Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action Against Drug-Resistant Bacteria
Abstract
:1. Introduction
2. Beta-Lactamase
2.1. MBLs (Class B Beta-Lactamase)
2.2. Serine-Beta-Lactamases
2.2.1. Class A Beta-Lactamase
2.2.2. Class C Beta-Lactamase
2.2.3. Class D Beta-Lactamase
3. Beta-Lactamase Inhibitors
3.1. Class B Beta-Lactamase Inhibitors (MBLs Inhibitors)
3.1.1. NDM Inhibitors
Compounds | Substrates | Enzymes | Activity (Reduced MIC by) | Pathogens | Ref. |
---|---|---|---|---|---|
Taniborbactam | Cefepime, ceftazidime, imipenem, tebipenem, and cefiderocol | NDM-1 | 32, 133, and 33 fold | EC | [41] |
α-lipoic acid, methimazole | Meropenem | NDM-1 | 16 and 4 fold | EC | [42] |
Bismuth complexes | Meropenem | NDM-1 | 128 fold | KP | [43] |
Polypyridine ligands | Meropenem | NDM-1 | 8–128 fold | KP, SM, Enterobacter cloacae | [44] |
Thiosemicarbazones | Ampicillin, cefazolin, meropenem | NDM-1 | 4–32, 4–32, and 4–8 fold | EC | [45] |
N-acylhydrazones | Meropenem | NDM-1 | 4–16 fold | EC, KP | [46] |
ANT2681 | Meropenem | NDM-1, NDM-4, NDM-5, NDM-7 | 16–512 fold | EC | [47] |
Thiosemicarbazones | Meropenem | NDM-1, ImiS (B2) | 8–32 fold | EC, PK | [48] |
Dipyridyl-substituted thiosemicarbazone | Meropenem | NDM-1, VIM-2, IMP-1, ImiS (B2), Li (B3) | 32 fold | EC, PK | [49] |
Compounds | Substrates | Enzymes | Activity IC50 (μM) | Pathogens | Ref. |
---|---|---|---|---|---|
Ag2O2@BP-MT@MM | Meropenem | NDM-1 | 0.24 | KP | [50] |
Risedronate, Methotrexate, D-captopril | Nitrocefin, ampicillin, cefotaxime, imipenem, meropenem | NDM-1 | 24.6, 29.7, 11.8 | EC | [51] |
Xeruborbactam | Meropenem, cefepime | NDM-1, NDM-9 | 0.24–1.2 | EC, KP | [52] |
Hydroxamates | Meropenem, cefazolin | IMP, NDM-1, VIM-2, Li, ImiS (B2) | 0.1–0.23 | Not specified | [53] |
Compounds | Substrates | Enzymes | Activity (FICI) | Pathogens | Ref. |
---|---|---|---|---|---|
Thiosemicarbazones | Meropenem | NDM-1 | 0.34 | E. cloacae | [54] |
Withaferin A, mangiferin | Imipenem | NDM-1 | 0.0625–0.5 | AB | [55] |
1,2-Isoselenazol-3(2H)-one derivatives | Meropenem | NDM-1 | 0.0625–0.25 | carbapenem-resistant Enterobacteriaceae | [56] |
3.1.2. IMP and VIM Inhibitors
Compounds | Substrates | Enzymes | Activity (Reduced MIC by) | Pathogens | Ref. |
---|---|---|---|---|---|
ZN148 | Meropenem | VIM-2 | 2 fold | PA, AB | [57] |
1,4,7-triazacyclononane-1,4,7 triacetic acid | Meropenem | IMP-1 | 9–11 fold | EC, KP, E. cloacae | [58] |
Cephalosporin-Tripodalamine Conjugate | Meropenem | IMP-4 | 16–512 fold | EC | [35] |
Polyimidazole ligands | Meropenem, aztreonam | VIM-1, IMP-1 | 4 fold | EC, KP | [59] |
N-Aryl Mercaptopropionamides | Imipenem | IMP-7, VIM-1 | 256 fold | EC | [60] |
N-Sulfamoylpyrrole-2-carboxylates | Meropenem | VIM-1, VIM-2, IMP-1 | 170 fold | EC, KP | [61] |
Cephalosporin Conjugates | Meropenem | IMP-1, IMP-28, VIM-2 | 64 fold | EC, KP, E. cloacae | [62] |
1,2,4-Triazole-3-Thione Analogues | Meropenem | VIM-1, VIM-2, VIM-4, IMP-1 | 4–16 fold | EC | [63] |
1H-imidazole-2-carboxylic acidderivatives | Meropenem | VIM-2, VIM-1, VIM-5, IMP-1 | 64 fold | EC | [64] |
Compounds | Substrates | Enzymes | Activity IC50 (μM) | Pathogens | Ref. |
---|---|---|---|---|---|
Alkylthio-substituted aliphatic thiols 3 | imipenem | VIM-1 | 0.3 and 0.02 | EC | [65] |
Cephalosporin derivatives | meropenem, doripenem | IMP-1, VIM-27 | 130 | Acinetobacter | [66] |
4-Alkyl-1,2,4-triazole-3-thione analogues | meropenem | VIM-2, VIM-4 | 0.27 | KP | [67] |
Compounds | Substrates | Enzymes | Activity (FICI) | Pathogens | Ref. |
---|---|---|---|---|---|
H2dpa derivatives | meropenem | IMP-1, VIM-2 | 0.07–0.18 | EC | [68] |
Two catechol-conjugated compounds | imipenem | VIM-1, IMP-7 | 0.045–4.3 | KP | [69] |
3.2. Serine Beta-Lactamases Inhibitor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collaborators, A.R. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar]
- Bush, K.; Bradford, P.A. beta-Lactams and beta-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Kaderabkova, N.; Bharathwaj, M.; Furniss, R.C.D.; Gonzalez, D.; Palmer, T.; Mavridou, D. The biogenesis of beta-lactamase enzymes. Microbiology 2022, 168, 001217. [Google Scholar] [CrossRef]
- Mezcord, V.; Wong, O.; Pasteran, F.; Corso, A.; Tolmasky, M.E.; Bonomo, R.A.; Ramirez, M.S. Role of β-lactamase inhibitors on cefiderocol activity against carbapenem-resistant Acinetobacter species. Int. J. Antimicrob. Agents 2023, 61, 106700. [Google Scholar] [CrossRef]
- Fröberg, G.; Ahmed, A.; Chryssanthou, E.; Davies Forsman, L. The in vitro effect of new combinations of carbapenem-β-lactamase inhibitors for Mycobacterium abscessus. Antimicrob. Agents Chemother. 2023, 67, e0052823. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.; Takebayashi, Y.; Spencer, J. Beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Bonomo, R.A. beta-Lactamases: A Focus on Current Challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a025239. [Google Scholar] [CrossRef]
- Li, R.; Chen, X.; Zhou, C.; Dai, Q.Q.; Yang, L. Recent advances in beta-lactamase inhibitor chemotypes and inhibition modes. Eur. J. Med. Chem. 2022, 242, 114677. [Google Scholar] [CrossRef]
- Longjam, L.A.; Tsering, D.C.; Das, D. Molecular characterization of class A-ESBLs, class B-MBLs, class C-AmpC, and class D-OXA carbapenemases in MDR acinetobacter baumannii clinical isolates in a tertiary care hospital, West Bengal, India. Cureus 2023, 15, e43656. [Google Scholar] [CrossRef]
- Salahuddin, P.; Kumar, A.; Khan, A.U. Structure, Function of Serine and Metallo-beta-lactamases and their Inhibitors. Curr. Protein Pept. Sci. 2018, 19, 130–144. [Google Scholar]
- Zakhour, J.; El, A.L.; Kanj, S.S. Metallo-beta-lactamases: Mechanisms, treatment challenges, and future prospects. Expert Rev. Anti. Infect. Ther. 2024, 22, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.E.; Livermore, D.M.; Hooper, D.C.; Hope, W.W. Metallo-beta-Lactamases: Structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob. Agents Chemother. 2020, 64, e00397-20. [Google Scholar] [CrossRef] [PubMed]
- Cornaglia, G.; Giamarellou, H.; Rossolini, G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect. Dis. 2011, 5, 381–393. [Google Scholar] [CrossRef]
- Xu, S.; Chen, Y.; Fu, Z.; Li, Y.; Shi, G.; Xu, X.; Liu, Y.; Wang, M. New subclass B1 metallo-beta-lactamase gene from a clinical pathogenic myroides odoratus strain. Microb. Drug Resist. 2018, 24, 909–914. [Google Scholar] [CrossRef]
- Niu, W.; Ti, R.; Li, D.; Dong, R.; Dong, J.; Ye, Y.; Xiao, Y.; Wang, Z. Structural insight into the subclass B1 metallo-beta-lactamase AFM-1. Biochem. Biophys. Res. Commun. 2024, 720, 150102. [Google Scholar] [CrossRef]
- Chen, C.; Xiang, Y.; Yang, K.W.; Zhang, Y.; Wang, W.M.; Su, J.P.; Ge, Y.; Liu, Y. A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-beta-lactamases. Chem. Commun. 2018, 54, 4802–4805. [Google Scholar] [CrossRef]
- Dong, X.; Liu, W.; Dong, Y.; Wang, K.; Li, K.; Bian, L. Metallo-beta-lactamase SMB-1 evolves into a more efficient hydrolase under the selective pressure of meropenem. J. Inorg. Biochem. 2023, 247, 112323. [Google Scholar] [CrossRef]
- Slimene, K.; El, S.A.; Dziri, O.; Mabrouk, A.; Miniaoui, D.; Gharsa, H.; Shokri, S.A.; Alhubge, A.M.; Achour, W.; Rolain, J.M.; et al. High carbapenem resistance caused by VIM and NDM enzymes and OprD alteration in nonfermenter bacteria isolated from a Libyan Hospital. Microb. Drug Resist. 2021, 27, 1546–1554. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-beta-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef]
- Bose, P.; Rangnekar, A.; Desikan, P. NDM-beta-lactamase-1: Where do we stand? Indian J. Med. Res. 2022, 155, 243–252. [Google Scholar] [CrossRef]
- Li, L.; Gao, Y.; Wang, L.; Lu, F.; Ji, Q.; Zhang, Y.; Yang, S.; Cheng, P.; Sun, F.; Qu, S. The effects of NDM-5 on Escherichia coli and the screening of interacting proteins. Front. Microbiol. 2024, 15, 1328572. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, K.; Zhao, L.; Tong, R.; Xiong, L.; Shi, J. Recent research and development of NDM-1 inhibitors. Eur. J. Med. Chem. 2021, 223, 113667. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Harada, S.; Yahara, K.; Ishii, Y.; Motooka, D.; Nakamura, S.; Akeda, Y.; Iida, T.; Tomono, K.; Iwata, S.; et al. Molecular characterization of IMP-1-producing Enterobacter cloacae complex isolates in Tokyo. Antimicrob. Agents Chemother. 2018, 62, e02091-17. [Google Scholar] [CrossRef] [PubMed]
- Ayipo, Y.O.; Ahmad, I.; Alananzeh, W.; Lawal, A.; Patel, H.; Mordi, M.N. Computational modelling of potential Zn-sensitive non-beta-lactam inhibitors of imipenemase-1 (IMP-1). J. Biomol. Struct. Dyn. 2023, 41, 10096–10116. [Google Scholar] [CrossRef] [PubMed]
- Krco, S.; Davis, S.J.; Joshi, P.; Wilson, L.A.; Monteiro, P.M.; Douw, A.; Schofield, C.J.; Hugenholtz, P.; Schenk, G.; Morris, M.T. Structure, function, and evolution of metallo-beta-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front. Chem. 2023, 11, 1196073. [Google Scholar] [CrossRef]
- Farhat, N.; Ali, A.; Waheed, M.; Gupta, D.; Khan, A.U. Chemically synthesised flavone and coumarin based isoxazole derivatives as broadspectrum inhibitors of serine beta-lactamases and metallo-beta-lactamases: A computational, biophysical and biochemical study. J. Biomol. Struct. Dyn. 2023, 41, 5990–6000. [Google Scholar] [CrossRef]
- Philippon, A.; Jacquier, H.; Ruppe, E.; Labia, R. Structure-based classification of class A beta-lactamases, an update. Curr. Res. Transl. Med. 2019, 67, 115–122. [Google Scholar] [CrossRef]
- Galdadas, I.; Qu, S.; Oliveira, A.; Olehnovics, E.; Mack, A.R.; Mojica, M.F.; Agarwal, P.K.; Tooke, C.L.; Gervasio, F.L.; Spencer, J.; et al. Allosteric communication in class A beta-lactamases occurs via cooperative coupling of loop dynamics. eLife 2021, 10, e66567. [Google Scholar] [CrossRef]
- Mallik, D.; Jain, D.; Bhakta, S.; Ghosh, A.S. Role of AmpC-inducing genes in modulating other serine beta-lactamases in Escherichia coli. Antibiotics 2022, 11, 67–79. [Google Scholar] [CrossRef]
- Yoon, E.J.; Jeong, S.H. Class D beta-lactamases. J. Antimicrob. Chemother. 2021, 76, 836–864. [Google Scholar] [CrossRef]
- Lupo, V.; Mercuri, P.S.; Frere, J.M.; Joris, B.; Galleni, M.; Baurain, D.; Kerff, F. An extended reservoir of Class-D beta-lactamases in non-clinical bacterial strains. Microbiol. Spectr. 2022, 10, e0031522. [Google Scholar] [CrossRef] [PubMed]
- Krajnc, A.; Brem, J.; Hinchliffe, P.; Calvopina, K.; Panduwawala, T.D.; Lang, P.A.; Kamps, J.; Tyrrell, J.M.; Widlake, E.; Saward, B.G.; et al. Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-beta-Lactamases. J. Med. Chem. 2019, 62, 8544–8556. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Yanagihara, K.; Kaku, N.; Harada, Y.; Migiyama, Y.; Nagaoka, K.; Morinaga, Y.; Nakamura, S.; Imamura, Y.; Miyazaki, T.; et al. In vivo efficacy of biapenem with ME1071, a novel metallo-beta-lactamase (MBL) inhibitor, in a murine model mimicking ventilator-associated pneumonia caused by MBL-producing Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2013, 42, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.; et al. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-beta-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01963-19. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Mushtaq, S.; Morinaka, A.; Ida, T.; Maebashi, K.; Hope, R. Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae and Acinetobacter spp. with carbapenemases, including NDM enzymes. J. Antimicrob. Chemother. 2013, 68, 153–158. [Google Scholar] [CrossRef]
- Wenzler, E.; Gotfried, M.H.; Loutit, J.S.; Durso, S.; Griffith, D.C.; Dudley, M.N.; Rodvold, K.A. Meropenem-RPX7009 concentrations in plasma, epithelial lining fluid, and alveolar macrophages of healthy adult subjects. Antimicrob. Agents Chemother. 2015, 59, 7232–7239. [Google Scholar] [CrossRef]
- Sun, D.; Tsivkovski, R.; Pogliano, J.; Tsunemoto, H.; Nelson, K.; Rubio-Aparicio, D.; Lomovskaya, O. Intrinsic antibacterial activity of xeruborbactam in vitro: Assessing spectrum and mode of action. Antimicrob. Agents Chemother. 2022, 66, e0087922. [Google Scholar] [CrossRef]
- Blanco-Martin, T.; Lopez-Hernandez, I.; Aracil, B.; Gonzalez-Pinto, L.; Aja-Macaya, P.; Alonso-Garcia, I.; Rodriguez-Pallares, S.; Sanchez-Pena, L.; Outeda-Garcia, M.; Perez-Vazquez, M.; et al. Assessment of the activity and mechanisms of resistance to cefiderocol and combinations of beta-lactams and the novel beta-lactamase inhibitors avibactam, taniborbactam, zidebactam, nacubactam, xeruborbactam, and ANT3310 in emerging double-carbapenemase-producing Enterobacterales. Antimicrob. Agents Chemother. 2024, 68, e0092424. [Google Scholar]
- Le Terrier, C.; Freire, S.; Viguier, C.; Findlay, J.; Nordmann, P.; Poirel, L. Relative inhibitory activities of the broad-spectrum beta-lactamase inhibitor xeruborbactam in comparison with taniborbactam against metallo-beta-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2024, 68, e0157023. [Google Scholar] [CrossRef]
- Yamatani, I.; Aono, A.; Fujiwara, K.; Asami, T.; Kamada, K.; Morishige, Y.; Igarashi, Y.; Chikamatsu, K.; Murase, Y.; Yamada, H.; et al. In vitro effects of the new oral beta-lactamase inhibitor xeruborbactam in combination with oral beta-lactams against clinical Mycobacterium abscessus isolates. Microbiol. Spectr. 2024, 12, e0008424. [Google Scholar] [CrossRef]
- Ono, D.; Mojica, M.F.; Bethel, C.R.; Ishii, Y.; Drusin, S.I.; Moreno, D.M.; Vila, A.J.; Bonomo, R.A. Structural role of K224 in taniborbactam inhibition of NDM-1. Antimicrob. Agents Chemother. 2024, 68, 01332-23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, Y.; Yuan, J.; Chen, L.; Tong, H.; Huang, T.; Shi, L.; Jiang, Z. Methimazole and α-lipoic acid as metallo-β-lactamases inhibitors. J. Antibiot. 2022, 75, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Scaccaglia, M.; Rega, M.; Bacci, C.; Giovanardi, D.; Pinelli, S.; Pelosi, G.; Bisceglie, F. Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. J. Inorg. Biochem. 2022, 234, 111887. [Google Scholar] [CrossRef]
- La Piana, L.; Viaggi, V.; Principe, L.; Di Bella, S.; Luzzaro, F.; Viale, M.; Bertola, N.; Vecchio, G. Polypyridine ligands as potential metallo-β-lactamase inhibitors. J. Inorg. Biochem. 2021, 215, 111315. [Google Scholar] [CrossRef]
- Ge, Y.; Kang, P.; Li, J.; Gao, H.; Zhai, L.; Sun, L.; Chen, C.; Yang, K. Thiosemicarbazones exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). J. Antibiot. 2021, 74, 574–579. [Google Scholar] [CrossRef]
- Gao, H.; Li, J.; Kang, P.; Chigan, J.; Wang, H.; Liu, L.; Xu, Y.; Zhai, L.; Yang, K. N-acylhydrazones confer inhibitory efficacy against New Delhi metallo-β-lactamase-1. Bioorganic Chem. 2021, 114, 105138. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Dai, Y.; Mao, A.; Zhou, W.; Cao, X.; Deng, H.; Lu, H.; Ding, L.; Shen, H.; et al. A Cephalosporin-Tripodalamine Conjugate Inhibits Metallo-β-Lactamase with High Efficacy and Low Toxicity. Antimicrob. Agents Chemother. 2022, 66, e0035222. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Chigan, J.; Zhai, L.; Ding, H.; Wu, X.; Chen, W.; Yang, K. Dihydroxyphenyl-substituted thiosemicarbazone: A potent scaffold for the development of metallo-β-lactamases inhibitors and antimicrobial. Bioorganic Chem. 2022, 127, 105928. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Zhai, L.; Sun, L.; Chen, C.; Chigan, J.; Ding, H.; Yang, K. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases. Bioorganic Med. Chem. 2021, 38, 116128. [Google Scholar] [CrossRef]
- Li, H.; Duan, S.; Li, L.; Zhao, G.; Wei, L.; Zhang, B.; Ma, Y.; Wu, M.X.; Mao, Y.; Lu, M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. Adv. Mater. 2024, 36, 2310532. [Google Scholar] [CrossRef]
- Muteeb, G.; Alsultan, A.; Farhan, M.; Aatif, M. Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules 2022, 27, 1283. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Tsivkovski, R.; Totrov, M.; Dressel, D.; Castanheira, M.; Dudley, M. New boronate drugs and evolving NDM-mediated beta-lactam resistance. Antimicrob. Agents Chemother. 2023, 67, e0057923. [Google Scholar] [CrossRef] [PubMed]
- Chigan, J.Z.; Li, J.Q.; Ding, H.H.; Xu, Y.S.; Liu, L.; Chen, C.; Yang, K.W. Hydroxamates as a potent skeleton for the development of metallo-β-lactamase inhibitors. Chem. Biol. Drug Des. 2022, 99, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.S.; Galvao, D.S.; Xavier, C.; Cunha, S.; Pita, S.; Reis, J.N.; Freitas, H.F. Phenotypic and in silico studies for a series of synthetic thiosemicarbazones as New Delhi metallo-beta-lactamase carbapenemase inhibitors. J. Biomol. Struct. Dyn. 2022, 40, 14223–14235. [Google Scholar] [CrossRef]
- Vasudevan, A.; Kesavan, D.K.; Wu, L.; Su, Z.; Wang, S.; Ramasamy, M.K.; Hopper, W.; Xu, H. In silico and in vitro screening of natural compounds as broad-spectrum β-lactamase inhibitors against Acinetobacter baumannii New Delhi Metallo-β-lactamase-1 (NDM-1). BioMed Res. Int. 2022, 2022, 4230788. [Google Scholar] [CrossRef]
- Yue, K.; Xu, C.; Wang, Z.; Liu, W.; Liu, C.; Xu, X.; Xing, Y.; Chen, S.; Li, X.; Wan, S. 1,2-Isoselenazol-3(2H)-one derivatives as NDM-1 inhibitors displaying synergistic antimicrobial effects with meropenem on NDM-1 producing clinical isolates. Bioorganic Chem. 2022, 129, 106153. [Google Scholar] [CrossRef]
- Samuelsen, O.; Astrand, O.; Frohlich, C.; Heikal, A.; Skagseth, S.; Carlsen, T.; Leiros, H.S.; Bayer, A.; Schnaars, C.; Kildahl-Andersen, G.; et al. ZN148 is a modular synthetic Metallo-beta-Lactamase inhibitor that reverses carbapenem resistance in Gram-Negative Pathogens in vivo. Antimicrob. Agents Chemother. 2020, 64, e02415-19. [Google Scholar] [CrossRef]
- Omolabi, K.F.; Reddy, N.; Mdanda, S.; Ntshangase, S.; Singh, S.D.; Kruger, H.G.; Naicker, T.; Govender, T.; Bajinath, S. The in vitro and in vivo potential of metal-chelating agents as metallo-beta-lactamase inhibitors against carbapenem-resistant Enterobacterales. FEMS Microbiol. Lett. 2023, 370, e0052823. [Google Scholar] [CrossRef]
- Bognanni, N.; Brisdelli, F.; Piccirilli, A.; Basile, L.; La Piana, L.; Di Bella, S.; Principe, L.; Vecchio, G.; Perilli, M. New polyimidazole ligands against subclass B1 metallo-β-lactamases: Kinetic, microbiological, docking analysis. J. Inorg. Biochem. 2023, 242, 112163. [Google Scholar] [CrossRef]
- Kaya, C.; Konstantinović, J.; Kany, A.M.; Andreas, A.; Kramer, J.S.; Brunst, S.; Weizel, L.; Rotter, M.J.; Frank, D.; Yahiaoui, S.; et al. N-Aryl Mercaptopropionamides as Broad-Spectrum Inhibitors of Metallo-β-Lactamases. J. Med. Chem. 2022, 65, 3913–3922. [Google Scholar] [CrossRef]
- Farley, A.J.M.; Ermolovich, Y.; Calvopiña, K.; Rabe, P.; Panduwawala, T.; Brem, J.; Björkling, F.; Schofield, C.J. Structural Basis of Metallo-β-lactamase Inhibition by N-Sulfamoylpyrrole-2-carboxylates. ACS Infect. Dis. 2021, 7, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, K.H.M.E.; Wade, N.; Mashayekhi, V.; Brüchle, N.C.; Jespers, W.; Voskuil, K.; Pesce, D.; van Haren, M.J.; van Westen, G.J.P.; Martin, N.I. Novel Cephalosporin Conjugates Display Potent and Selective Inhibition of Imipenemase-Type Metallo-β-Lactamases. J. Med. Chem. 2021, 64, 9141–9151. [Google Scholar] [CrossRef] [PubMed]
- Verdirosa, F.; Gavara, L.; Sevaille, L.; Tassone, G.; Corsica, G.; Legru, A.; Feller, G.; Chelini, G.; Mercuri, P.S.; Tanfoni, S.; et al. 1,2,4-Triazole-3-Thione Analogues with a 2-Ethylbenzoic Acid at Position 4 as VIM-type Metallo-β-Lactamase Inhibitors. ChemMedChem 2022, 17, e202100699. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, W.; Chen, W.; Li, C.; Zhu, K.; Deng, J.; Dai, Q.; Yang, L.; Wang, Z.; Li, G. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. Eur. J. Med. Chem. 2022, 228, 113965. [Google Scholar] [CrossRef]
- Krasavin, M.; Zhukovsky, D.; Solovyev, I.; Barkhatova, D.; Dar’In, D.; Frank, D.; Martinelli, G.; Weizel, L.; Proschak, A.; Rotter, M.; et al. RhII-Catalyzed De-symmetrization of Ethane-1,2-dithiol and Propane-1,3-dithiol Yields Metallo-β-lactamase Inhibitors. ChemMedChem 2021, 16, 3410–3417. [Google Scholar] [CrossRef]
- Hu, L.; Yang, H.; Yu, T.; Chen, F.; Liu, R.; Xue, S.; Zhang, S.; Mao, W.; Ji, C.; Wang, H.; et al. Stereochemically altered cephalosporins as potent inhibitors of New Delhi metallo-β-lactamases. Eur. J. Med. Chem. 2022, 232, 114174. [Google Scholar] [CrossRef]
- Gavara, L.; Legru, A.; Verdirosa, F.; Sevaille, L.; Nauton, L.; Corsica, G.; Mercuri, P.S.; Sannio, F.; Feller, G.; Coulon, R.; et al. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorganic Chem. 2021, 113, 105024. [Google Scholar] [CrossRef]
- Chen, F.; Bai, M.; Liu, W.; Kong, H.; Zhang, T.; Yao, H.; Zhang, E.; Du, J.; Qin, S. H2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. Eur. J. Med. Chem. 2021, 224, 113702. [Google Scholar] [CrossRef]
- Rotter, M.J.; Zentgraf, S.; Weizel, L.; Frank, D.; Burgers, L.D.; Brunst, S.; Fürst, R.; Proschak, A.; Wichelhaus, T.A.; Proschak, E. Integrating Siderophore Substructures in Thiol-Based Metallo-β-Lactamase Inhibitors. Molecules 2023, 28, 1984. [Google Scholar] [CrossRef]
- Wachino, J.I.; Jin, W.; Kimura, K.; Kurosaki, H.; Sato, A.; Arakawa, Y. Sulfamoyl heteroarylcarboxylic acids as promising Metallo-beta-Lactamase inhibitors for controlling bacterial carbapenem resistance. mBio 2020, 11, e03144-19. [Google Scholar] [CrossRef]
- Mishra, A.; Cosic, I.; Loncarevic, I.; Cosic, D.; Fletcher, H.M. Inhibition of β-lactamase function by de novo designed peptide. PLoS ONE 2023, 18, e0290845. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Castanheira, M.; Lindley, J.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Sun, D.; Totrov, M.; Loutit, J.; Dudley, M. In vitro potency of xeruborbactam in combination with multiple β-lactam antibiotics in comparison with other β-lactam/β-lactamase inhibitor (BLI) combinations against carbapenem-resistant and extended-spectrum β-lactamase-producing Enterobacterales. Antimicrob. Agents Chemother. 2023, 67, e00440-23. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; McLeod, S.M.; Miller, A.A. Durlobactam, a Broad-Spectrum Serine β-lactamase Inhibitor, Restores Sulbactam Activity Against Acinetobacter Species. Clin. Infect. Dis. 2023, 76 (Suppl. S2), S194–S201. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, F.; Barnier, J.P.; Sayah, I.; Bagdad, Y.; Miteva, M.A.; Arthur, M.; Ethève Quelquejeu, M.; Iannazzo, L. Ruthenium-Catalyzed Cycloaddition for Introducing Chemical Diversity in Second-Generation β-Lactamase Inhibitors. ChemMedChem 2023, 18, e202300077. [Google Scholar] [CrossRef]
- Krajewska, J.; Chyży, P.; Durka, K.; Wińska, P.; Krzyśko, K.A.; Luliński, S.; Laudy, A.E. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules 2023, 28, 7362. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Rubio-Aparicio, D.; Tsivkovski, R.; Loutit, J.; Dudley, M. The ultrabroad-spectrum beta-lactamase inhibitor QPX7728 restores the potency of multiple oral beta-lactam antibiotics against beta-lactamase-producing strains of resistant Enterobacterales. Antimicrob. Agents Chemother. 2022, 66, e0216821. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, X.; Yao, Z.; Xu, M.; Zhou, B.; Liu, Q.; Zhang, Y.; Zhou, C.; Zhou, T.; Ye, J. Synergistic effect of the novel β-lactamase inhibitor BLI-489 combined with imipenem or meropenem against diverse carbapenemase-producing carbapenem-resistant Enterobacterales. J. Antimicrob. Chemother. 2022, 77, 1301–1305. [Google Scholar] [CrossRef]
- Farhat, N.; Gupta, D.; Ali, A.; Kumar, Y.; Akhtar, F.; Kulanthaivel, S.; Mishra, P.; Khan, F.; Khan, A.U. Broad-Spectrum Inhibitors against Class A, B, and C Type β-Lactamases to Block the Hydrolysis against Antibiotics: Kinetics and Structural Characterization. Microbiol. Spectr. 2022, 10, e00450-22. [Google Scholar] [CrossRef]
- Hinchliffe, P.; Moreno, D.M.; Rossi, M.A.; Mojica, M.F.; Martinez, V.; Villamil, V.; Spellberg, B.; Drusano, G.L.; Banchio, C.; Mahler, G.; et al. 2-Mercaptomethyl thiazolidines (MMTZs) inhibit all metallo-β-lactamase classes by maintaining a conserved binding mode. ACS Infect. Dis. 2021, 7, 2697–2706. [Google Scholar] [CrossRef]
- Alsenani, T.A.; Rodríguez, M.M.; Ghiglione, B.; Taracila, M.A.; Mojica, M.F.; Rojas, L.J.; Hujer, A.M.; Gutkind, G.; Bethel, C.R.; Rather, P.N.; et al. Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses. Antimicrob. Agents Chemother. 2023, 67, e0093022. [Google Scholar] [CrossRef]
- Trout, R.E.; Zulli, A.; Mesaros, E.; Jackson, R.W.; Boyd, S.; Liu, B.; Hamrick, J.; Daigle, D.; Chatwin, C.L.; John, K.; et al. Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): An Orally Bioavailable β-Lactamase Inhibitor for Enterobacterales Expressing Ambler Class A, C, and D Enzymes. J. Med. Chem. 2021, 64, 10155–10166. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Z.; Ning, X.; Deng, J.; Yu, J.; Luo, Y.; Wang, Z.; Li, G.; Li, G.; Xiao, Y. Discovery of 3-aryl substituted benzoxaboroles as broad-spectrum inhibitors of serine- and metallo-β-lactamases. Bioorg. Med. Chem. Lett. 2021, 41, 127956. [Google Scholar] [CrossRef] [PubMed]
- Paquet-Côté, P.; Alejaldre, L.; Lapointe Verreault, C.; Gobeil, S.M.C.; Lamoureux, R.; Bédard, L.; Normandeau, C.; Lemay-St-Denis, C.; Pelletier, J.N.; Voyer, N. Development of sulfahydantoin derivatives as β-lactamase inhibitors. Bioorganic Med. Chem. Lett. 2021, 35, 127781. [Google Scholar] [CrossRef] [PubMed]
Compounds | Substrates | Enzymes | Activity (Reduced MIC by) | Pathogens | Ref. |
---|---|---|---|---|---|
Sulfamoyl Heteroarylcarboxylic Acids | Meropenem | TMB-2, SPM-1, DIM-1, SIM-1, KHM-1 | 128 fold | EC | [70] |
Pep3 peptide | Meropenem | TEM-1 | 64 fold | EC, E. cloacae | [71] |
Xeruborbactam | Cefepime, ceftolozane, ceftriaxone, aztreonam, oiperacillin, ertapenem | KPC-2, CTX-M-14, CTX-M-15, SHV-12, TEM-10 | 8 fold | Enterobacterales | [72] |
Durlobactam | Sulbactam | TEM-1,KPC-2, ADC-7, OXA-24 | 32 fold | Acinetobacter | [73] |
1,5 disubstituted, 1,4,5 trisubstituted triazole DBOs | Aztreonam | KPC-2 | 32,000 fold | EC | [74] |
Aromatic Diboronic Acids | Meropenem, imipenem, ceftazidime | CMY-2, CMY-2, KPC-3 | 8–16 fold | KP, EC, PA | [75] |
QPX7728 | Tebipenem, ceftibuten, amdinocillin | OXA-48, CMY-2 | 4–32 fold | Enterobacterales | [76] |
BLI-489 | Imipenem, meropenem | KPC-2, KPC-2, OXA-23 | 16 fold | Enterobacterales | [77] |
D63, D2148, D2573 | Imipenem, meropenem | KPC-2, CTX-M-15, SHV-1, TEM-1, NDM-1, Amp-C | 16 fold | EC | [78] |
2-Mercaptomethyl thiazolidines | Imipenem | SHI-1 | 4 fold | EC | [79] |
Compounds | Substrates | Enzymes | Activity IC50 | Pathogens | Ref. |
---|---|---|---|---|---|
A-amido-b-triazolylethaneboronic acid transition state | Not specified | KPC2, CTX-M-96, CTX-M-15 | 2–135 nM | EC | [80] |
VNRX-7145 | Ceftibuten | SHV-5, KPC-2, AmpC, OXA-48 | 0.003–8.55 μM | EC, KP | [81] |
3-aryl substituted benzoxaborole derivatives | Meropenem | KPC-2, AmpC, TEM-1 | 86 nM | EC, KP | [82] |
Aulfahydantoin derivatives | Not specified | TEM-1, TEM-15 | 130–510 μM | not specified | [83] |
Category | Representative Compounds | Mechanism of Action | Characteristics | Clinical Application |
---|---|---|---|---|
Serine β-lactamase Inhibitors (SBLIs) | Clavulanic acid | Forms covalent bonds with the active site of serine β-lactamases, irreversibly inhibiting enzyme activity. | Highly effective and broad-spectrum, effective against various serine β-lactamases. | Commonly used in combination with penicillins or cephalosporins, such as amoxicillin-clavulanate. |
Sulbactam | Same as above. | Stable and effective against various serine β-lactamases. | Often combined with ampicillin, such as ampicillin–sulbactam. | |
Tazobactam | Same as above. | Highly effective against various serine β-lactamases. | Frequently paired with piperacillin, such as piperacillin–tazobactam. | |
Avibactam | Reversibly inhibits enzyme activity through non-covalent interactions. | Broad-spectrum, effective against various serine β-lactamases. | Often used with ceftazidime, such as ceftazidime–avibactam. | |
Vaborbactam | Reversibly inhibits enzyme activity through non-covalent interactions. | Broad-spectrum, effective against various serine β-lactamases. | Commonly used with meropenem. | |
Metallo-β-lactamase Inhibitors (MBLIs) | Taniborbactam | Chelates zinc ions in the enzyme’s active site, inhibiting enzyme activity. | Broad-spectrum, effective against various metallo-β-lactamases. | Often used with cefepime, effective against NDM, VIM, etc. |
Xeruborbactam | Chelates zinc ions, inhibiting enzyme activity. | Broad-spectrum, effective against various metallo-β-lactamases. | Commonly used with cefepime, effective against NDM, VIM, etc. | |
RPX7009 | Chelates zinc ions, inhibiting enzyme activity. | Broad-spectrum, effective against various metallo-β-lactamases. | Often used with meropenem. | |
Novel Inhibitors | Piperacillin/Tazobactam/Avibactam | Combines multiple inhibitory mechanisms to enhance activity against multidrug-resistant strains. | Multiple inhibitory mechanisms, highly effective against multidrug-resistant bacteria. | Used for treating infections caused by multidrug-resistant bacteria. |
Other novel compounds (e.g., certain peptide inhibitors) | Inhibits β-lactamase activity through various mechanisms. | Under development, with potential high efficacy and low toxicity. | In clinical trial stages, with future prospects for treating resistant bacterial infections. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-S.; Zhou, H. Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action Against Drug-Resistant Bacteria. Pharmaceuticals 2025, 18, 206. https://doi.org/10.3390/ph18020206
Huang Y-S, Zhou H. Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action Against Drug-Resistant Bacteria. Pharmaceuticals. 2025; 18(2):206. https://doi.org/10.3390/ph18020206
Chicago/Turabian StyleHuang, Ya-Si, and Hong Zhou. 2025. "Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action Against Drug-Resistant Bacteria" Pharmaceuticals 18, no. 2: 206. https://doi.org/10.3390/ph18020206
APA StyleHuang, Y.-S., & Zhou, H. (2025). Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action Against Drug-Resistant Bacteria. Pharmaceuticals, 18(2), 206. https://doi.org/10.3390/ph18020206