Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring
Abstract
1. Introduction
2. Existing Diagnostic Tools
3. Advances in CAP Detecting Electrochemical Sensors
3.1. Metal-Based Electrodes
3.1.1. Gold—High Affinity
3.1.2. Other Metals—Highly Catalytic
3.2. Carbon-Based Electrodes
3.2.1. Aptamer on Glassy Carbon Electrode (GCE)—Immobilize CAP
3.2.2. AuNPs on Carbon—Possesses Unique Structural and Chemical Properties
3.2.3. Aptamer on Graphite—Selective to CAP
3.2.4. Carbon on Carbon—Highly Specific Surface Area
3.3. Other Hybrid Electrodes
4. Challenges in CAP Detection
4.1. Instability of Sensing Materials
4.2. Matrix-Induced Electrochemical Interference
4.3. Surface Fouling and Biofilm Formation
4.4. Lack of Harmonized Validation Protocols
4.5. Operational Stability Under Variable Environmental Conditions
4.6. Data Integration and Field Deployment
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-ampy-RGO | 3-aminomethyl pyridine-functionalized graphene oxide |
3D-rGO | three-dimensional reduced graphene oxide |
AFM | atomic force microscopy |
AB2O4 | spinel oxides |
AgCl | silver chloride |
AgNP | silver nanoparticle |
AMR | antimicrobial resistance |
AuNP | gold nanoparticle |
BDD | boron-doped diamond |
CAC | Codex Alimentarius Commission |
CAP | chloramphenicol |
CB | carbon black |
CCO | copper cobaltite |
CFME | carbon fiber microelectrode |
CFO | copper ferrite |
Cl-rGO | chlorine-doped reduced graphene oxide |
CMK-3 | ordered mesoporous carbon |
CNT | carbon nanotubes |
Co3O4 | cobalt oxide |
Co | cobalt |
Cu | copper |
Cu2O | cuprous oxide |
CuO | cupric oxide |
COF | covalent organic framework |
Co-Fe3O4 NS/GO | cobalt-doped Fe3O4 nanospheres deposited on graphene oxide |
CS | chitosan |
CS-MWCNT | chitosan-functionalized multi-walled carbon nanotube |
CuND | nanodendrite |
CV | cyclic voltammetry |
DPV | differential pulse voltammetry |
EDS | energy-dispersive X-ray spectroscopy |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
EFSA | European Food Safety Authority |
ELISA | enzyme-linked immunosorbent assay |
EPPG | edge plane pyrolytic graphite |
EU | European Union |
Eu2O3 | europium oxide |
FDA | U.S. Food and Drug Administration |
Fe3O4 | iron oxide |
GCE | glassy carbon electrode |
GCN | graphitic carbon nitride |
GE | gold electrode |
GNF | graphene nanoflakes |
GO | graphene oxide |
Gr | graphene |
Ho | holmium |
IoT | Internet of Things |
ITO | indium tin oxide |
LCA | life cycle assessment |
LOD | limit of detection |
LSV | linear sweep voltammetry |
MGNP | magnetic gold nanoparticle |
MIP | molecular imprinted polymer |
MnWO4 | manganese tungstate |
MOF | metal–organic framework |
MoS2 | molybdenum disulfide |
MWCNT | multi-walled carbon nanotube |
N-Gr | nitrogen-doped graphene |
NH2-Si | triethoxysilane |
Ni | nickel |
Ni-Co | nickel–cobalt |
NiCo2O4 | nickel cobaltite |
NW | nanowire |
p(1,5-DAN) | poly(1,5-diaminonapthalene) |
P(o-PD) | poly(o-phenylenediamine) |
p-AHNSA | poly-(4-amino-3-hydroxynaphthalene sulfonic acid |
PANI | polyaniline |
PDA | polydopamine |
PDDA-Gr | graphene functionalized poly(diallyldimethylammonium chloride) |
PEG | polyethylene glycol |
PGE | pencil graphite electrode |
PLA | polylactic acid |
P-r-Gr | three-dimensional porous graphene |
Pt | platinum |
Pt-Pd | platinum–palladium |
rGO | reduced graphene oxide |
SDGs | Sustainable Development Goals |
SELEX | systematic evolution of ligands by exponential enrichment |
SEM | scanning electron microscopy |
SGCN | sulfur doped-graphitic carbon nitride |
Sn/rGO | tin/reduced graphene oxide |
SPCE | screen-printed carbon electrode |
SrMoO4 | strontium molybdate |
SWCNH | single-walled carbon nanohorn |
SWV | square-wave voltammetry |
Sr | strontium |
Sr-ZnO | strontium doped zinc oxide |
TEM | transmission electron microscopy |
UN | United Nations |
US | United States |
ZnO | zinc oxide |
ZnWO4 | zinc tungstate |
β-CD | β-cyclodextrin |
References
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Divya, M.; Chen, J.; Durán-Lara, E.F.; Kim, K.-S.; Vijayakumar, S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb. Pathog. 2024, 191, 106679. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khan, A.U. Global economic impact of antibiotic resistance: A review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Hanekamp, J.C.; Bast, A. Antibiotics exposure and health risks: Chloramphenicol. Environ. Toxicol. Pharmacol. 2015, 39, 213–220. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on chloramphenicol in food and feed. Eur. Food Saf. Auth. J. 2014, 12, 3907. [Google Scholar]
- Holt, D. The identification and characterisation of chloramphenicol-aldehyde, a new human metabolite of chloramphenicol. Eur. J. Drug Metab. Pharmacokinet. 1995, 20, 35–42. [Google Scholar] [CrossRef]
- Moledina, M.; Patel, B.C.K.; Malhotra, R. Topical chloramphenicol in ophthalmology: Old is gold. Semn. Ophthalmol. 2024, 40, 97–106. [Google Scholar] [CrossRef]
- Levine, P.H.; Regelson, W.; Holland, J.F. Chloramphenicol-associated encephalopathy. Clin. Pharmacol. Ther. 1970, 11, 194–199. [Google Scholar] [CrossRef]
- Singhal, K.K.; Mukim, M.; Dubey, C.K.; Nagar, J.C. An updated review on pharmacology and toxicities related to chloramphenicol. Asian J. Pharm. Res. Dev. 2020, 8, 104–109. [Google Scholar]
- Madavi, M.; Sonwane, S. Evaluating Chloramphenicol Toxicity in Pediatric Populations. In Proceedings of the 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI), Wardha, India, 29–30 November 2024; pp. 1–4. [Google Scholar]
- Páez, P.L.; Becerra, M.C.; Albesa, I. Chloramphenicol-induced oxidative stress in human neutrophils. Basic Clin. Pharmacol. Toxicol. 2008, 103, 349–353. [Google Scholar] [CrossRef]
- Chen, M.; Howe, D.; Leduc, B.; Kerr, S.; Williams, D. Identification and characterization of two chloramphenicol glucuronides from the in vitro glucuronidation of chloramphenicol in human liver microsomes. Xenobiotica 2007, 37, 954–971. [Google Scholar] [CrossRef]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef]
- Balbi, H.J. Chloramphenicol: A review. Pediatr. Rev. 2004, 25, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Management of typhoid fever and bacterial meningitis by chloramphenicol in infants and children. J. Pediatr. Perspect. 2018, 6, 6783–6808. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). eCoast. EUCAST Clinical Breakpoint Tables Version 15.0. 2025. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 21 August 2025).
- Rejtharová, M.; Rejthar, L.; Bureš, J.; Vernerová, E.; Hera, A. Persistence of chloramphenicol residues in chicken muscle tissue after a therapeutic dose administration. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 547–551. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, H.; Song, W.; Rao, Q.; Xu, X. Mineralization and residue characteristics of chloramphenicol in aerobic soils: Evidence from a carbon-14 study. Environ. Sci. Pollut. Res. 2024, 31, 22917–22924. [Google Scholar] [CrossRef]
- Alam, M.M.; Mitea, V.; Howlader, M.M.; Selvaganapathy, P.R.; Deen, M.J. Analyzing electrochemical sensing fundamentals for health applications. Adv. Sens. Res. 2024, 3, 2300100. [Google Scholar] [CrossRef]
- Sinha, K.; Uddin, Z.; Kawsar, H.; Islam, S.; Deen, M.; Howlader, M. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. TrAC Trends Anal. Chem. 2023, 158, 116861. [Google Scholar] [CrossRef]
- Dong, X.; Yan, X.; Li, M.; Liu, H.; Li, J.; Wang, L.; Wang, K.; Lu, X.; Wang, S.; He, B. Ultrasensitive detection of chloramphenicol using electrochemical aptamer sensor: A mini review. Electrochem. Commun. 2020, 120, 106835. [Google Scholar] [CrossRef]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; Iorgulescu, E.E. Past and present of electrochemical sensors and methods for amphenicol antibiotic analysis. Micromachines 2022, 13, 677. [Google Scholar] [CrossRef]
- Abhishek, K.J.; Reddy, S.; Acharya, S.; Lakshmi, B.; Deepak, K.; Naveen, C.S.; Harish, K.N.; Ramakrishna, S. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. Anal. Methods 2022, 14, 3228–3249. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Cannavan, A.; Elliott, C.T. A critical review of screening methods for the detection of chloramphenicol, thiamphenicol, and florfenicol residues in foodstuffs. Crit. Rev. Anal. Chem. 2012, 42, 50–78. [Google Scholar] [CrossRef]
- Ramos, M.; Munoz, P.; Aranda, A.; Rodriguez, I.; Diaz, R.; Blanca, J. Determination of chloramphenicol residues in shrimps by liquid chromatography—Mass spectrometry. J. Chromatogr. B 2003, 791, 31–38. [Google Scholar] [CrossRef]
- Sadeghi, A.S.; Ansari, N.; Ramezani, M.; Abnous, K.; Mohsenzadeh, M.; Taghdisi, S.M.; Alibolandi, M. Optical and electrochemical aptasensors for the detection of amphenicols. Biosens. Bioelectron. 2018, 118, 137–152. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Howlader, M.M.; Hu, N.-X.; Deen, M.J. Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B Chem. 2018, 254, 896–909. [Google Scholar] [CrossRef]
- Bunnasit, S.; Thamsirianunt, K.; Rakthabut, R.; Jeamjumnunja, K.; Prasittichai, C.; Siriwatcharapiboon, W. Sensitive portable electrochemical sensors for antibiotic chloramphenicol by tin/reduced graphene oxide-modified screen-printed carbon electrodes. ACS Appl. Nano Mater. 2024, 7, 267–278. [Google Scholar] [CrossRef]
- Wang, S.; He, B.; Liang, Y.; Jin, H.; Wei, M.; Ren, W.; Suo, Z.; Wang, J. Exonuclease III-driven dual-amplified electrochemical aptasensor based on PDDA-Gr/PtPd@Ni-Co hollow nanoboxes for chloramphenicol detection. ACS Appl. Mater. Interfaces 2021, 13, 26362–26372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-W.; Zhu, Q.-Q.; Yuan, R.; He, H. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Zhang, H.; Li, H.-K.; Zhu, Q.-Q.; He, H. Ingenious construction of an electrochemical aptasensor based on a Au@COF/GO-NH2 composite with excellent detection performance. J. Mater. Chem. C 2021, 9, 4576–4582. [Google Scholar] [CrossRef]
- Yan, L.; Luo, C.; Cheng, W.; Mao, W.; Zhang, D.; Ding, S. A simple and sensitive electrochemical aptasensor for determination of chloramphenicol in honey based on target-induced strand release. J. Electroanal. Chem. 2012, 687, 89–94. [Google Scholar] [CrossRef]
- Chu, T.-X.; Vu, V.-P.; Tran, H.-T.; Tran, T.-L.; Tran, Q.-T.; Le Manh, T. Molecularly imprinted polyaniline nanowire-based electrochemical biosensor for chloramphenicol detection: A kinetic study of aniline electropolymerization. J. Electrochem. Soc. 2020, 167, 027527. [Google Scholar] [CrossRef]
- Ting, W.-T.; Ali, M.Y.; Mitea, V.; Wang, M.-J.; Howlader, M.M.R. Polyaniline-based bovine serum albumin imprinted electrochemical sensor for ultra-trace-level detection in clinical and food safety applications. Int. J. Biol. Macromol. 2024, 277, 134137. [Google Scholar] [CrossRef]
- Li, Y.; Dai, H.; Feng, N.; Xie, X.; Zhang, J.; Li, W. Silver chloride nanoparticles-decorated molybdenum disulfide nanosheets for highly sensitive chloramphenicol detection. Mater. Express 2019, 9, 59–64. [Google Scholar] [CrossRef]
- Shaheen, A.; Taj, A.; Liberzeit, P.A.; Mujahid, A.; Hameed, S.; Yu, H.; Mahmood, A.; Webster, T.J.; Rashid, M.H.; Khan, W.S.; et al. Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids Surf. B Biointerfaces 2020, 188, 110775. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, H.; Liu, G.; Bai, W. Highly sensitive molecularly imprinted sensor based on platinum thin-film microelectrode for detection of chloramphenicol in food samples. Electroanalysis 2017, 29, 1918–1924. [Google Scholar] [CrossRef]
- Zhuang, Y.; Cai, L.; Cao, G. Determination of chloramphenicol by voltammetric method. J. Electrochem. Soc. 2014, 161, H129. [Google Scholar] [CrossRef]
- Roushani, M.; Rahmati, Z.; Farokhi, S.; Hoseini, S.J.; Fath, R.H. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-aminopropyl) triethoxysilane and silver nanoparticles. Mater. Sci. Eng. C 2020, 108, 110388. [Google Scholar] [CrossRef]
- Roushani, M.; Rahmati, Z.; Hoseini, S.J.; Fath, R.H. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle. Colloids Surf. B Biointerfaces 2019, 183, 110451. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Anal. Chim. Acta 2017, 968, 30–39. [Google Scholar] [CrossRef]
- Geng, L.; Sun, J.; Liu, M.; Huang, J.; Dong, J.; Guo, Z.; Guo, Y.; Sun, X. Molecularly imprinted polymers-aptamer electrochemical sensor based on dual recognition strategy for high sensitivity detection of chloramphenicol. Food Chem. 2024, 437, 137933. [Google Scholar] [CrossRef]
- Ali, M.; Bacchu, M.; Al-Mamun, M.; Ahommed, M.; Aly, M.A.S.; Khan, M. N-Hydroxysuccinimide crosslinked graphene oxide–gold nanoflower modified SPE electrode for sensitive detection of chloramphenicol antibiotic. RSC Adv. 2021, 11, 15565–15572. [Google Scholar] [CrossRef]
- Hue, N.T.; Pham, T.N.; Dinh, N.X.; Van Tuan, H.; Thuy, N.T.T.; Nam, M.H.; Lam, V.D.; Le, A.-T.; Huy, T.Q. AuNPs-modified screen-printed electrodes (SPCE and SPPtE) for enhanced direct detection of chloramphenicol. J. Electron. Mater. 2022, 51, 1669–1680. [Google Scholar] [CrossRef]
- Bottari, F.; De Wael, K. Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules. J. Electroanal. Chem. 2017, 801, 521–526. [Google Scholar] [CrossRef]
- Karthik, R.; Govindasamy, M.; Chen, S.-M.; Mani, V.; Lou, B.-S.; Devasenathipathy, R.; Hou, Y.-S.; Elangovan, A. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J. Colloid Interface Sci. 2016, 475, 46–56. [Google Scholar] [CrossRef]
- Borowiec, J.; Wang, R.; Zhu, L.; Zhang, J. Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim. Acta 2013, 99, 138–144. [Google Scholar] [CrossRef]
- Rosy; Goyal, R.N.; Shim, Y.-B. Glutaraldehyde sandwiched amino functionalized polymer based aptasensor for the determination and quantification of chloramphenicol. RSC Adv. 2015, 5, 69356–69364. [Google Scholar] [CrossRef]
- Yadav, S.K.; Agrawal, B.; Chandra, P.; Goyal, R.N. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens. Bioelectron. 2014, 55, 337–342. [Google Scholar] [CrossRef]
- Peng, R.; Chen, W.; Zhou, Q. Electrochemical sensor for chloramphenicol based on copper nanodendrites and carbon nanotubes. Ionics 2022, 28, 451–462. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@ molecularly imprinted polymer. Biosens. Bioelectron. 2015, 64, 416–422. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Jia, X.; Mao, J.; Wu, H.; Wang, S.; Guo, H. Molecularly imprinted electrochemical sensor for ultrasensitive determination of chloramphenicol in milk and egg samples. Food Chem. 2025, 489, 145024. [Google Scholar] [CrossRef]
- Han, S.; Zhang, X.; Sun, H.; Wei, J.; Wang, H.; Wang, S.; Jin, J.; Zhang, Z. Electrochemical behavior and voltammetric determination of chloramphenicol and doxycycline using a glassy carbon electrode modified with single-walled carbon nanohorns. Electroanalysis 2022, 34, 735–742. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.-C.; Zhang, J.-W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta 2016, 161, 567–573. [Google Scholar] [CrossRef]
- de Faria, L.V.; Lisboa, T.P.; Alves, G.F.; Matos, M.A.C.; Muñoz, R.A.A.; Matos, R.C. Adsorptive stripping voltammetric determination of chloramphenicol residues in milk samples using reduced graphene oxide sensor. Anal. Methods 2021, 13, 5711–5718. [Google Scholar] [CrossRef]
- Wang, K.-P.; Zhang, Y.-C.; Zhang, X.; Shen, L. Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection. SN Appl. Sci. 2019, 1, 157. [Google Scholar] [CrossRef]
- Meenakshi, S.; Sophia, S.J.; Pandian, K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng. C 2018, 90, 407–419. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, T.; Jiang, M.; Xu, L.; Xu, Z. Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@polydopamine and β-cyclodextrin. Sens. Actuators B Chem. 2018, 255, 2155–2162. [Google Scholar] [CrossRef]
- Di-Oliveira, M.; Rocha, R.G.; de Faria, L.V.; Richter, E.M.; Munoz, R.A. Carbon-black integrated polylactic acid electrochemical sensor for chloramphenicol determination in milk and water samples. J. Electrochem. Soc. 2022, 169, 047517. [Google Scholar] [CrossRef]
- David, I.G.; Buleandră, M.; Popa, D.E.; Bercea, A.M.; Ciucu, A.A. Simple electrochemical chloramphenicol assay at a disposable pencil graphite electrode by square wave voltammetry and linear sweep voltammetry. Anal. Lett. 2022, 55, 1531–1548. [Google Scholar] [CrossRef]
- Bai, X.; Qin, C.; Huang, X. Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Microchim. Acta 2016, 183, 2973–2981. [Google Scholar] [CrossRef]
- Giribabu, K.; Jang, S.-C.; Haldorai, Y.; Rethinasabapathy, M.; Oh, S.Y.; Rengaraj, A.; Han, Y.-K.; Cho, W.-S.; Roh, C.; Huh, Y.S. Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles. Carbon Lett. 2017, 23, 38–47. [Google Scholar]
- Nehru, R.; Dong, C.-D.; Chen, C.-W. Cobalt-doped Fe3O4 nanospheres deposited on graphene oxide as electrode materials for electrochemical sensing of the antibiotic drug. ACS Appl. Nano Mater. 2021, 4, 6768–6777. [Google Scholar] [CrossRef]
- Vinoth, S.; Govindasamy, M.; Wang, S.-F.; ALOthman, Z.A.; Alshgari, R.A.; Ouladsmane, M. Fabrication of strontium molybdate incorporated with graphitic carbon nitride composite: High-sensitive amperometric sensing platform of food additive in foodstuffs. Microchem. J. 2021, 167, 106307. [Google Scholar] [CrossRef]
- Talebizadehsardari, P.; Aramesh-Boroujeni, Z.; Foroughi, M.; Eyvazian, A.; Jahani, S.; Faramarzpour, H.; Borhani, F.; Ghazanfarabadi, M.; Shabani, M.; Nazari, A. Synthesis of carnation-like Ho3+/Co3O4 nanoflowers as a modifier for electrochemical determination of chloramphenicol in eye drop. Microchem. J. 2020, 159, 105535. [Google Scholar] [CrossRef]
- Yadav, M.; Ganesan, V.; Gupta, R.; Yadav, D.K.; Sonkar, P.K. Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol. Microchem. J. 2019, 146, 881–887. [Google Scholar] [CrossRef]
- Selvi, S.V.; Nataraj, N.; Chen, S.-M. The electro-catalytic activity of nanosphere strontium doped zinc oxide with rGO layers screen-printed carbon electrode for the sensing of chloramphenicol. Microchem. J. 2020, 159, 105580. [Google Scholar] [CrossRef]
- Anh, N.T.; Dinh, N.X.; Pham, T.N.; Vinh, L.K.; Tung, L.M.; Le, A.-T. Enhancing the chloramphenicol sensing performance of Cu–MoS2 nanocomposite-based electrochemical nanosensors: Roles of phase composition and copper loading amount. RSC Adv. 2021, 11, 30544–30559. [Google Scholar] [CrossRef]
- Pham, T.N.; Van Cuong, N.; Dinh, N.X.; Van Tuan, H.; Phan, V.N.; Lan, N.T.; Nam, M.H.; Thanh, T.D.; Lam, V.D.; Van Quy, N.; et al. Roles of phase purity and crystallinity on chloramphenicol sensing performance of CuCo2O4/CuFe2O4-based electrochemical nanosensors. J. Electrochem. Soc. 2021, 168, 026506. [Google Scholar] [CrossRef]
- Vilian, A.E.; Oh, S.Y.; Rethinasabapathy, M.; Umapathi, R.; Hwang, S.-K.; Oh, C.W.; Park, B.; Huh, Y.S.; Han, Y.-K. Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. J. Hazard. Mater. 2020, 399, 122868. [Google Scholar] [CrossRef]
- Shad, N.A.; Bajwa, S.Z.; Amin, N.; Taj, A.; Hameed, S.; Khan, Y.; Dai, Z.; Cao, C.; Khan, W.S. Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol. J. Hazard. Mater. 2019, 367, 205–214. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Xu, Y.; Wu, L.; Yu, A.; Lai, G.; Wei, Q.; Chi, H.; Jiang, N.; Fu, L.; et al. Intertwined carbon nanotubes and Ag nanowires constructed by simple solution blending as sensitive and stable chloramphenicol sensors. Sensors 2021, 21, 1220. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.-Y.; Luo, Y.; Zhang, J.-W.; Wang, J.-Y.; Li, W.-W.; Wang, W. Facile synthesis of reduced graphene oxide supported Pt-Pd nanocubes with enhanced electrocatalytic activity for chloramphenicol determination. J. Electroanal. Chem. 2016, 781, 389–394. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Y.; Yang, Z.; Fei, T.; Liu, S.; Zhang, T. Electrochemical chloramphenicol sensors-based on trace MoS2 modified carbon nanomaterials: Insight into carbon supports. J. Alloys Compd. 2021, 872, 159687. [Google Scholar] [CrossRef]
- Prakasam, S.; Krishnan, G.; Chinnathambi, S. An oxygen-deficient tin oxide-modified electrode for nanomolar detection of chloramphenicol. J. Mater. Chem. C 2025, 13, 12911–12921. [Google Scholar] [CrossRef]
- Niu, X.; Bo, X.; Guo, L. MOF-derived hollow NiCo2O4/C composite for simultaneous electrochemical determination of furazolidone and chloramphenicol in milk and honey. Food Chem. 2021, 364, 130368. [Google Scholar] [CrossRef]
- Rajaji, U.; Manavalan, S.; Chen, S.-M.; Govindasamy, M.; Chen, T.-W.; Maiyalagan, T. Microwave-assisted synthesis of europium (III) oxide decorated reduced graphene oxide nanocomposite for detection of chloramphenicol in food samples. Compos. Part B Eng. 2019, 161, 29–36. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Upadhyay, S.S.; Rawool, C.R.; Punde, N.S.; Rajpurohit, A.S. Voltammetric techniques for the analysis of drugs using nanomaterials based chemically modified electrodes. Curr. Anal. Chem. 2019, 15, 249–276. [Google Scholar] [CrossRef]
- Vosough, M.; Mashhadiabbas Esfahani, H. Fast HPLC-DAD quantification procedure for selected sulfonamids, metronidazole and chloramphenicol in wastewaters using second-order calibration based on MCR-ALS. Talanta 2013, 113, 68–75. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Zhang, Z.; Ning, Y.; Wang, W.; Liang, C.; Jia, Y. Rapid visual discrimination and quantification of multiple antibiotics based on machine learning-assisted fluorescence sensor array. Food Control 2025, 178, 111521. [Google Scholar] [CrossRef]
- Klimuntowski, M.; Alam, M.M.; Singh, G.; Howlader, M.M.R. Electrochemical sensing of cannabinoids in biofluids: A noninvasive tool for drug detection. ACS Sens. 2020, 5, 620–636. [Google Scholar] [CrossRef]
- Lowe, S.; O’Brien-Simpson, N.M.; Connal, L.A. Antibiofouling polymer interfaces: Poly (ethylene glycol) and other promising candidates. Polym. Chem. 2015, 6, 198–212. [Google Scholar] [CrossRef]
- Semeraro, A.; Morelli, S.; Di Pasquale, M.; Turco, A.C.; D’Amato, M.; Giacomozzi, C.; Stacchini, P.; Sorbo, A. Control of residues of non-authorized pharmacologically active substance in food of animal origin. Results of a proficiency test for determination of chloramphenicol in honey organized by the Italian National Reference Laboratory for Residues. J. Food Compos. Anal. 2024, 135, 106656. [Google Scholar] [CrossRef]
- Diallo, T.; Makni, Y.; Lerebours, A.; Thomas, H.; Guérin, T.; Parinet, J. Development and validation according to the SANTE guidelines of a QuEChERS-UHPLC-QTOF-MS method for the screening of 204 pesticides in bivalves. Food Chem. 2022, 386, 132871. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Xie, L.L.; Pan, C.; Yuan, M.F.; Tao, Z.H.; Mao, H.P. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones. J. Food Process Eng. 2019, 42, e12976. [Google Scholar] [CrossRef]
Symptom | Physiological Basis | Refs. |
---|---|---|
Bone marrow toxicity | CAP targets 70S-like mitochondrial ribosomes in hematopoietic progenitor cells, inhibiting mitochondrial protein synthesis and impairing hematopoiesis. | [7,8] |
Reversible anemia | Dose-dependent mitochondrial dysfunction in erythroid precursors transiently suppresses red blood cell production, which typically normalizes after drug withdrawal. | [8] |
Blood dyscrasia | Reactive CAP metabolites and oxidative stress damage rapidly dividing bone marrow cells, disrupting hematopoiesis across multiple lineages, including leukocytes and platelets. | [9,12] |
Hepatotoxicity | Impaired hepatic glucuronidation leads to the accumulation of CAP unmetabolized and reactive nitrometabolite intermediates, causing oxidative liver injury and potential cytotoxicity. | [10,13] |
Neurotoxicity | CAP crosses the blood–brain barrier due to its high lipophilicity and disrupts mitochondrial respiration in neurons, potentially resulting in optic or peripheral neuropathy. | [10,14] |
Gray baby syndrome | In neonates, immature hepatic and renal systems prevent proper metabolism and excretion of CAP, leading to systemic accumulation, cardiovascular collapse, and lactic acidosis. | [10,11] |
Aplastic anemia | A rare, idiosyncratic condition possibly triggered by genotoxic nitroso metabolites or immune-mediated mechanisms, causing irreversible bone marrow failure and pancytopenia. | [8,10,11] |
Functional Electrodes | Methods | Linear Range (nM) | LOD (nM) | Real Samples | Ref. |
---|---|---|---|---|---|
Aptamer/PDDA-Gr/PtPd@Ni-Co/GE | DPV | 1 × 10–5–10 | 9.85 × 10–7 | Honey | [30] |
Aptamer/UiO-66-NH2@COF/GE | EIS | 3.1 × 10–5–15.5 | 2 × 10–5 | Milk, human serum, river water, urine | [31] |
Aptamer/Au@COF/GO-NH2/GE | EIS | 1.55 × 10–4–3.09 | 4.99 × 10–5 | Milk, human serum, river water | [32] |
Aptamer/DNA/GE | DPV | 1–1000 | 0.29 | Honey | [33] |
MIP-PANI/GE | DPV | 10–1.0 × 106 | 1.24 | N/A | [34] |
MIP-P(o-PD)/Pt | SWV | 0.9–10 | 0.39 | Honey, milk | [38] |
Pt | DPV | 2.48 × 103–9.29 × 104 | N/A | Milk | [39] |
AgCl/MoS2/ITO | Amperometry | 4 × 103–5.31 × 105 | 1.93 × 103 | Honey, milk | [36] |
Functional Electrodes | Methods | Linear Range (nM) | LOD (nM) | Real Samples | Ref. |
---|---|---|---|---|---|
Aptamer/AgNPs/[NH2-Si]-GO/GCE | DPV | 0.01–200 | 3.3 × 10–3 | Honey, milk | [40] |
Aptamer/AgNPs/3-ampy-RGO/GCE | EIS | 1 × 10–3–1 | 3 × 10–4 | Milk | [41] |
Aptamer/MOF/MGNP/GCE | SWV | 1 × 10–4–50 | 3.3 × 10–5 | Milk | [42] |
Aptamer-MIP/AuNPs/CS-MWCNT/GCE | DPV | 0.031–3.1 × 104 | 0.01 | Honey, milk, sewage | [43] |
Au/rGO/SPCE | DPV | 50–1 × 105 | 1 | Poultry feed, human serum, honey, milk, egg | [44] |
Au/SPCE | CV, DPV | 250–5 × 104 | 100 | N/A | [45] |
AuNPs/BDD | SWV | 5 × 103–3.5 × 104 | 5 × 103 | N/A | [46] |
AuNPs/GO/GCE | Amperometry | 1.5 × 103–2.95 × 103 | 250 | Honey, milk, powdered milk, eye drops | [47] |
Au/N-Gr/GCE | LSV | 2 × 103–8 × 104 | 590 | Eye drops | [48] |
Aptamer/GA/p(1,5-DAN)/EPPG | SWV | 5 × 10–5–5 × 10–4 | 1.1 × 10–5 | Rosetta cell, Mycin, Paraxin-250 | [49] |
Aptamer/p-AHNSA/EPPG | SWV | 0.1–2.5 × 103 | 0.02 | Paraxin-250, Chloromycetin | [50] |
CuNDs/MWCNTs/GCE | LSV | 150–1.2 × 104 | 9.84 | Lake water | [51] |
MWCNTs@MIP/CMK-3/P-r-Gr/GCE | DPV | 5–4 × 103 | 0.1 | Honey, milk | [52] |
MIP/PANI/AuNPs-rGO-CS/GCE | SWV | 1–200 | 0.063 | Milk, egg | [53] |
SWCNHs-COOH/GCE | LSV | 100–1 × 105 | 100 | Lake water | [54] |
3D-rGO/GCE | DPV | 1 × 103–3.3 × 105 | 150 | Milk, eye drops | [55] |
rGO/GCE | DPV | 1 × 104–6.6 × 104 | 220 | Milk | [56] |
Cl-rGO/GCE | DPV | 2 × 103–3.5 × 104 | 1 × 103 | Milk, eye drops, calf plasma, tap water | [57] |
Sn/rGO/SPCE | DPV | 500–1 × 105 | 200 | Honey, milk, eye drops | [29] |
GNFs/GCE | Amperometry, DPV | 0.5–5.5, 10–270 | 0.38, 4.4 | Urine | [58] |
β-CD/CMK-3@PDA/GCE | SWV | 500–5 × 105 | 200 | Powdered milk, bee pollen | [59] |
PLA/CB | DPV | 1 × 104–3.31 × 105 | 980 | Milk, tap water | [60] |
PGE | LSV, SWV | 2.5 × 103–1 × 106, 2.5 × 103–7.5 × 105 | 1.39 × 103, 609 | Pharmaceutical capsules | [61] |
Functional Electrodes | Methods | Linear Range (nM) | LOD (nM) | Real Samples | Ref. |
---|---|---|---|---|---|
Fe3O4/CFME | DPV | 400–1 × 103 | 167 | Sediment | [62] |
Fe3O4/GCE | SWV | 90–4.7 × 104 | 90 | Shrimp | [63] |
Co-Fe3O4 NS/GO/GCE | DPV | 5–1.52 × 105 | 1.04 | Milk | [64] |
Ho3+/Co3O4/GCE | DPV | 10–8 × 105 | 7.1 | Human serum, eye drops, urine | [66] |
Co3O4@rGO/GCE | Amperometry, CV, DPV | 100–1.5 × 106, 1 × 103–2 × 106, 2 × 103–2 × 106 | 100, 550, 1.16 × 103 | Honey, milk | [67] |
SrMoO4/SGCN/GCE | Amperometry | 5–1.316 × 106 | 1.5 | Human serum, river water, urine | [65] |
Sr-ZnO@rGO/SPCE | LSV | 190–2.847 × 106 | 130 | Milk, powdered milk | [68] |
Cu/SPCE | DPV | 2.5 × 103–5 × 104 | 250 | Honey, milk | [69] |
CuO/SPCE | 1 × 103–5 × 104 | 450 | N/A | ||
Cu2O/SPCE | 1 × 103–5 × 104 | 230 | Honey, milk | ||
Cu-MoS2/SPCE | 500–5 × 104 | 190 | Honey, milk | ||
CCO/SPCE | DPV | 2.5 × 103–5 × 104 | 660 | Milk | [70] |
CCO-GO/SPCE | 2.5 × 103–5 × 104 | 710 | Milk | ||
CFO/SPCE | 2.5 × 103–5 × 104 | 250 | Milk | ||
CFO-GO/SPCE | 2.5 × 103–5 × 104 | 410 | Milk | ||
g-C3N4/MnWO4/GCE | DPV | 4–71 | 1.03 | Blood serum, milk, sewage, river water | [71] |
ZnWO4/GCE | CV | 5 × 104–5 × 105 | 320 | N/A | [72] |
CNTs/AgNWs/GCE | DPV | 100–1 × 105 | 80 | River water, tap water | [73] |
Pt-Pd/rGO/GCE | LSV | 200–3 × 104 | 100 | Milk | [74] |
MoS2-rGO/GCE | DPV | 5 × 103–3.5 × 104 | 1 × 103 | N/A | [75] |
MoS2-MWCNTs/GCE | 1 × 103–3.5 × 104 | 400 | N/A | ||
MoS2-CB/GCE | 5 × 103–5.5 × 104 | 1.9 × 103 | N/A | ||
DSnO2/GCE | DPV | 100–3.5 × 104 | 94 | Honey, milk, tap water | [76] |
NiCo2O4@C/GCE | DPV | 500–4.3 × 105 | 44 | Honey, milk | [77] |
Eu2O3/rGO/SPCE | Amperometry | 20–800 × 103 | 1.32 | Honey, milk | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howlader, M.M.R.; Ting, W.-T.; Ali, M.Y. Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring. Pharmaceuticals 2025, 18, 1257. https://doi.org/10.3390/ph18091257
Howlader MMR, Ting W-T, Ali MY. Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring. Pharmaceuticals. 2025; 18(9):1257. https://doi.org/10.3390/ph18091257
Chicago/Turabian StyleHowlader, Matiar M. R., Wei-Ting Ting, and Md Younus Ali. 2025. "Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring" Pharmaceuticals 18, no. 9: 1257. https://doi.org/10.3390/ph18091257
APA StyleHowlader, M. M. R., Ting, W.-T., & Ali, M. Y. (2025). Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring. Pharmaceuticals, 18(9), 1257. https://doi.org/10.3390/ph18091257