotein. Res. 1999, 33, 49–78. [Google Scholar] [CrossRef]
- Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2011, 21, 8370–8377. [Google Scholar]
- Frautschy, S.A.; Hu, W.; Kim, P.; Miller, S.A.; Chu, T.; Harris-White, M.E.; Cole, G.M. Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol. Aging 2001, 22, 993–1005. [Google Scholar] [CrossRef]
- Ding, F.; Cheng, Q.; Gu, X. The repair effects of Achyranthes bidentata extract on the crushed common peroneal nerve of rabbits. Fitoterapia 2008, 79, 161–167. [Google Scholar] [CrossRef]
- Shen, H.; Yuan, Y.; Ding, F.; Liu, J.; Gu, X. The protective effects of Achyranthes bidentata polypeptides against NMDA-induced cell apoptosis in cultured hippocampal neurons through differential modulation of NR2A- and NR2B-containing NMDA receptors. Brain Res. Bull. 2008, 77, 274–281. [Google Scholar] [CrossRef]
- Shen, H.; Yuan, Y.; Ding, F.; Hu, N.; Liu, J.; Gu, X. Achyranthes bidentata polypeptides confer neuroprotection through inhibition of reactive oxygen species production, Bax expression, and mitochondrial dysfunction induced by overstimulation of N-methyl-D-aspartate receptors. J. Neurosci. Res. 2010, 88, 669–676. [Google Scholar]
- Macdonald, J.F.; Xiong, Z.G.; Jackson, M.F. Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci. 2006, 29, 75–81. [Google Scholar] [CrossRef]
- Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; Dave, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: a site for binding of huperzine A. J. Appl. Toxicol. 2001, 21, s47–s51. [Google Scholar] [CrossRef]
- Wang, R.; Yan, H.; Tang, X.C. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta. Pharmacol. Sin. 2006, 27, 1–26. [Google Scholar] [CrossRef]
- New Dietary Ingredients in Dietary Supplements—Background for Industry. Available online: http://www.fda.gov/food/dietarysupplements/ucm109764.htm/ (accessed on 6 August 2013).
- Wang, R.; Tang, X.C. Neuroprotective effects of huperzine A: A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 2005, 14, 71–78. [Google Scholar] [CrossRef]
- Hualiang, J.; Xiaomin, L.; Donglu, B. Progress in clinical, pharmacological, chemical and structural biological studies of huperzine A: a drug of traditional Chinese medicine origin for the treatment of Alzheimer’s disease. Curr. Med. Chem. 2003, 10, 2231–2252. [Google Scholar] [CrossRef]
- Gao, X.; Tang, X.C. Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J. Neurosci. Res. 2006, 83, 1048–1057. [Google Scholar] [CrossRef]
- Xiao, X.Q.; Zhang, H.Y.; Tang, X.C. Huperzine A attenuates amyloid β-peptide fragment 25–35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J. Neurosci. Res. 2002, 67, 30–36. [Google Scholar] [CrossRef]
- Wang, X-D.; Zhang, J-M.; Yang, H-H.; Hu, G-Y. Modulation of NMDA receptor by huperzine A in rat cerebral cortex. Acta. Pharmacol. Sin. 1999, 20, 31–35. [Google Scholar]
- Zhang, J-M.; Hu, G-Y. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neurosci. 2011, 105, 663–669. [Google Scholar] [CrossRef]
- Gu, B.; Nakamichi, N.; Zhang, W-S.; Nakamura, Y.; Kambe, Y.; Fukumori, R.; Takuma, K.; Yamada, K.; Takarada, T.; Taniura, H.; Yoneda, Y. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. J. Neurosci. Res. 2009, 87, 2145–2156. [Google Scholar] [CrossRef]
- Lv, J.; Jia, H.; Jiang, Y.; Ruan, Y.; Liu, Z.; Yue, W.; Beyreuther, K.; Tu, P.; Zhang, D. Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-β secretion in vitro. Acta. Physiol. 2009, 196, 419–425. [Google Scholar] [CrossRef]
- Jia, H.; Jiang, Y.; Ruan, Y.; Zhang, Y.; Ma, X.; Zhang, J.; Beyreuther, K.; Tu, P.; Zhang, D. Tenuigenin treatment decreases secretion of the Alzheimer’s disease amyloid beta-protein in cultured cells. Neurosci. Lett. 2004, 367, 123–128. [Google Scholar] [CrossRef]
- Lee, H.J.; Ban, J.Y.; Koh, S.B. Polygalae radix extract protects cultured rat granule cells against damage induced by NMDA. Am. J. Chin. Med. 2004, 32, 599–610. [Google Scholar] [CrossRef]
- Xue, W.; Hu, J.F.; Yuan, Y.H.; Sun, J.D.; Li, B.Y.; Zhang, D.M.; Li, C.J.; Chen, N.H. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory. Acta. Pharmacol. Sin. 2009, 30, 1211–1219. [Google Scholar] [CrossRef]
- Yu-ching, W. Handbook of Commonly Used Chinese Herbal Prescriptions; Oriental Healing Arts Institute: Long Beach, CA, USA, 1983; p. 104. [Google Scholar]
- Han, B.H.; Park, M.H. Folk Medicine; American Chemical Society: Washington, DC, USA, 1986; p. 205. [Google Scholar]
- Huang, K.C. The Pharmacology of Chinese Herbs; CRC Press: Boca Raton, FL, USA, 1999; p. 155. [Google Scholar]
- Yuan, C.L.; Wang, Z.B.; Jiao, Y.; Cao, A.M.; Huo, Y.L.; Cui, C.X. Sedative and hypnotic constituents of flavonoids in the seeds of Ziziphus spinosae. Chung Yao Tung Pao 1987, 12, 34–36, 62–63. [Google Scholar]
- Park, J.H.; Lee, H.J.; Koh, S.B.; Ban, J.Y.; Seong, Y.H. Protection of NMDA-induced neuronal cell damage by methanol extract of Zizyphi Spinosi Semen in cultured rat cerebellar granule cells. J. Ethnopharmaol. 2004, 95, 39–45. [Google Scholar] [CrossRef]
- Jacobo-Herrera, N.J.; Vartiainen, N.; Bremner, P.; Gibbons, S.; Koistinaho, J.; Heinrich, M. NF-κB modulators from Valeriana officinalis. Phytother. Res. 2006, 20, 917–919. [Google Scholar] [CrossRef]
- Houghton, P.J. The scientific basis for the reputed activity of valerian. J. Pharm. Pharmacol. 1999, 5, 505–512. [Google Scholar] [CrossRef]
- Del Valle-Mojica, L.M.; Ayala-Marin, Y.M.; Ortiz-Sanchez, C.M.; Torres-Hernandez, B.A.; Abdalla-Mukhaimer, S.; Ortiz, J.G. Selective interactions of Valeriana officinalis extracts and valerenic acid with [3H]glutamate binding to rat synaptic membranes. Evid. Based Complement. Alt. Med. 2011, 2011, 403591. [Google Scholar]
- Lee, J.; Son, D.; Lee, P.; Kim, S-Y.; Kim, H.; Kim, C-J.; Lim, E. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices. Neurosci. Lett. 2003, 348, 51–55. [Google Scholar] [CrossRef]
- Fujiwara, H.; Iwasaki, K.; Furukawa, K.; Seki, T.; He, M.; Maruyama, M.; Tomita, N.; Kudo, Y.; Higuchi, M.; Saido, T.C.; et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. J. Neurosci. Res. 2006, 84, 427–433. [Google Scholar] [CrossRef]
- Lee, J.; Son, D.; Lee, P.; Kim, D-K.; Shin, M-C.; Jang, M-H.; Kim, C-J.; Kim, Y-S.; Kim, S-Y.; Kim, H. Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus. J. Pharmacol. Sci. 2003, 92, 70–73. [Google Scholar] [CrossRef]
- Sun, X.; Chan, L.N.; Gong, X.; Sucher, N.J. N-methyl-D-aspartate receptor antagonist activity in traditional Chinese stroke medicines. Neurosignals 2003, 12, 31–38. [Google Scholar] [CrossRef]
- Kang, T.H.; Murakami, Y.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 2002, 455, 27–34. [Google Scholar] [CrossRef]
- Mathern, G.W.; Pretorius, J.K.; Kornblum, H.I.; Mendoza, D.; Lozada, A.; Leite, J.P.; Chimelli, L.M.C.; Fried, I.; Sakamoto, A.C.; Assirati, J.A.; et al. Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 1997, 120, 1937–1959. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Bie, X. Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons. Planta. Med. 2007, 73, 650–654. [Google Scholar] [CrossRef]
- Huang, J.H. Comparison studies on pharmacological properties of injected gastrodia elata, gastrodin-free fraction and gastrodin. Zhongguo. Yi Xue Ke Xue Yuan Xue Bao. 1989, 11, 147–150. [Google Scholar]
- Baek, N.I.; Choi, S.Y.; Park, J.K.; Cho, S.W.; Ahn, E.M.; Jeon, S.G.; Lee, B.R.; Bahn, J.H.; Kim, Y.K.; Shon, I.H. Isolation and identification of succinic semialdehyde dehydrogenase inhibitory compound from the rhizome of Gastrodia elata Blume. Arch. Pharm. Res. 1999, 22, 219–224. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, S.; Zhang, L.; Zhang, K.; Zheng, X. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta. Med. 2006, 72, 1359–1365. [Google Scholar] [CrossRef]
- An, S.J.; Park, S.K.; Hwang, I.K.; Choi, S.Y.; Kim, S.K.; Kwon, O.S.; Jung, S.J.; Baek, N.I.; Lee, H.Y.; Won, M.H.; Kang, T.C. Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J. Neurosci. Res. 2003, 71, 534–543. [Google Scholar] [CrossRef]
- Kumar, H.; Kim, I.S.; More, S.V.; Kim, B.W.; Bahk, Y.Y.; Choi, D.K. Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid. Based Complement. Alternat. Med. 2013, 514095. [Google Scholar]
- Kim, D.S.H.L.; Kim, J-Y.; Han, Y-S. Alzheimer’s disease drug discovery from herbs: Neuroprotectivity from β-amyloid(1–42) insult. J. Alt. Complement. Med. 2007, 13, 333–340. [Google Scholar] [CrossRef]
- Guo, H.; Chang, Z.; Yang, R.; Guo, D.; Zheng, J. Anthraquinones from hairy root cultures of cassia obtusifolia. Phytochemistry 1998, 49, 1623–1625. [Google Scholar] [CrossRef]
- Kim, D.H.; Yoon, B.H.; Kim, Y.M.; Lee, S.; Shin, B.Y.; Jung, J.W.; Kim, H.J.; Lee, Y.S.; Choi, J.S.; Kim, S.Y.; et al. The seed extract of cassia obtusifolia ameliorates learning and memory impairments induced by scopolamine or transient cerebral hypoperfusion in mice. J. Pharmacol. Sci. 2007, 105, 82–93. [Google Scholar] [CrossRef]
- Drever, B.D.; Anderson, W.G.L.; Riedel, G.; Kim, D.H.; Ryu, J.H.; Choi, D.-Y.; Platt, B. The seed extract of Cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J. Pharmacol. Sci. 2008, 107, 380–392. [Google Scholar] [CrossRef]
- Thibault, O.; Porter, N.M.; Chen, K.C.; Blalock, E.M.; Kaminker, P.G.; Clodfelter, G.V.; Brewer, L.D.; Landfield, P.W. Calcium dysregulation in neuronal aging and Alzheimer’s disease: history and new directions. Cell Calcium 1998, 24, 417–433. [Google Scholar] [CrossRef]
- Cho, J.; Joo, N.E.; Kong, J-Y.; Jeong, D-Y.; Lee, K.D.; Kang, B-S. Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizome in cultured rat cortical neurons. J. Ethnopharmacol. 2000, 73, 31–37. [Google Scholar] [CrossRef]
- Cho, J.; Kong, J-Y.; Jeong, D-Y.; Lee, K.D.; Lee, D.U.; Kang, B.-S. NMDA receptor-mediated neuroprotection by essential oils from rhizomes of Acorus gramineus. Life Sci. 2001, 68, 1567–1573. [Google Scholar] [CrossRef]
- Irie, Y.; Keung, W.M. Rizhoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-β peptide. Brain Res. 2003, 963, 282–289. [Google Scholar] [CrossRef]
- Limon, D.; Mendieta, L.; Diaz, A.; Chamorro, G.; Espinosa, B.; Zenteno, E.; Guevara, J. Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloid-beta(25–35). Neurosci. Lett. 2009, 453, 98–103. [Google Scholar] [CrossRef]
- Cho, J.; Kim, Y.H.; Kong, J.Y.; Yang, C.H.; Park, C.G. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci. 2002, 71, 591–599. [Google Scholar] [CrossRef]
- Cherng, J-M.; Lin, H-J.; Hung, M.S.; Lin, Y-R.; Chan, M-H.; Lin, J-C. Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur. J. Pharmacol. 2006, 547, 10–21. [Google Scholar] [CrossRef]
- Van Rossum, T.G.; Vulto, A.G.; Hop, W.C.; Brouwer, J.T.; Niesters, H.G.; Schalm, S.W. Intravenous glycyrrhizin for the treatment of chronic hepatitis C: A double-blind, randomized, placebo-controlled phase I/II trial. J. Gastroenterol. Hepatol. 1999, 14, 1093–1099. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T.; Ahn, K.; Park, W-K.; Nah, S-Y.; Rhim, H. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem. Biophys. Res. Comm. 2004, 323, 416–424. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, K.; Oh, T.H.; Nah, S-Y.; Rhim, H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophys. Res. Comm. 2002, 296, 247–254. [Google Scholar] [CrossRef]
- Radad, K.; Gille, G.; Moldzio, R.; Saito, H.; Rausch, W.-D. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res. 2004, 1021, 41–53. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S.; Chung, K.C.; Choo, M-K.; Kim, D-H.; Nan, G.; Rhim, H. 20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur. J. Pharmacol. 2006, 53, 69–77. [Google Scholar]
- Birks, J.; Grimley, E.J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2007, 2007, CD003120. [Google Scholar]
- Le Bars, P.L.; Katz, M.M.; Berman, N.; Itil, T.M.; Freedman, A.M.; Schatzberg, A.F. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American Egb study group. JAMA 1997, 278, 1327–1332. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Wang, X.; Guan, B-C.; Sun, C-K. Effects of Ginkgo biloba extracts on NMDA-activated currents in acutely isolated hippocampal neurons of the rat. Phytother. Res. 2011, 25, 137–141. [Google Scholar] [CrossRef]
- Ahlemeyer, B.; Krieglstein, J. Neuroprotective effects of Ginkgo biloba extract. Cell. Mol. Life Sci. 2003, 60, 1779–1782. [Google Scholar] [CrossRef]
- Weichel, O.; Hilger, M.; Chatterjee, S.S.; Lehr, M.; Klein, J. Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch. Pharmacol. 1999, 360, 609–615. [Google Scholar] [CrossRef]
- Lu, G.; Wu, Y.; Mak, Y.T.; Wai, S.M.; Feng, Z.T.; Rudd, J.A.; Yew, D.T. Molecular evidence of the neuroprotective effect of Ginkgo biloba (EGb761) using bax/bcl-2 ratio after brain ischemia in senescence-accelerated mice, strain prone-8. Brain Res. 2006, 1090, 23–28. [Google Scholar] [CrossRef]
- Kim, S.R.; Kim, Y.C. Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. Phytochemistry 2000, 54, 503–509. [Google Scholar]
- Kim, S.R.; Lee, K.Y.; Koo, K.A.; Sung, S.H.; Lee, N.; Kim, J.; Kim, Y.C. Four new neuroprotective iridoid glycosides from Scrophularia buergeriana roots. J. Nat. Prod. 2002, 65, 1696–1699. [Google Scholar] [CrossRef]
- Kim, S.R.; Koo, K.A.; Sung, S.H.; Ma, C.J.; Yoon, J.S.; Kim, Y.C. Iridoids from Scrophularia buergeriana attenuate glutamate-induced neurotoxicity in rat cortical cultures. J. Neurosci. Res. 2003, 74, 948–955. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liang, W.; Lam, W.P.; Tang, H.C.; Leung, P.C.; Yew, D.T. Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade. Pharmaceuticals 2013, 6, 1039-1054. https://doi.org/10.3390/ph6081039
Liang W, Lam WP, Tang HC, Leung PC, Yew DT. Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade. Pharmaceuticals. 2013; 6(8):1039-1054. https://doi.org/10.3390/ph6081039
Chicago/Turabian StyleLiang, Willmann, Wai Ping Lam, Hong Chai Tang, Ping Chung Leung, and David T. Yew. 2013. "Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade" Pharmaceuticals 6, no. 8: 1039-1054. https://doi.org/10.3390/ph6081039
APA StyleLiang, W., Lam, W. P., Tang, H. C., Leung, P. C., & Yew, D. T. (2013). Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade. Pharmaceuticals, 6(8), 1039-1054. https://doi.org/10.3390/ph6081039