Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites
Abstract
:1. Introduction
2. Results and Discussions
2.1. XRD Analysis
(h, k, l) Miller Indices | 2θ (Angle of Diffraction) | C.S (nm) |
---|---|---|
ZnO NPs | ||
100 | 31.5° | 39.37 |
101 | 36.01° | 45.25 |
110 | 56.39° | 47.1 |
112 | 67.75° | 44.54 |
Zn0.75Al0.25O NCs | ||
100 | 31.5° | 36.67 |
101 | 36.01° | 41.65 |
110 | 56.39° | 43.71 |
112 | 67.75° | 42.64 |
Zn0.5Al0.5O NCs | ||
100 | 31.5° | 35.17 |
101 | 36.01° | 39.29 |
110 | 56.39° | 42.31 |
112 | 67.75° | 40.54 |
Zn0.25Al0.75O NCs | ||
100 | 31.5° | 32.87 |
101 | 36.01° | 33.26 |
110 | 56.39° | 35.58 |
112 | 67.75° | 31.29 |
2.2. Fourier Transformation Infrared Spectroscopy
2.3. UV-Visible Spectroscopy
2.4. Scanning Electron Microscopy and Zeta Potential Analysis
2.5. Energy Dispersive X-ray Spectroscopy
2.6. Antimicrobial Activity
2.7. Anticancer Activity
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of ZnO NPs and Al-Doped ZnO Nanocomposites
3.3. Characterization of Nanomaterials
3.4. Well Diffusion Assay
3.5. Cell Culturing
3.6. MTT Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Fakhar-e-Alam, M.; Hassan, M.; Sardar, H.; Zulqarnian, M.; Li, L.; Alothman, A.A.; Alangary, A.B.; Mohammad, S. Synergistic response of PEG coated manganese dioxide nanoparticles conjugated with doxorubicin for breast cancer treatment and MRI application. Arab. J. Chem. 2024, 17, 105958. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Iqbal, W.; Fakhar-e-Alam, M.; Hussain, Z.; Saadullah, M.; Hassan, M.; Rehman, J.; Dahlous, K.A.; Al-Qahtani, N.H. Synthesis and Characterization of Chemically and Green-Synthesized Silver Oxide Particles for Evaluation of Antiviral and Anticancer Activity. Pharmaceuticals 2024, 17, 908. [Google Scholar] [CrossRef]
- Tahir, M.; Fakhar-e-Alam, M.; Asif, M.; Iqbal, M.J.; Abbas, A.; Hassan, M.; Rehman, J.; Bhatti, Q.A.; Mustafa, G.; Alothman, A.A.; et al. Investigation of gadolinium doped manganese nano spinel ferrites via magnetic hypothermia therapy effect towards MCF-7 breast cancer. Heliyon 2024, 10, e24792. [Google Scholar] [CrossRef]
- Hashem, A.H.; El-Sayyad, G.S. Antimicrobial and anticancer activities of biosynthesized bimetallic silver-zinc oxide nanoparticles (Ag-ZnO NPs) using pomegranate peel extract. Biomass Conv. Bioref. 2023, 14, 20345–20357. [Google Scholar] [CrossRef]
- Hassan, S.E.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gamal, M.S. Endophytic Actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J. Biol. Inorg. Chem. 2019, 24, 377–393. [Google Scholar] [CrossRef]
- Menazea, A.A.; Awwad, N.S. Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J. Mater. Res. Technol. 2020, 9, 9434–9441. [Google Scholar] [CrossRef]
- Oves, M.; Aslam, M.; Rauf, M.A.; Qayyum, S.; Qari, H.A.; Khan, M.S.; Alam, M.Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I.M. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C 2018, 89, 429–443. [Google Scholar] [CrossRef]
- Lallo da Silva, B.; Abuçafy, M.P.; Berbel Manaia, E.; Oshiro Junior, J.A.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef]
- Seshadri, V.D. Zinc oxide nanoparticles from Cassia auriculata flowers showed the potent antimicrobial and in vitro anticancer activity against the osteosarcoma MG-63 cells. Saudi J. Biol. Sci. 2021, 28, 4046–4054. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.R.; Sharif, S.; Shaheen, F.; Khalid, M.; Iqbal, Y.; Faisal, A.; Aziz, M.H.; Atif, M.; Ahmad, S.; Fakhar-e-Alam, M.; et al. Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J. Saudi Chem. Soc. 2022, 26, 101438. [Google Scholar] [CrossRef]
- Geffers, C.; Gastmeier, P. Nosocomial infections and multidrug-resistant organisms in Germany: Epidemiological data from KISS (the Hospital Infection Surveillance System). Dtsch. Ärzteblatt Int. 2011, 108, 87. [Google Scholar]
- Waktole, G.; Chala, B. The Role of Biosynthesized Metallic and Metal Oxide Nanoparticles in Combating Anti-Microbial Drug Resilient Pathogens. J. Biomater. Nanobiotechnol. 2023, 14, 1–22. [Google Scholar] [CrossRef]
- Sruthi, S.; Ashtami, J.; Mohanan, P.V. Biomedical application and hidden toxicity of Zinc oxide nanoparticles, Mater. Today Chem. 2018, 10, 175–186. [Google Scholar]
- Baghdadi, N.; Salah, N.; Alshahrie, A.; Koumoto, K. Microwave irradiation to produce high performance thermoelectric material based on Al doped ZnO nanostructures. Crystals 2020, 10, 610. [Google Scholar] [CrossRef]
- Ghotekar, S. Plant extract mediated biosynthesis of Al2O3 nanoparticles-a review on plant parts involved, characterization and applications. Nanochemistry Res. 2019, 4, 163–169. [Google Scholar]
- Zhang, B.; Yang, K.; Zhang, K.; Wang, Q.; Wu, N. Migration transformation, prevention, and control of typical heavy metal lead in coal gangue: A review. Int. J. Coal Sci. Technol. 2023, 10, 85. [Google Scholar] [CrossRef]
- Mahmood, A.; Munir, T.; Fakhar-e-Alam, M.; Atif, M.; Shahzad, K.; Alimgeer, K.S.; Gia, T.N.; Ahmad, H.; Ahmad, S. Analyses of structural and electrical properties of aluminium doped ZnO-NPs by experimental and mathematical approaches. J. King Saud Univ.-Sci. 2022, 34, 101796. [Google Scholar] [CrossRef]
- Fakhar-e-Alam, M.; Amjad, I.; Saadullah, M.; Tahir, M.; Jawad, M.; Asif, M.; Atif, M.; Zara, S.; Rashad, M. Antitumor activity of zinc oxide nanoparticles fused with green extract of Nigella sativa. J. Saudi Chem. Soc. 2024, 28, 101814. [Google Scholar] [CrossRef]
- Nanda, A.; Saravanan, M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 2009, 5, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Rana, G.; Dhiman, P.; Sharma, A. Advances on ZnO hetro-structure as nanoadsorbant for heavy metal removals. In ZnO and Their Hybrid Nano-Structures: Potential Candidates for Diverse Applications; Materials Research Forum LLC: Millersville, PA, USA, 2023; Volume 146, pp. 173–201. [Google Scholar]
- Yu, Q.; Wang, C.; Zhang, X.; Chen, H.; Wu, M.X.; Lu, M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS Nano 2024, 18, 14085–14122. [Google Scholar] [CrossRef] [PubMed]
- Eddy, N.O.; Ukpe, R.A.; Garg, R.; Garg, R.; Odiongenyi, A.; Ameh, P.; Akpet, I.N.; Udo, S.E. Review of in-depth knowledge on the application of oxides nanoparticles and nanocomposites of Al, Si and Ca as photocatalyst and antimicrobial agents in the treatment of contaminants in water. Clean Technol. Environ. Policy 2023, 1–32. [Google Scholar]
- Guo, M.Y.; Ng, A.M.C.; Liu, F.; Djurisic, A.B.; Chan, W.K.; Su, H.; Wong, K.S. Effect of native defects on photocatalytic properties of ZnO. J. Phys. Chem. C 2011, 115, 11095–11101. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Salla, S.; Senthil, R.A.; Nithyadharseni, P.; Madankumar, A.; Arunachalam, P.; Maiyalagan, T.; Kim, H.S. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology 2019, 30, 392001. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Smirnova, V.V.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of Al2O3 nanoparticles. Nanomaterials 2022, 12, 2635. [Google Scholar] [CrossRef]
- Fatima, N.; ul Hassan, S.M.; Fakhar-e-Alam, M.; Asif, M.; Imtiaz, S.; Anwar, S.; Arooj, H.; Imran, M. Development of a novel fluorescence spectroscopy-based method using layered double hydroxides to study degradation of E. coli in water. J. Mol. Struct. 2024, 1310, 138248. [Google Scholar] [CrossRef]
- Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 015008. [Google Scholar] [CrossRef]
- Thongam, D.D.; Gupta, J.; Sahu, N.K.; Bahadur, D. Investigating the role of different reducing agents, molar ratios, and synthesis medium over the formation of ZnO nanostructures and their photo-catalytic activity. J. Mater. Sci. 2018, 53, 1110–1122. [Google Scholar] [CrossRef]
- Srivastava, V.; Choubey, A.K. Kinetic and isothermal study of effect of transition metal doping on adsorptive property of zinc oxide nanoparticles synthesized via green route using Moringa oleifera leaf extract. Mater. Res. Express 2020, 6, 1250i7. [Google Scholar] [CrossRef]
- Dhamodharan, P.; Manoharan, C.; Bououdina, M.; Venkadachalapathy, R.; Ramalingam, S. Al-doped ZnO thin films grown onto ITO substrates as photoanode in dye sensitized solar cell. Sol. Energy 2017, 141, 127–144. [Google Scholar] [CrossRef]
- Sanguanprang, S.; Phuruangrat, A.; Thongtem, T.; Thongtem, S. Preparation of visible-light-driven Al-doped ZnO nanoparticles used for photodegradation of methylene blue. J. Electron. Mater. 2020, 49, 1841–1848. [Google Scholar] [CrossRef]
- Sadiqa, A.; Rasul, A.; Hassan, M.; Sultana, S.; Jabeen, F. Identification of Novel Natural Inhibitors to Human 3-Phosphoglycerate Dehydrogenase (PHGDH) for Cancer Treatment. Molecules 2022, 27, 6108. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Verma, Y.; Rana, K.; Rana, S.V.S. Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem.-Biol. Interact. 2018, 295, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.R.; Mandal, B.K. Synthesis, Characterization of ZnO and Al2O3 Nanoparticles and Its Application in Chromium Remediation Studies. Asian J. Chem. 2017, 29, 2459–2462. [Google Scholar] [CrossRef]
- Musleh, H.; Zayed, H.; Shaat, S.; Al-Kahlout, A.; Tamous, H.; Issa, A.; Asad, J.; AlDahoudi, N. Enhancement of the performance of dye-sensitized solar cells using sensitized zinc oxide nanoparticles by rhodamine B dye. Egypt. J. Chem. 2019, 62, 111–123. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Alterary, S.; Ali Abdullrahman Almoghim, R.; Awad, M.A.; Aldosari, N.S.; Fahad Alghannam, S.; Alabdan, A.N.; Alharbi, S.; Alateeq, B.A.M.; Al Mohsen, A.A.; et al. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules 2020, 25, 4198. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Athinarayanan, J.; Periyasamy, V.S.; Alshuniaber, M.A.; Alshammari, G.; Hakeem, M.J.; Ahmed, M.A.; Alshatwi, A.A. Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics. Molecules 2022, 27, 2489. [Google Scholar] [CrossRef]
- Ahmed, B.; Solanki, B.; Zaidi, A.; Khan, M.S.; Musarrat, J. Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: Insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicol. Res. 2019, 8, 246–261. [Google Scholar] [CrossRef]
- Allayeith, H.K. Zinc-Based Nanoparticles Prepared by a Top-Down Method Exhibit Extraordinary Antibacterial Activity Against Both Pseudomonas aeruginosa and Staphylococcus aureus. Ph.D. Thesis, Kent State University, Kent, OH, USA, 2020. [Google Scholar]
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021, 13, 4570. [Google Scholar] [CrossRef]
Samples | S. aureus | E. coli | B. cereus | P. multocida |
---|---|---|---|---|
DMSO | 0 ± 0.03 mm | 0 ± 0.03 mm | 0 ± 0.03 mm | 0 ± 0.03 mm |
M1 | 12 ± 0.05 mm | 10.2 ± 0.07 mm | 13.9 ± 0.08 mm | 11.1 ± 0.08 mm |
M2 | 12 ± 0.09 mm | 12.5 ± 0.07 mm | 15.5 ± 0.11 mm | 13.3 ± 0.11 mm |
M3 | 11.5 ± 0.07 mm | 10.9 ± 0.09 mm | 14.2 ± 0.08 mm | 11.9 ± 0.09 mm |
M4 | 12 ± 0.07 mm | 12.2 ± 0.09 mm | 13 ± 0.09 mm | 11.8 ± 0.11 mm |
Cephalosporins | 16 ± 0.07 mm | 16 ± 0.07 mm | 16 ± 0.07 mm | 16 ± 0.07 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, M.; Fakhar-e-Alam, M.; Tahir, M.; Jamil, F.; Sardar, H.; Rehman, J.; Dahlous, K.A. Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites. Pharmaceuticals 2024, 17, 1216. https://doi.org/10.3390/ph17091216
Asif M, Fakhar-e-Alam M, Tahir M, Jamil F, Sardar H, Rehman J, Dahlous KA. Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites. Pharmaceuticals. 2024; 17(9):1216. https://doi.org/10.3390/ph17091216
Chicago/Turabian StyleAsif, Muhammad, Muhammad Fakhar-e-Alam, Muhammad Tahir, Farah Jamil, Hassan Sardar, Javed Rehman, and Kholood A. Dahlous. 2024. "Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites" Pharmaceuticals 17, no. 9: 1216. https://doi.org/10.3390/ph17091216
APA StyleAsif, M., Fakhar-e-Alam, M., Tahir, M., Jamil, F., Sardar, H., Rehman, J., & Dahlous, K. A. (2024). Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites. Pharmaceuticals, 17(9), 1216. https://doi.org/10.3390/ph17091216