Novel Micro-LC-MS/MS Method for the Quantification of Tenofovir and Its Active Metabolite Tenofovir-Diphosphate in Biological Matrices for Therapeutic Drug Monitoring
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Considerations
2.2. TFVDP Stability
2.3. Matrix Effects and Optimization of the Sample Preparation Protocol
2.4. Concentration Range
2.5. Method Validation
2.6. Application of the Method for TDM
3. Materials and Methods
3.1. Chemicals
3.2. Standard Solutions
3.3. Calibration Curves and Quality Control Samples Preparation
3.4. Blood Samples for Adherence Evaluation
3.5. Sample Preparation Procedures Prior to LC-M/MS
3.5.1. Whole Blood Sample Clean-Up
3.5.2. Protein Precipitation
3.6. Liquid Chromatography-Mass Spectrometry
3.7. Validation Procedures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bushman, L.R.; Kiser, J.J.; Rower, J.E.; Klein, B.; Zheng, J.-H.; Ray, M.L.; Anderson, P.L. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC–MS/MS detection. J. Pharm. Biomed. Anal. 2011, 56, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Mancilla, J.R.; Zheng, J.-H.; Rower, J.E.; Meditz, A.; Gardner, E.M.; Predhomme, J.; Fernandez, C.; Langness, J.; Kiser, J.J.; Bushman, L.R. Tenofovir, emtricitabine, and tenofovir diphosphate in dried blood spots for determining recent and cumulative drug exposure. AIDS Res. Hum. Retroviruses 2013, 29, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Custodio, J.; Garner, W.; Callebaut, C. The pharmacokinetics of tenofovir and tenofovir diphosphate following administration of tenofovir alafenamide versus tenofovir disoproxil fumarate (Abstract 6). In Proceedings of the 16th International Workshop on Clinical Pharmacology of HIV and Hepatitis Therapy, Washington, DC, USA, 26–28 May 2015; pp. 26–28. [Google Scholar]
- Ocque, A.J.; Hagler, C.E.; Morse, G.D.; Letendre, S.L.; Ma, Q. Development and validation of an LC–MS/MS assay for tenofovir and tenofovir alafenamide in human plasma and cerebrospinal fluid. J. Pharm. Biomed. Anal. 2018, 156, 163–169. [Google Scholar] [CrossRef]
- Rezk, N.L.; Crutchley, R.D.; Kashuba, A.D. Simultaneous quantification of emtricitabine and tenofovir in human plasma using high-performance liquid chromatography after solid phase extraction. J. Chromatogr. B 2005, 822, 201–208. [Google Scholar] [CrossRef]
- Ruane, P.J.; DeJesus, E.; Berger, D.; Markowitz, M.; Bredeek, U.F.; Callebaut, C.; Zhong, L.; Ramanathan, S.; Rhee, M.S.; Fordyce, M.W. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of tenofovir alafenamide as 10-day monotherapy in HIV-1–positive adults. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 63, 449–455. [Google Scholar] [CrossRef]
- Xiao, D.; Ling, K.H.J.; Tarnowski, T.; Majeed, S.R.; German, P.; Kearney, B.P.; Zhao, Y.; Chen, Y.-S.; Ma, L.; Zhang, T. An LC-MS/MS method for determination of tenofovir (TFV) in human plasma following tenofovir alafenamide (TAF) administration: Development, validation, cross-validation, and use of formic acid as plasma TFV stabilizer. Anal. Biochem. 2020, 593, 113611. [Google Scholar] [CrossRef]
- Anderson, P.L.; Kiser, J.J.; Gardner, E.M.; Rower, J.E.; Meditz, A.; Grant, R.M. Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection. J. Antimicrob. Chemother. 2011, 66, 240–250. [Google Scholar]
- Durand-Gasselin, L.; Da Silva, D.; Benech, H.; Pruvost, A.; Grassi, J. Evidence and possible consequences of the phosphorylation of nucleoside reverse transcriptase inhibitors in human red blood cells. Antimicrob. Agents Chemother. 2007, 51, 2105–2111. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.; Veikley, W.; St. Claire, R.L., III; Guyer, B.; Clark, N.; Kearney, B.P. Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate, and lamivudine triphosphate in patients receiving triple-nucleoside regimens. J. Acquir. Immune Defic. Syndr. 2005, 39, 406–411. [Google Scholar] [CrossRef]
- Moore, J.D.; Acosta, E.P.; Johnson, V.A.; Bassett, R.; Eron, J.J.; Fischl, M.A.; Long, M.C.; Kuritzkes, D.R.; Sommadossi, J.-P. Short communication Intracellular nucleoside triphosphate concentrations in HIV-infected patients on dual nucleoside reverse transcriptase inhibitor therapy. Antivir. Ther. 2007, 12, 981–986. [Google Scholar] [CrossRef]
- Castillo-Mancilla, J.R.; Searls, K.; Caraway, P.; Zheng, J.-H.; Gardner, E.M.; Predhomme, J.; Bushman, L.R.; Anderson, P.L.; Meditz, A.L. Tenofovir diphosphate in dried blood spots as an objective measure of adherence in HIV-infected women. AIDS Res. Hum. Retroviruses 2015, 31, 428–432. [Google Scholar] [CrossRef]
- Pretorius, E.; Klinker, H.; Rosenkranz, B. The role of therapeutic drug monitoring in the management of patients with human immunodeficiency virus infection. Ther. Drug Monit. 2011, 33, 265–274. [Google Scholar] [CrossRef]
- Castillo-Mancilla, J.R.; Morrow, M.; Coyle, R.P.; Coleman, S.S.; Gardner, E.M.; Zheng, J.H.; Ellison, L.; Bushman, L.R.; Kiser, J.J.; Mawhinney, S.; et al. Tenofovir Diphosphate in Dried Blood Spots Is Strongly Associated with Viral Suppression in Individuals with Human Immunodeficiency Virus Infections. Clin. Infect. Dis. 2019, 68, 1335–1342. [Google Scholar] [CrossRef]
- Grant, R.M.; Anderson, P.L.; McMahan, V.; Liu, A.; Amico, K.R.; Mehrotra, M.; Hosek, S.; Mosquera, C.; Casapia, M.; Montoya, O.; et al. Uptake of pre-exposure prophylaxis, sexual practices, and HIV incidence in men and transgender women who have sex with men: A cohort study. Lancet Infect. Dis. 2014, 14, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Veyrat, S.; Hopfgartner, G. Mass spectrometry based high-throughput bioanalysis of low molecular weight compounds: Are we ready to support personalized medicine? Anal. Bioanal. Chem. 2022, 414, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Brooks, K.M.; Ibrahim, M.E.; Castillo-Mancilla, J.R.; MaWhinney, S.; Alexander, K.; Tilden, S.; Kerr, B.J.; Ellison, L.; McHugh, C.; Bushman, L.R.; et al. Pharmacokinetics of tenofovir monoester and association with intracellular tenofovir diphosphate following single-dose tenofovir disoproxil fumarate. J. Antimicrob. Chemother. 2019, 74, 2352–2359. [Google Scholar] [CrossRef] [PubMed]
- Delahunty, T.; Bushman, L.; Fletcher, C.V. Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS. J. Chromatogr. B 2006, 830, 6–12. [Google Scholar] [CrossRef]
- Hummert, P.; Parsons, T.L.; Ensign, L.M.; Hoang, T.; Marzinke, M.A. Validation and implementation of liquid chromatographic-mass spectrometric (LC–MS) methods for the quantification of tenofovir prodrugs. J. Pharm. Biomed. Anal. 2018, 152, 248–256. [Google Scholar] [CrossRef]
- Qian, X.; Chen, Q.; Chen, Y.; Ji, S.; Wang, Y.; Sun, Y.; Qi, H.; Zhong, K.; Jiang, J.; Chen, X.; et al. A simple and fast LC–MS/MS method for the simultaneous determination of tenofovir alafenamide and tenofovir in human plasma. Biomed. Chromatogr. 2022, 36, e5273. [Google Scholar] [CrossRef]
- Wiriyakosol, N.; Puangpetch, A.; Manosuthi, W.; Tomongkon, S.; Sukasem, C.; Pinthong, D. A LC/MS/MS method for determination of tenofovir in human plasma and its application to toxicity monitoring. J. Chromatogr. B 2018, 1085, 89–95. [Google Scholar] [CrossRef]
- Jansen, R.S.; Rosing, H.; Kromdijk, W.; ter Heine, R.; Schellens, J.H.; Beijnen, J.H. Simultaneous quantification of emtricitabine and tenofovir nucleotides in peripheral blood mononuclear cells using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B 2010, 878, 621–627. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Bushman, L.; Kiser, J.; Anderson, P.L.; Ray, M.; Delahunty, T.; Fletcher, C.V. Liquid chromatography–tandem mass spectrometric determination of tenofovir-diphosphate in human peripheral blood mononuclear cells. J. Chromatogr. B 2006, 843, 147–156. [Google Scholar] [CrossRef]
- Pruvost, A.; Théodoro, F.; Agrofoglio, L.; Negredo, E.; Bénech, H. Specificity enhancement with LC-positive ESI-MS/MS for the measurement of nucleotides: Application to the quantitative determination of carbovir triphosphate, lamivudine triphosphate and tenofovir diphosphate in human peripheral blood mononuclear cells. J. Mass Spectrom. 2008, 43, 224–233. [Google Scholar] [CrossRef]
- Ouyang, B.; Zhou, F.; Zhen, L.; Peng, Y.; Sun, J.; Chen, Q.; Jin, X.; Wang, G.; Zhang, J. Simultaneous determination of tenofovir alafenamide and its active metabolites tenofovir and tenofovir diphosphate in HBV-infected hepatocyte with a sensitive LC–MS/MS method. J. Pharm. Biomed. Anal. 2017, 146, 147–153. [Google Scholar] [CrossRef]
- Castillo-Mancilla, J.R.; Edwards, J.A.; Brijkumar, J.; Moosa, M.-Y.; Zhao, Y.; Ofotokun, I.; Johnson, B.A.; Lee, M.H.; Pillay, S.; Pillay, M.; et al. Tenofovir diphosphate levels in dried blood spots are associated with virologic failure and resistance to first-line therapy in South Africa: A case–control cohort study. J. Int. AIDS Soc. 2021, 24, e25849. [Google Scholar] [CrossRef] [PubMed]
- Coyle, R.P.; Morrow, M.; Mann, S.C.; Mainella, V.; Ellis, S.L.; Schwab, S.; Coppinger, C.; Barker, N.; Ellison, L.; Zheng, J.H.; et al. Tenofovir-Diphosphate and Emtricitabine-Triphosphate Adherence Benchmarks in Dried Blood Spots for Persons With HIV Receiving Tenofovir Alafenamide and Emtricitabine-Based Antiretroviral Therapy (QUANTI-TAF). Clin. Infect. Dis. 2024, 79, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Jennings, L.; Robbins, R.N.; Nguyen, N.; Ferraris, C.; Leu, C.-S.; Dolezal, C.; Hsiao, N.-y.; Mgbako, O.; Joska, J.; Castillo-Mancilla, J.R.; et al. Tenofovir diphosphate in dried blood spots predicts future viremia in persons with HIV taking antiretroviral therapy in South Africa. AIDS 2022, 36, 933–940. [Google Scholar] [CrossRef]
- Schauer, A.P.; Sykes, C.; Cottrell, M.L.; Prince, H.; Kashuba, A.D.M. Validation of an LC–MS/MS assay to simultaneously monitor the intracellular active metabolites of tenofovir, emtricitabine, and lamivudine in dried blood spots. J. Pharm. Biomed. Anal. 2018, 149, 40–45. [Google Scholar] [CrossRef]
- Wu, L.; Niu, X.; Brunelli, M.K.; Mugwanya, K.K. Adherence and HIV Protection Thresholds for Emtricitabine and Tenofovir Disoproxil Fumarate Preexposure Prophylaxis among Cisgender Women: A Systematic Review. Curr. HIV/AIDS Rep. 2024, 21, 264–281. [Google Scholar] [CrossRef]
- Zheng, J.-H.; Rower, C.; McAllister, K.; Castillo-Mancilla, J.; Klein, B.; Meditz, A.; Guida, L.A.; Kiser, J.J.; Bushman, L.R.; Anderson, P.L. Application of an intracellular assay for determination of tenofovir-diphosphate and emtricitabine-triphosphate from erythrocytes using dried blood spots. J. Pharm. Biomed. Anal. 2016, 122, 16–20. [Google Scholar] [CrossRef]
- Burns, R.N.; Hendrix, C.W.; Chaturvedula, A. Population pharmacokinetics of tenofovir and tenofovir-diphosphate in healthy women. J. Clin. Pharmacol. 2015, 55, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, C.W.; Chen, B.A.; Guddera, V.; Hoesley, C.; Justman, J.; Nakabiito, C.; Salata, R.; Soto-Torres, L.; Patterson, K.; Minnis, A.M.; et al. MTN-001: Randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments. PLoS ONE 2013, 8, e55013. [Google Scholar] [CrossRef] [PubMed]
- Morrow, M.; MaWhinney, S.; Coyle, R.P.; Coleman, S.S.; Gardner, E.M.; Zheng, J.H.; Ellison, L.; Bushman, L.R.; Kiser, J.J.; Anderson, P.L.; et al. Predictive Value of Tenofovir Diphosphate in Dried Blood Spots for Future Viremia in Persons Living With HIV. J. Infect. Dis. 2019, 220, 635–642. [Google Scholar] [CrossRef]
- Singh, Y.; Castillo-Mancilla, J.; Madimabe, R.; Jennings, L.; Ferraris, C.M.; Robbins, R.N.; Anderson, P.L.; Remien, R.H.; Orrell, C. Tenofovir diphosphate in dried blood spots and HIV-1 resistance in South Africa. AIDS Res. Ther. 2023, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Tsuchiya, K.; Kawashima, A.; Watanabe, K.; Hayashi, Y.; Ryu, S.; Hamada, A.; Gatanaga, H.; Oka, S. Steady-state pharmacokinetics of plasma tenofovir alafenamide (TAF), tenofovir (TFV) and emtricitabine (FTC), and intracellular TFV-diphosphate and FTC-triphosphate in HIV-1 infected old Japanese patients treated with bictegravir/FTC/TAF. Glob. Health. Med. 2023, 5, 216–222. [Google Scholar] [CrossRef]
- Xavier-Malcata, F. (Ed.) pH-Driven Deactivation. In Analysis of Enzyme Reaction Kinetics; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 1037–1050. [Google Scholar]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). ICH Harmonised Guideline M10: Bioanalytical Method Validation and Study Sample Analysis. 2022. Available online: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf (accessed on 20 May 2025).
- Matuszewski, B.; Constanzer, M.; Chavez-Eng, C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
Stability/Storage Conditions | Sample | TFV (ng/mL) | TFVDP (ng/mL) |
---|---|---|---|
Blood at −30 °C for 1 month | QC Low (n = 4) | 103.50 | 92.45 |
QC High (n = 4) | 112.26 | 105.81 | |
Blood freeze-thaw 5 cycles | QC Low (n = 4) | 113.53 | 110.63 |
QC High (n = 4) | 111.27 | 95.37 | |
Blood 4 h room temp. | QC Low (n = 4) | 101.59 | 104.71 |
QC High (n = 4) | 100.65 | 96.90 | |
Sample extracts 24 h 10 °C | QC Low (n = 4) | 94.4 | 105.45 |
QC High (n = 4) | 90.7 | 94.29 | |
Precision and Accuracy | |||
Within-run mean accuracy (%) | QC LOQ (n = 4) | 117.31 | 93.03 |
QC Low (n = 4) | 102.45 | 99.84 | |
QC Medium (n = 4) | 109.18 | 98.49 | |
QC High (n = 4) | 100.65 | 91.63 | |
Within-run precision (RSD %) | QC LOQ (n = 4) | 14.08 | 10.86 |
QC Low (n = 4) | 4.35 | 13.78 | |
QC Medium (n = 4) | 4.38 | 2.48 | |
QC High (n = 4) | 5.18 | 5.84 | |
Between-run mean accuracy (%) | QC LOQ (n = 12) | 115.04 | 95.20 |
QC Low (n = 17) | 103.98 | 100.91 | |
QC Medium (n = 18) | 108.08 | 92.9 | |
QC High (n = 18) | 103.89 | 90.30 | |
Between-run precision (RSD %) | QC LOQ (n = 12) | 9.07 | 8.77 |
QC Low (n = 18) | 5.51 | 7.59 | |
QC Medium (n = 18) | 4.38 | 5.28 | |
QC High (n = 18) | 5.85 | 4.01 | |
Extraction recovery (%) | QC Low (n = 4) | 39.87 | 35.58 |
QC Medium (n = 4) | 42.88 | 38.78 | |
QC High (n = 4) | 46.2 | 45.31 | |
Matrix effect | QC Low (n = 4) | 0.52 | 0.70 |
QC Medium (n = 4) | 0.55 | 0.79 | |
QC High (n = 4) | 0.59 | 0.79 |
Patient Code | TFV (ng/mL) | TFVDP (ng/mL) | |
---|---|---|---|
Blood | Plasma | Blood | |
1 | 60.14 | 66.19 | 171.84 |
2 | 29.78 | 47.47 | 135.22 |
3 | 37.36 | 54.57 | 163.65 |
4 | 44.12 | 53.22 | 15.23 |
5 | 60.05 | 70.61 | 91.28 |
6 | 135.00 | 37.33 | 317.50 |
7 | n/a | 232.00 | n/a |
8 | 44.42 | 62.74 | 396.41 |
9 | n/a | 15.14 | n/a |
10 | BLQ | 13.53 | 18.95 |
11 | 2.76 | 28.92 | 38.03 |
Compound ID | Q1 Mass | Q3 Mass | CE | CXP |
---|---|---|---|---|
Tenofovir 1 | 288.054 | 176.0 | 37 | 12 |
Tenofovir 2 | 288.054 | 135.9 | 35 | 16 |
Tenofovir-d6 1 | 293.9 | 182.0 | 37 | 12 |
Tenofovir-d6 2 | 293.9 | 164.0 | 40 | 12 |
Tenofovir di-P 1 | 447.942 | 176.1 | 59 | 10 |
Tenofovir di-P 2 | 447.942 | 270.0 | 37 | 16 |
Tenofovir di-P-d6 1 | 453.967 | 182.1 | 61 | 10 |
Tenofovir di-P-d6 2 | 453.967 | 294.1 | 37 | 14 |
Tenofovir mono-P 1 | 368.0 | 270.0 | 36 | 16 |
Tenofovir mono-P 2 | 368.0 | 288.0 | 35 | 16 |
Tenofovir mono-P-d6 1 | 374.0 | 276.0 | 35 | 16 |
Tenofovir mono-P-d6 2 | 374.0 | 294.0 | 35 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarcomnicu, I.; Iacob, S.; Anuta, V.; Neaga, E.; Otelea, D. Novel Micro-LC-MS/MS Method for the Quantification of Tenofovir and Its Active Metabolite Tenofovir-Diphosphate in Biological Matrices for Therapeutic Drug Monitoring. Pharmaceuticals 2025, 18, 899. https://doi.org/10.3390/ph18060899
Tarcomnicu I, Iacob S, Anuta V, Neaga E, Otelea D. Novel Micro-LC-MS/MS Method for the Quantification of Tenofovir and Its Active Metabolite Tenofovir-Diphosphate in Biological Matrices for Therapeutic Drug Monitoring. Pharmaceuticals. 2025; 18(6):899. https://doi.org/10.3390/ph18060899
Chicago/Turabian StyleTarcomnicu, Isabela, Simona Iacob, Valentina Anuta, Emil Neaga, and Dan Otelea. 2025. "Novel Micro-LC-MS/MS Method for the Quantification of Tenofovir and Its Active Metabolite Tenofovir-Diphosphate in Biological Matrices for Therapeutic Drug Monitoring" Pharmaceuticals 18, no. 6: 899. https://doi.org/10.3390/ph18060899
APA StyleTarcomnicu, I., Iacob, S., Anuta, V., Neaga, E., & Otelea, D. (2025). Novel Micro-LC-MS/MS Method for the Quantification of Tenofovir and Its Active Metabolite Tenofovir-Diphosphate in Biological Matrices for Therapeutic Drug Monitoring. Pharmaceuticals, 18(6), 899. https://doi.org/10.3390/ph18060899