Glibenclamide for the Treatment of Acute CNS Injury
Abstract
:1. Introduction
2. Review
2.1. Focal Cerebral Ischemia
Preclinical Model | Target | citations |
---|---|---|
Ischemic stroke | Edema/Swelling | [8,9,10,11,12] |
Microglial activation | [13,14] | |
Neurogenesis/angiogenesis | [14] | |
Ischemic stroke with rtPA | MMP-9 activation | [15] |
Subarachnoid hemorrhage | BBB permeability | [16] |
Transynaptic neuronal injury | [17] | |
Traumatic brain injury | Hemorrhagic progression of contusion | [18] |
Caspase-3 cleavage | [19] | |
Spinal cord injury | Progressive hemorrhagic necrosis | [20,21,22,23] |
Encephalopathy of prematurity | Venous hemorrhage | [24] |
Hypoxic/ischemic injury | [25] | |
Metastatic brain tumor | Edema/Swelling | [26] |
2.2. Subarachnoid Hemorrhage
2.3. Traumatic Brain Injury
2.4. Spinal Cord Injury
2.5. Encephalopathy of Prematurity
2.6. Metastatic Tumor
2.7. Retrospective Clinical Studies in Stroke
2.8. Prospective Clinical Trials
2.8.1. Glyburide Advantage in Malignant Edema and Stroke (GAMES)
2.8.2. Glyburide for TBI
2.9. CNS Targeting of Glibenclamide
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Marble, A. Glibenclamide, a new sulphonylurea: Whither oral hypoglycaemic agents? Drugs 1971, 1, 109–115. [Google Scholar] [CrossRef]
- Ashcroft, F.M. Mechanisms of the glycaemic effects of sulfonylureas. Horm. Metab. Res. 1996, 28, 456–463. [Google Scholar] [CrossRef]
- Feldman, J.M. Review of glyburide after one year on the market. Am. J. Med. 1985, 79, 102–108. [Google Scholar] [CrossRef]
- Kramer, W.; Muller, G.; Girbig, F.; Gutjahr, U.; Kowalewski, S.; Hartz, D.; Summ, H.D. The molecular interaction of sulfonylureas with β-cell ATP-sensitive K(+)-channels. Diabetes Res. Clin. Pract. 1995, 28, S67–S80. [Google Scholar] [CrossRef]
- Panten, U.; Schwanstecher, M.; Schwanstecher, C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol. Diabetes 1996, 104, 1–9. [Google Scholar]
- Foster, P.D.; Mamdani, M.M.; Juurlink, D.N.; Shah, B.R.; Paterson, J.M.; Gomes, T. Trends in selection and timing of first-line pharmacotherapy in older patients with Type 2 diabetes diagnosed between 1994 and 2006. Diabet. Med. 2013, 30, 1209–1213. [Google Scholar]
- Woo, S.K.; Kwon, M.S.; Ivanov, A.; Gerzanich, V.; Simard, J.M. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J. Biol. Chem. 2013, 288, 3655–3667. [Google Scholar] [CrossRef]
- Simard, J.M.; Chen, M.; Tarasov, K.V.; Bhatta, S.; Ivanova, S.; Melnitchenko, L.; Tsymbalyuk, N.; West, G.A.; Gerzanich, V. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat. Med. 2006, 12, 433–440. [Google Scholar] [CrossRef]
- Simard, J.M.; Yurovsky, V.; Tsymbalyuk, N.; Melnichenko, L.; Ivanova, S.; Gerzanich, V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke 2009, 40, 604–609. [Google Scholar] [CrossRef]
- Simard, J.M.; Tsymbalyuk, N.; Tsymbalyuk, O.; Ivanova, S.; Yurovsky, V.; Gerzanich, V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke 2010, 41, 531–537. [Google Scholar] [CrossRef]
- Simard, J.M.; Woo, S.K.; Tsymbalyuk, N.; Voloshyn, O.; Yurovsky, V.; Ivanova, S.; Lee, R.; Gerzanich, V. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Transl. Stroke Res. 2012, 3, 286–295. [Google Scholar] [CrossRef]
- Wali, B.; Ishrat, T.; Atif, F.; Hua, F.; Stein, D.G.; Sayeed, I. Glibenclamide administration attenuates infarct volume, hemispheric swelling, and functional impairments following permanent focal cerebral ischemia in rats. Stroke Res. Treat. 2012. [Google Scholar] [CrossRef]
- Ortega, F.J.; Gimeno-Bayon, J.; Espinosa-Parrilla, J.F.; Carrasco, J.L.; Batlle, M.; Pugliese, M.; Mahy, N.; Rodriguez, M.J. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp. Neurol. 2012, 235, 282–296. [Google Scholar] [CrossRef]
- Ortega, F.J.; Jolkkonen, J.; Mahy, N.; Rodriguez, M.J. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2013, 33, 356–364. [Google Scholar] [CrossRef]
- Simard, J.M.; Geng, Z.; Silver, F.L.; Sheth, K.N.; Kimberly, W.T.; Stern, B.J.; Colucci, M.; Gerzanich, V. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann. N. Y. Acad. Sci. 2012, 1268, 95–107. [Google Scholar] [CrossRef]
- Simard, J.M.; Geng, Z.; Woo, S.K.; Ivanova, S.; Tosun, C.; Melnichenko, L.; Gerzanich, V. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2009, 29, 317–330. [Google Scholar] [CrossRef]
- Tosun, C.; Kurland, D.B.; Mehta, R.; Castellani, R.J.; deJong, J.L.; Kwon, M.S.; Woo, S.K.; Gerzanich, V.; Simard, J.M. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke 2013, in press. [Google Scholar]
- Simard, J.M.; Kilbourne, M.; Tsymbalyuk, O.; Tosun, C.; Caridi, J.; Ivanova, S.; Keledjian, K.; Bochicchio, G.; Gerzanich, V. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J. Neurotrauma 2009, 26, 2257–2267. [Google Scholar] [CrossRef]
- Patel, A.D.; Gerzanich, V.; Geng, Z.; Simard, J.M. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J. Neuropathol. Exp. Neurol. 2010, 69, 1177–1190. [Google Scholar] [CrossRef]
- Simard, J.M.; Tsymbalyuk, O.; Ivanov, A.; Ivanova, S.; Bhatta, S.; Geng, Z.; Woo, S.K.; Gerzanich, V. Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J. Clin. Invest. 2007, 117, 2105–2113. [Google Scholar] [CrossRef]
- Simard, J.M.; Woo, S.K.; Norenberg, M.D.; Tosun, C.; Chen, Z.; Ivanova, S.; Tsymbalyuk, O.; Bryan, J.; Landsman, D.; Gerzanich, V. Brief suppression of Abcc8 prevents autodestruction of spinal cord after trauma. Sci. Transl. Med. 2010, 2, 28ra29. [Google Scholar] [CrossRef]
- Simard, J.M.; Popovich, P.G.; Tsymbalyuk, O.; Gerzanich, V. Spinal cord injury with unilateral versus bilateral primary hemorrhage—effects of glibenclamide. Exp. Neurol. 2012, 233, 829–835. [Google Scholar] [CrossRef]
- Simard, J.M.; Tsymbalyuk, O.; Keledjian, K.; Ivanov, A.; Ivanova, S.; Gerzanich, V. Comparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury. Exp. Neurol. 2012, 233, 566–574. [Google Scholar] [CrossRef]
- Tosun, C.; Koltz, M.T.; Kurland, D.B.; Ijaz, H.; Gurakar, M.; Schwartzbauer, G.; Coksaygan, T.; Ivanova, S.; Gerzanich, V.; Simard, J.M. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013, 3, 215–238. [Google Scholar] [CrossRef]
- Zhou, Y.; Fathali, N.; Lekic, T.; Tang, J.; Zhang, J.H. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009, 1270, 131–139. [Google Scholar] [CrossRef]
- Thompson, E.M.; Pishko, G.L.; Muldoon, L.L.; Neuwelt, E.A. Inhibition of SUR1 decreases the vascular permeability of cerebral metastases. Neoplasia 2013, 15, 535–543. [Google Scholar]
- Kunte, H.; Schmidt, S.; Eliasziw, M.; del Zoppo, G.J.; Simard, J.M.; Masuhr, F.; Weih, M.; Dirnagl, U. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 2007, 38, 2526–2530. [Google Scholar] [CrossRef]
- Silver, F.L.; Fang, J.; Robertson, A.C.; Casaubon, L.; Kapral, M.K. Possible neuroprotective effects of sulfonylureas in diabetic patients with acute ischemic stroke. Stroke 2009, 40, e156. [Google Scholar] [CrossRef]
- Kunte, H.; Busch, M.A.; Trostdorf, K.; Vollnberg, B.; Harms, L.; Mehta, R.I.; Castellani, R.J.; Mandava, P.; Kent, T.A.; Simard, J.M. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann. Neurol. 2012, 72, 799–806. [Google Scholar] [CrossRef]
- Eisenberg, E.; Banshal, V. Glyburide (RP-1127) for Traumatic Brain Injury (TBI). Available online: http://clinicaltrials.gov/show/NCT01454154 (accessed on 17 September 2013).
- Sheth, K.N.; Kimberly, W.T. Safety Study of RP-1127 (Glyburide for Injection) in Healthy Volunteers. Available online: http://clinicaltrials.gov/show/NCT01132703 (accessed on 17 September 2013).
- Sheth, K.N.; Kimberly, W.T. Glyburide Advantage in Malignant Edema and Stroke-Remedy Pharmaceuticals (GAMES-RP). Available online: http://clinicaltrials.gov/show/NCT01794182 (accessed on 17 September 2013).
- Sheth, K.N. Glyburide Advantage in Malignant Edema and Stroke Pilot (GAMES-PILOT). Available online: http://clinicaltrials.gov/show/NCT01268683 (accessed on 17 September 2013).
- Simard, J.M.; Woo, S.K.; Schwartzbauer, G.T.; Gerzanich, V. Sulfonylurea receptor 1 in central nervous system injury: A focused review. J. Cereb. Blood Flow Metab. 2012, 32, 1699–1717. [Google Scholar] [CrossRef]
- Simard, J.M.; Woo, S.K.; Gerzanich, V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch. 2012, 464, 573–582. [Google Scholar] [CrossRef]
- Yamada, K.; Inagaki, N. Neuroprotection by KATP channels. J. Mol. Cell. Cardiol. 2005, 38, 945–949. [Google Scholar] [CrossRef]
- Thomzig, A.; Laube, G.; Pruss, H.; Veh, R.W. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J. Comp. Neurol. 2005, 483, 313–330. [Google Scholar] [CrossRef]
- Sun, H.S.; Feng, Z.P. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacol. Sin. 2013, 34, 24–32. [Google Scholar] [CrossRef]
- Simard, J.M.; Kent, T.A.; Chen, M.; Tarasov, K.V.; Gerzanich, V. Brain oedema in focal ischaemia: Molecular pathophysiology and theoretical implications. Lancet Neurol. 2007, 6, 258–268. [Google Scholar] [CrossRef]
- Walcott, B.P.; Kuklina, E.V.; Nahed, B.V.; George, M.G.; Kahle, K.T.; Simard, J.M.; Asaad, W.F.; Coumans, J.V. Craniectomy for malignant cerebral infarction: Prevalence and outcomes in US hospitals. PLoS One 2011, 6, e29193. [Google Scholar] [CrossRef]
- Lansberg, M.G.; Thijs, V.N.; Bammer, R.; Kemp, S.; Wijman, C.A.; Marks, M.P.; Albers, G.W. Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 2007, 38, 2275–2278. [Google Scholar] [CrossRef]
- Lansberg, M.G.; Albers, G.W.; Wijman, C.A. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: A review of the risk factors. Cerebrovasc. Dis. 2007, 24, 1–10. [Google Scholar] [CrossRef]
- Shimada, I.S.; Peterson, B.M.; Spees, J.L. Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke. Stroke 2010, 41, e552–e560. [Google Scholar] [CrossRef]
- Jiang, W.; Gu, W.; Brannstrom, T.; Rosqvist, R.; Wester, P. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 2001, 32, 1201–1207. [Google Scholar] [CrossRef]
- Gu, W.; Brannstrom, T.; Wester, P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J. Cereb. Blood Flow Metab. 2000, 20, 1166–1173. [Google Scholar]
- Zacharia, B.E.; Hickman, Z.L.; Grobelny, B.T.; DeRosa, P.; Kotchetkov, I.; Ducruet, A.F.; Connolly, E.S., Jr. Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg. Clin. N. Am. 2010, 21, 221–233. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Pluta, R.M.; Zhang, J.H. Cerebral vasospasm after subarachnoid hemorrhage: The emerging revolution. Nat. Clin. Pract. Neurol. 2007, 3, 256–263. [Google Scholar] [CrossRef]
- Simard, J.M.; Schreibman, D.; Aldrich, E.F.; Stallmeyer, B.; Le, B.; James, R.F.; Beaty, N. Unfractionated heparin: Multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage. Neurocrit. Care 2010, 13, 439–449. [Google Scholar] [CrossRef]
- Sehba, F.A.; Pluta, R.M.; Zhang, J.H. Metamorphosis of subarachnoid hemorrhage research: From delayed vasospasm to early brain injury. Mol. Neurobiol. 2011, 43, 27–40. [Google Scholar] [CrossRef]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef]
- Rao, V.; Lyketsos, C.G. Psychiatric aspects of traumatic brain injury. Psychiatr. Clin. N. Am. 2002, 25, 43–69. [Google Scholar] [CrossRef]
- Chang, E.F.; Meeker, M.; Holland, M.C. Acute traumatic intraparenchymal hemorrhage: Risk factors for progression in the early post-injury period. Neurosurgery 2006, 58, 647–656. [Google Scholar] [CrossRef]
- Oertel, M.; Kelly, D.F.; McArthur, D.; Boscardin, W.J.; Glenn, T.C.; Lee, J.H.; Gravori, T.; Obukhov, D.; McBride, D.Q.; Martin, N.A. Progressive hemorrhage after head trauma: Predictors and consequences of the evolving injury. J. Neurosurg. 2002, 96, 109–116. [Google Scholar] [CrossRef]
- Servadei, F.; Nanni, A.; Nasi, M.T.; Zappi, D.; Vergoni, G.; Giuliani, G.; Arista, A. Evolving brain lesions in the first 12 hours after head injury: Analysis of 37 comatose patients. Neurosurgery 1995, 37, 899–906. [Google Scholar]
- Smith, J.S.; Chang, E.F.; Rosenthal, G.; Meeker, M.; von, Koch, C.; Manley, G.T.; Holland, M.C. The role of early follow-up computed tomography imaging in the management of traumatic brain injury patients with intracranial hemorrhage. J. Trauma 2007, 63, 75–82. [Google Scholar]
- Kurland, D.; Hong, C.; Aarabi, B.; Gerzanich, V.; Simard, J.M. Hemorrhagic progression of a contusion after traumatic brain injury: A review. J. Neurotrauma 2012, 129, 19–31. [Google Scholar]
- Narayan, R.K.; Maas, A.I.; Marshall, L.F.; Servadei, F.; Skolnick, B.E.; Tillinger, M.N. Recombinant factor VIIA in traumatic intracerebral hemorrhage: Results of a dose-escalation clinical trial. Neurosurgery 2008, 62, 776–786. [Google Scholar] [CrossRef]
- Hackenberg, K.; Zweckberger, K.; Sakowitz, O.; Jung, C.; Unterberg, A.W. Glibenclamide Reduces Secondary Brain Damage after Experimental Traumatic Brain Injury. In Proceedings of 64th Annual Meeting of the German Society of Neurosurgery (DGNC), Düsseldorf, Germany, 26–29 May 2013.
- Bilgen, M.; Abbe, R.; Liu, S.J.; Narayana, P.A. Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: In vivo magnetic resonance imaging. Magn. Reson. Med. 2000, 43, 594–600. [Google Scholar] [CrossRef]
- Hayes, K.C.; Kakulas, B.A. Neuropathology of human spinal cord injury sustained in sports-related activities. J. Neurotrauma. 1997, 14, 235–248. [Google Scholar] [CrossRef]
- Kwon, B.K.; Tetzlaff, W.; Grauer, J.N.; Beiner, J.; Vaccaro, A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004, 4, 451–464. [Google Scholar] [CrossRef]
- Tator, C.H.; Fehlings, M.G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 1991, 75, 15–26. [Google Scholar] [CrossRef]
- Fitch, M.T.; Doller, C.; Combs, C.K.; Landreth, G.E.; Silver, J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 1999, 19, 8182–8198. [Google Scholar]
- Krause, E. Advances in Fluid Mechanics—Proceedings of a Conference Held at Aachen, Germany, 26–28 March, 1980; Springer: Berlin, Germany, 1981.
- Nelson, E.; Gertz, S.D.; Rennels, M.L.; Ducker, T.B.; Blaumanis, O.R. Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch.Neurol. 1977, 34, 332–333. [Google Scholar]
- Tator, C.H. Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 1991, 37, 291–302. [Google Scholar]
- Tator, C.H.; Koyanagi, I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J. Neurosurg. 1997, 86, 483–492. [Google Scholar] [CrossRef]
- Balentine, J.D. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab. Invest. 1978, 39, 236–253. [Google Scholar]
- Kawata, K.; Morimoto, T.; Ohashi, T.; Tsujimoto, S.; Hoshida, T.; Tsunoda, S.; Sakaki, T. Experimental study of acute spinal cord injury: A histopathological study. No Shinkei Geka 1993, 21, 45–51. [Google Scholar]
- Griffiths, I.R.; Burns, N.; Crawford, A.R. Early vascular changes in the spinal grey matter following impact injury. Acta Neuropathol. 1978, 41, 33–39. [Google Scholar] [CrossRef]
- Kapadia, S.E. Ultrastructural alterations in blood vessels of the white matter after experimental spinal cord trauma. J. Neurosurg. 1984, 61, 539–544. [Google Scholar] [CrossRef]
- Popovich, P.G.; Lemeshow, S.; Gensel, J.C.; Tovar, C.A. Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Exp. Neurol. 2012, 233, 615–622. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Wilson, J.R.; Frankowski, R.F.; Toups, E.G.; Aarabi, B.; Harrop, J.S.; Shaffrey, C.I.; Harkema, S.J.; Guest, J.D.; Tator, C.H.; et al. Riluzole for the treatment of acute traumatic spinal cord injury: Rationale for and design of the NACTN Phase I clinical trial. J. Neurosurg. Spine 2012, 17, 151–156. [Google Scholar]
- Wilson, J.R.; Fehlings, M.G. Riluzole for acute traumatic spinal cord injury: A promising neuroprotective treatment strategy. World Neurosurg. 2013. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.; Weisglas-Kuperus, N.; van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009, 124, 717–728. [Google Scholar] [CrossRef]
- Bassan, H.; Limperopoulos, C.; Visconti, K.; Mayer, D.L.; Feldman, H.A.; Avery, L.; Benson, C.B.; Stewart, J.; Ringer, S.A.; Soul, J.S.; et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 2007, 120, 785–792. [Google Scholar] [CrossRef]
- Doyle, L.W.; Anderson, P.J. Adult outcome of extremely preterm infants. Pediatrics 2010, 126, 342–351. [Google Scholar] [CrossRef]
- Volpe, J.J. Neurologic outcome of prematurity. Arch. Neurol. 1998, 55, 297–300. [Google Scholar] [CrossRef]
- Simard, J.M.; Castellani, R.J.; Ivanova, S.; Koltz, M.T.; Gerzanich, V. Sulfonylurea receptor 1 in the germinal matrix of premature infants. Pediatr. Res. 2008, 64, 648–652. [Google Scholar] [CrossRef]
- Yager, J.Y.; Ashwal, S. Animal models of perinatal hypoxic-ischemic brain damage. Pediatr. Neurol. 2009, 40, 156–167. [Google Scholar] [CrossRef]
- Koltz, M.T.; Tosun, C.; Kurland, D.B.; Coksaygan, T.; Castellani, R.J.; Ivanova, S.; Gerzanich, V.; Simard, J.M. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity. J. Neurosurg. Pediatr. 2011, 8, 628–639. [Google Scholar] [CrossRef]
- Thomalla, G.; Hartmann, F.; Juettler, E.; Singer, O.C.; Lehnhardt, F.G.; Kohrmann, M.; Kersten, J.F.; Krutzelmann, A.; Humpich, M.C.; Sobesky, J.; et al. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset: A prospective multicenter observational study. Ann. Neurol. 2010, 68, 435–445. [Google Scholar] [CrossRef]
- Mlynash, M.; Lansberg, M.G.; de Silva, D.A.; Lee, J.; Christensen, S.; Straka, M.; Campbell, B.C.; Bammer, R.; Olivot, J.M.; Desmond, P.; et al. Refining the definition of the malignant profile: Insights from the DEFUSE-EPITHET pooled data set. Stroke 2011, 42, 1270–1275. [Google Scholar] [CrossRef]
- Vahedi, K.; Hofmeijer, J.; Juettler, E.; Vicaut, E.; George, B.; Algra, A.; Amelink, G.J.; Schmiedeck, P.; Schwab, S.; Rothwell, P.M.; et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007, 6, 215–222. [Google Scholar] [CrossRef]
- Sanak, D.; Nosal', V.; Horak, D.; Bartkova, A.; Zelenak, K.; Herzig, R.; Bucil, J.; Skoloudik, D.; Burval, S.; Cisarikova, V.; et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology 2006, 48, 632–639. [Google Scholar] [CrossRef]
- Tomiyama, Y.; Brian, J.E., Jr.; Todd, M.M. Cerebral blood flow during hemodilution and hypoxia in rats: Role of ATP-sensitive potassium channels. Stroke 1999, 30, 1942–1947. [Google Scholar] [CrossRef]
- Liss, B.; Roeper, J. Molecular physiology of neuronal K-ATP channels (review). Mol. Membr. Biol. 2001, 18, 117–127. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kurland, D.B.; Tosun, C.; Pampori, A.; Karimy, J.K.; Caffes, N.M.; Gerzanich, V.; Simard, J.M. Glibenclamide for the Treatment of Acute CNS Injury. Pharmaceuticals 2013, 6, 1287-1303. https://doi.org/10.3390/ph6101287
Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, Simard JM. Glibenclamide for the Treatment of Acute CNS Injury. Pharmaceuticals. 2013; 6(10):1287-1303. https://doi.org/10.3390/ph6101287
Chicago/Turabian StyleKurland, David B., Cigdem Tosun, Adam Pampori, Jason K. Karimy, Nicholas M. Caffes, Volodymyr Gerzanich, and J. Marc Simard. 2013. "Glibenclamide for the Treatment of Acute CNS Injury" Pharmaceuticals 6, no. 10: 1287-1303. https://doi.org/10.3390/ph6101287
APA StyleKurland, D. B., Tosun, C., Pampori, A., Karimy, J. K., Caffes, N. M., Gerzanich, V., & Simard, J. M. (2013). Glibenclamide for the Treatment of Acute CNS Injury. Pharmaceuticals, 6(10), 1287-1303. https://doi.org/10.3390/ph6101287