Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies
Abstract
:1. Introduction
2. Induction of Apoptosis
3. Induction of Autophagy
4. Inhibition of Cell Migration, Invasion and Metastasis
4.1. Epithelial–Mesenchymal Transition (EMT)
4.2. Cell Adhesion and Cytoskeleton Inhibition
5. Cancer Stem Cells (CSCs)
6. Angiogenesis Inhibition
7. PS and Targeted Pathways
7.1. PI3K/AKT Pathway
7.2. ROS Generation and MAPK Pathway
7.3. NF-κB Pathway
7.4. HIF-1a/SPHK-1 Pathway
7.5. Ubiquitin–Proteosome Pathway
7.6. Wnt/β-Catenin Pathway
7.7. Shh/Gli1 Pathway
7.8. Telomerase
8. Role of PS in Overcoming Multidrug Resistance and Enhancing Chemotherapeutic Efficacy
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ABCB1 | ATP-Binding Cassette Subfamily B member 1 |
AIF | Apoptosis-Inducing Factor |
ATG | autophagy-related gene |
BC | breast cancer |
CAC | colitis-associated colorectal cancer |
CML | chronic myeloid leukemia |
CRC | colorectal cancer |
CSCs | cancer stem cells |
DVL | Dishevelled |
EMT | epithelial–mesenchymal transition |
ESCC | esophageal squamous cell carcinoma |
HCC | hepatocellular carcinoma |
HIF1-α | Hypoxia-Inducing Factor1—α |
Htert | human telomerase reverse transcriptase |
HUVEC | human umbilical vein endothelial cell |
JNK | c-Jun NH(2)-terminal kinase |
MDR | multidrug resistance |
MMP | matrix metalloproteinase |
NAC | N-Acetyl Cystine |
NF-kB | nuclear factor-kB |
PS | Pristimerin |
ROS | reactive oxygen species |
TCM | traditional Chinese medicine |
TME | tumor microenvironment |
TNF | tumor necrosis factor |
UM | uveal melanoma |
VEGF | vascular endothelial growth factor |
References
- Chen, R.Z.; Yang, F.; Zhang, M.; Sun, Z.G.; Zhang, N. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Front. Oncol. 2021, 11, 671548. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front. Pharmacol. 2018, 9, 1253. [Google Scholar] [CrossRef]
- Xiang, Y.; Guo, Z.; Zhu, P.; Chen, J.; Huang, Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 2019, 8, 1958–1975. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, M.; Khan, A.Q.; Anver, R.; Ahmad, F.; Mateo, J.M.; Raza, S.S.; Alam, M.; Buddenkotte, J.; Steinhoff, M.; Uddin, S. Pristimerin mediated anticancer effects and sensitization of human skin cancer cells through modulation of MAPK signaling pathways. Biomed. Pharmacother. 2022, 156, 113950. [Google Scholar] [CrossRef]
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; et al. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021, 26, 7368. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front. Pharmacol. 2018, 9, 1534. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
- Huong, D.T.L.; Son, N.T. Pristimerin: Natural Occurrence, Biosynthesis, Pharmacology, and Pharmacokinetics. Rev. Bras. Farmacogn. 2024, 34, 467–480. [Google Scholar] [CrossRef]
- Li, J.J.; Yan, Y.Y.; Sun, H.M.; Liu, Y.; Su, C.Y.; Chen, H.B.; Zhang, J.Y. Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review. Front. Pharmacol. 2019, 10, 746. [Google Scholar] [CrossRef]
- Mathur, A.; Singh, A.; Hussain, Y.; Mishra, A.; Meena, A.; Mishra, N.; Luqman, S. Regulating pri/pre-microRNA up/down expressed in cancer proliferation, angiogenesis and metastasis using selected potent triterpenoids. Int. J. Biol. Macromol. 2024, 257 Pt 1, 127945. [Google Scholar] [CrossRef]
- Yousef, B.A.; Hassan, H.M.; Zhang, L.Y.; Jiang, Z.Z. Anticancer Potential and Molecular Targets of Pristimerin: A Mini- Review. Curr. Cancer Drug Targets 2017, 17, 100–108. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, Y.; Zhao, Y.; Liu, Y.; Tao, L. Pristimerin synergizes with gemcitabine through abrogating Chk1/53BP1-mediated DNA repair in pancreatic cancer cells. Food Chem. Toxicol. 2021, 147, 111919. [Google Scholar] [CrossRef]
- Lee, Y.; Na, J.; Lee, M.S.; Cha, E.Y.; Sul, J.Y.; Park, J.B.; Lee, J.S. Combination of pristimerin and paclitaxel additively induces autophagy in human breast cancer cells via ERK1/2 regulation. Mol. Med. Rep. 2018, 18, 4281–4288. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Yu, X.; Liang, H.; Chen, J.; Tang, X.; Wu, S.; Liao, C. Pristimerin overcomes adriamycin resistance in breast cancer cells through suppressing Akt signaling. Oncol. Lett. 2016, 11, 3111–3116. [Google Scholar] [CrossRef]
- Ke, B.; Tian, M.; Li, J.; Liu, B.; He, G. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Med. Res. Rev. 2016, 36, 983–1035. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Anticancer activity of pristimerin in ovarian carcinoma cells is mediated through the inhibition of prosurvival Akt/NF-kappaB/mTOR signaling. J. Exp. Ther. Oncol. 2014, 10, 275–283. [Google Scholar]
- Deeb, D.; Gao, X.; Liu, Y.B.; Pindolia, K.; Gautam, S.C. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-kappaB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int. J. Oncol. 2014, 44, 1707–1715. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Bai, J.P.; Xie, Y.; Yu, J.Z.; Ma, C.G. The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol. Lett. 2013, 5, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Downard, J.S.; Kim, S.H.; Kil, K.S. Localization of the cis-acting regulatory DNA sequences of the Myxococcus xanthus tps and ops genes. J. Bacteriol. 1988, 170, 4931–4938. [Google Scholar] [CrossRef] [PubMed]
- Yousef, B.A.; Hassan, H.M.; Guerram, M.; Hamdi, A.M.; Wang, B.; Zhang, L.Y.; Jiang, Z.Z. Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells. Biomed. Pharmacother. 2016, 79, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Gao, X.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Pristimerin Induces Apoptosis in Prostate Cancer Cells by Down-regulating Bcl-2 through ROS-dependent Ubiquitin-proteasomal Degradation Pathway. J. Carcinog. Mutagen. 2013, (Suppl. 6), 005. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.Y.; Kim, M.J.; Eum, D.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Hyun, J.W.; Lee, Y.S.; Lee, J.S.; Yoon, M.Y.; et al. Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol. Pharmacol. 2009, 76, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.; Ferreira, P.M.; Bolzani, V.d.S.; Furlan, M.; de Freitas Formenton Macedo Dos Santos, V.A.; Corsino, J.; de Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; Pessoa, C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol. In Vitro 2008, 22, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Chan, M.L.; Chen, W.Y.; Tsai, C.Y.; Chang, F.R.; Wu, Y.C. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol. Cancer Ther. 2005, 4, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, Y.; Zhong, J.; Bi, Y.; Liu, Y.; Ren, Z.; Li, X.; Jia, J.; Yu, M.; Yu, X. Pristimerin induces apoptosis and autophagy via activation of ROS/ASK1/JNK pathway in human breast cancer in vitro and in vivo. Cell Death Discov. 2019, 5, 125. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhang, Z.; Hu, C.; Xing, N.; Xia, Y.; Pang, B. Pristimerin Suppressed Breast Cancer Progression via miR-542-5p/DUB3 Axis. Onco Targets Ther. 2020, 13, 6651–6660. [Google Scholar] [CrossRef]
- Lee, J.S.; Yoon, I.S.; Lee, M.S.; Cha, E.Y.; Thuong, P.T.; Diep, T.T.; Kim, J.R. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells. Biol. Pharm. Bull. 2013, 36, 316–325. [Google Scholar] [CrossRef]
- Zhao, Q.; Bi, Y.; Zhong, J.; Ren, Z.; Liu, Y.; Jia, J.; Yu, M.; Tan, Y.; Zhang, Q.; Yu, X. Pristimerin suppresses colorectal cancer through inhibiting inflammatory responses and Wnt/beta-catenin signaling. Toxicol. Appl. Pharmacol. 2020, 386, 114813. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, J.K. Pristimerin, a naturally occurring triterpenoid, attenuates tumorigenesis in experimental colitis-associated colon cancer. Phytomedicine 2018, 42, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, Z.; Li, X.; Zhong, J.; Bi, Y.; Li, R.; Zhao, Q.; Yu, X. Pristimerin Induces Autophagy-Mediated Cell Death in K562 Cells through the ROS/JNK Signaling Pathway. Chem. Biodivers. 2019, 16, e1900325. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Zhong, Y.; Huang, L.; Li, S.; Fu, J.; Zhang, L.; Zhang, Y.; Deng, Q.; Yu, X. Identification of a novel tumor angiogenesis inhibitor targeting Shh/Gli1 signaling pathway in Non-small cell lung cancer. Cell Death Dis. 2020, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Y.; Zhou, H.; Jia, G.; Liu, J.; Han, B.; Cheng, Z.; Jiang, H.; Pan, S.; Sun, B. Pristimerin causes G1 arrest, induces apoptosis, and enhances the chemosensitivity to gemcitabine in pancreatic cancer cells. PLoS ONE 2012, 7, e43826. [Google Scholar] [CrossRef] [PubMed]
- Deeb, D.; Gao, X.; Liu, Y.; Pindolia, K.; Gautam, S.C. Inhibition of hTERT/telomerase contributes to the antitumor activity of pristimerin in pancreatic ductal adenocarcinoma cells. Oncol. Rep. 2015, 34, 518–524. [Google Scholar] [CrossRef]
- Liu, Y.B.; Gao, X.; Deeb, D.; Brigolin, C.; Zhang, Y.; Shaw, J.; Pindolia, K.; Gautam, S.C. Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int. J. Oncol. 2014, 45, 1735–1741. [Google Scholar] [CrossRef]
- Liu, Y.B.; Gao, X.; Deeb, D.; Pindolia, K.; Gautam, S.C. Role of telomerase in anticancer activity of pristimerin in prostate cancer cells. J. Exp. Ther. Oncol. 2015, 11, 41–49. [Google Scholar]
- Yang, H.; Landis-Piwowar, K.R.; Lu, D.; Yuan, P.; Li, L.; Reddy, G.P.; Yuan, X.; Dou, Q.P. Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J. Cell Biochem. 2008, 103, 234–244. [Google Scholar] [CrossRef]
- Wu, H.; Li, L.; Ai, Z.; Yin, J.; Chen, L. Pristimerin induces apoptosis of oral squamous cell carcinoma cells via G(1) phase arrest and MAPK/Erk1/2 and Akt signaling inhibition. Oncol. Lett. 2019, 17, 3017–3025. [Google Scholar] [CrossRef]
- Mu, X.M.; Shi, W.; Sun, L.X.; Li, H.; Wang, Y.R.; Jiang, Z.Z.; Zhang, L.Y. Pristimerin inhibits breast cancer cell migration by up- regulating regulator of G protein signaling 4 expression. Asian Pac. J. Cancer Prev. 2012, 13, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Bai, S.; Gao, W.; Tong, L. Pristimerin inhibits angiogenesis in adjuvant-induced arthritic rats by suppressing VEGFR2 signaling pathways. Int. Immunopharmacol. 2015, 29, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Eum, D.Y.; Byun, J.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Lee, J.H.; Chung, H.Y.; An, S.; Suh, Y.; Kim, M.J.; et al. Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anticancer Drugs 2011, 22, 763–773. [Google Scholar] [CrossRef]
- Yousef, B.A.; Hassan, H.M.; Zhang, L.Y.; Jiang, Z.Z. Pristimerin exhibits in vitro and in vivo anticancer activities through inhibition of nuclear factor-small ka, CyrillicB signaling pathway in colorectal cancer cells. Phytomedicine 2018, 40, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Bi, Y.; Guo, J.; Liu, Y.; Zhong, J.; Liu, Y.; Pan, L.; Guo, Y.; Tan, Y.; Yu, X. Effect of pristimerin on apoptosis through activation of ROS/endoplasmic reticulum (ER) stress-mediated noxa in colorectal cancer. Phytomedicine 2021, 80, 153399. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Jin, Y.; Chen, C.; Li, J.; Cao, Q.; Pan, J. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-kappaB signaling and depleting Bcr-Abl. Mol. Cancer 2010, 9, 112, Erratum in Mol. Cancer 2021, 20, 172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Hui, B.; Sun, W.; Li, B.; Shi, F.; Che, S.; Chai, L.; Song, L. Pristimerin enhances the effect of cisplatin by inhibiting the miR-23a/Akt/GSK3beta signaling pathway and suppressing autophagy in lung cancer cells. Int. J. Mol. Med. 2019, 43, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lei, Y.; Huang, S.; Li, Z.; Chen, X.; Luo, H.; Cheng, C.; Chen, J.; Zou, X.; Chen, X. Pristimerin Exacerbates Cellular Injury in Conditionally Reprogrammed Patient-Derived Lung Adenocarcinoma Cells by Aggravating Mitochondrial Impairment and Endoplasmic Reticulum Stress through EphB4/CDC42/N-WASP Signaling. Oxid. Med. Cell. Longev. 2020, 2020, 7409853. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, P.; Peng, X.; Li, J.; Xu, D.; Tang, Y. Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs. Cell. Physiol. Biochem. 2015, 37, 253–268. [Google Scholar] [CrossRef]
- Yun, C.W.; Lee, S.H. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef]
- Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27, 107–132. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Sun, L.Y.; Zhang, Y.Q. A Hopeful Natural Product, Pristimerin, Induces Apoptosis, Cell Cycle Arrest, and Autophagy in Esophageal Cancer Cells. Anal. Cell. Pathol. 2019, 2019, 6127169. [Google Scholar] [CrossRef] [PubMed]
- Cevatemre, B.; Erkisa, M.; Aztopal, N.; Karakas, D.; Alper, P.; Tsimplouli, C.; Sereti, E.; Dimas, K.; Armutak, E.I.I.; Gurevin, E.G.; et al. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol. Res. 2018, 129, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Valastyan, S.; Weinberg, R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011, 147, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020, 30, 764–776. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 2018, 13, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, Q.; Lei, X.; Zhang, L.; Su, C.; Liu, Y.; Zhou, W.; Chen, H.; Wang, H.; Wang, F.; et al. Pristimerin induces apoptosis and inhibits proliferation, migration in H1299 Lung Cancer Cells. J. Cancer 2020, 11, 6348–6355. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Guo, Y.; Peng, X.; Tang, Y.; Zhang, X.; He, P.; Li, S.; Wa, Q.; Li, J.; Huang, S.; et al. Inhibitory action of pristimerin on hypoxia-mediated metastasis involves stem cell characteristics and EMT in PC-3 prostate cancer cells. Oncol. Rep. 2015, 33, 1388–1394. [Google Scholar] [CrossRef]
- Shu, C.; Yu, X.; Cheng, S.; Jing, J.; Hu, C.; Pang, B. Pristimerin Suppresses Trophoblast Cell Epithelial-Mesenchymal Transition via miR-542-5p/EGFR Axis. Drug Des. Dev. Ther. 2020, 14, 4659–4670. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Wang, Y.; Hu, P.; Wang, J.; Wang, R.Y. Pristimerin exerts antitumor activity against MDA-MB-231 triple-negative breast cancer cells by reversing of epithelial-mesenchymal transition via downregulation of integrin beta3. Biomed. J. 2021, 44 (Suppl. 1), S84–S92. [Google Scholar] [CrossRef] [PubMed]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Tan, F.; Zhou, J.; Pan, J. Pristimerin targeting NF-kappaB pathway inhibits proliferation, migration, and invasion in esophageal squamous cell carcinoma cells. Cell Biochem. Funct. 2018, 36, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.C.; Kim, J.H. Cancer stem cell metabolism: Target for cancer therapy. BMB Rep. 2018, 51, 319–326. [Google Scholar] [CrossRef]
- Singh, P.; Augustine, D.; Rao, R.S.; Patil, S.; Awan, K.H.; Sowmya, S.V.; Haragannavar, V.C.; Prasad, K. Role of cancer stem cells in head-and-neck squamous cell carcinoma—A systematic review. J. Carcinog. 2021, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Shi, W.; Sun, L.; Li, H.; Jiang, Z.; Zhang, L. Pristimerin, a triterpenoid, inhibits tumor angiogenesis by targeting VEGFR2 activation. Molecules 2012, 17, 6854–6868. [Google Scholar] [CrossRef]
- Lee, S.O.; Kim, J.S.; Lee, M.S.; Lee, H.J. Anti-cancer effect of pristimerin by inhibition of HIF-1alpha involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer 2016, 16, 701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, J.; Pan, J. Pristimerin effectively inhibits the malignant phenotypes of uveal melanoma cells by targeting NF-kappaB pathway. Int. J. Oncol. 2017, 51, 887–898. [Google Scholar] [CrossRef]
- Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol. 2015, 137, 173–179. [Google Scholar] [CrossRef]
- Yan, F.; Liao, R.; Silva, M.; Li, S.; Jiang, Y.; Peng, T.; Lazarovici, P.; Zheng, W. Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway. J. Cell. Mol. Med. 2020, 24, 6208–6219. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef]
- Huang, H.D.; Yao, B.G. Analysis of 1,698 cases of elderly gastric disease diagnosed by gastroscope. Chin. Med. J. 1987, 100, 685–687. [Google Scholar] [PubMed]
- Guo, Y.; Zhang, W.; Yan, Y.Y.; Ma, C.G.; Wang, X.; Wang, C.; Zhao, J.L. Triterpenoid pristimerin induced HepG2 cells apoptosis through ROS-mediated mitochondrial dysfunction. J. BUON 2013, 18, 477–485. [Google Scholar] [PubMed]
- Hayashi, D.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mizoshiri, N.; Mori, Y.; Arai, Y.; Mazda, O.; Kubo, T. Pristimerin inhibits the proliferation of HT1080 fibrosarcoma cells by inducing apoptosis. Oncol. Lett. 2020, 19, 2963–2970. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, C.; Lu, B.; Zhou, Z.; Jin, Y.; Wang, Z.; Zheng, L.; Liu, K.; Luo, T.; Zhu, D.; et al. Pristimerin triggers AIF-dependent programmed necrosis in glioma cells via activation of JNK. Cancer Lett. 2016, 374, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 2011, 12, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins 2010, 2, 2428–2466. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Ballarino, M.; Sorrentino, A.; Sthandier, O.; De Angelis, F.G.; Marchioni, M.; Masella, B.; Guarini, A.; Fatica, A.; Peschle, C.; et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc. Natl. Acad. Sci. USA 2007, 104, 19849–19854. [Google Scholar] [CrossRef]
- Mori, Y.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mizoshiri, N.; Hayashi, D.; Arai, Y.; Kishida, T.; Mazda, O.; Kubo, T. Antitumor effects of pristimerin on human osteosarcoma cells in vitro and in vivo. Onco Targets Ther. 2017, 10, 5703–5710. [Google Scholar] [CrossRef]
- Rankin, E.B.; Giaccia, A.J. Hypoxic control of metastasis. Science 2016, 352, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004, 9 (Suppl. 5), 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wu, S.; Wang, X.; Sun, C.K.; Yang, X.; Yan, X.; Chua, M.S.; So, S. Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget 2014, 5, 5819–5831. [Google Scholar] [CrossRef] [PubMed]
- Mofers, A.; Pellegrini, P.; Linder, S.; D’Arcy, P. Proteasome-associated deubiquitinases and cancer. Cancer Metastasis Rev. 2017, 36, 635–653. [Google Scholar] [CrossRef] [PubMed]
- Tiedemann, R.E.; Schmidt, J.; Keats, J.J.; Shi, C.X.; Zhu, Y.X.; Palmer, S.E.; Mao, X.; Schimmer, A.D.; Stewart, A.K. Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood 2009, 113, 4027–4037. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Xia, X.; Kong, S.; Wang, T.; Fan, F.; Wang, W. Natural pentacyclic triterpenoid from Pristimerin sensitizes p53-deficient tumor to PARP inhibitor by ubiquitination of Chk1. Pharmacol. Res. 2024, 201, 107091. [Google Scholar] [CrossRef] [PubMed]
- Iijima, T.; Taira, N. Modification by manganese ions and verapamil of the responses of the atrioventricular node to norepinephrine. Eur. J. Pharmacol. 1976, 37, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014, 347, 159–166. [Google Scholar] [CrossRef]
- Dewanjee, S.; Dua, T.K.; Bhattacharjee, N.; Das, A.; Gangopadhyay, M.; Khanra, R.; Joardar, S.; Riaz, M.; Feo, V.; Zia-Ul-Haq, M. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules 2017, 22, 871. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 2014, 20, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.Y.; Wang, F.; Zhao, X.Q.; Wang, X.K.; Chen, Y.F.; Liu, H.; Xie, Y.; Fu, L.W. Degradation of P-glycoprotein by pristimerin contributes to overcoming ABCB1-mediated chemotherapeutic drug resistance in vitro. Oncol. Rep. 2017, 37, 31–40. [Google Scholar] [CrossRef] [PubMed]
Cancer | Cell Lines | Mechanism of Action/s | PS Alone or/in Combination with Other Drug | References |
---|---|---|---|---|
Breast cancer | MDA-MB-231 | Increased expression of RGS4 that suppressed migration and invasion | PS (0–3 µM) | [27] |
ADR-resistant MCF-7/ADR | Induced apoptosis via suppression of AKT pathway | PS (0–10 µM) | [16] | |
MDA-MB-231 | Enhanced autophagy induction | PS (5 µM) and paclitaxel (24 µM) | [15] | |
MDA-MB-231, MDA-MB-468 | Decreased levels of phosphorylated ASK1 and JNK | PS (0–0.6 µM) | [28] | |
MCF-7, MDA-MB-231,4T1 | Induced apoptosis, upregulated expression of miR-542-5p while downregulating DUB3 levels | PS (0–4 µM) | [29] | |
epidermal growth factor receptor 2 (HER2)-positive SKBR3 | Reduced fatty acid synthase and altered AKT, MAPK, and mTOR pathways | PS (0–10 µM) | [30] | |
Cervical cancer | HeLa | Activated ROS-dependent JNK, Bax, and PARP-1 | PS | [25] |
HeLa, CasKi, SiHa | Induced ROS-dependent cell death | PS | [25] | |
Colorectal cancer | HCT116, HT-29 | Inhibited Wnt/β-catenin signaling pathway | PS | [31] |
AOM/DSS model of colitis-associated colorectal cancer | Suppression of AKT and FOXO3 signaling | PS | [32] | |
Leukemia | HL-60 | Induced apoptosis | PS | [26] |
K562 | ROS-JNK-induced autophagy. | PS (0–0.8 µM) | [33] | |
Lung cancer | NCI-H1299 | Targeted Shh/Gli1 signaling pathway | PS (0–500 nM) | [34] |
NCI-H1299 | Decreased the rate of migration and invasion | PS (0–500 nM) | [34] | |
Ovarian cancer | OVCAR-5, MDAH- 2774, SK-OV-3 | Inhibited AKT/NF-k B/mTOR pathway | PS (0–10 µM) | [19] |
Pancreatic cancer | AsPC-1, BxPC-3, PANC-1 | Abrogated Chk1/53BP1-mediated DNA repair, suppressed NF-κB activity | PS (200 nM) + gemcitabine (500 nM) | [14,35] |
MiaPaCa-2, Panc-1 | Inhibited hTERT via suppressing transcription factors | PS (0–5 µM) | [36] | |
MiaPaCa-2, Panc-1 | Induced inhibition of AKT/NF-κB/mTOR pathway | PS (5 µM) + proteasome inhibitors | [20] | |
Prostate | LNCaP, PC-3 | Decreased level of survivin and Bcl-2, and Inhibited hTERT mRNA expression levels. | PS (0–10 µM) | [24,37,38] |
PC-3, LNCaP, C4-2B | Induced apoptosis | PS (0–5 µM) | [39] | |
Oral squamous cell carcinoma | CAL-27, SCC-25 | G1 arrest via inhibition of MAPK/Erk1/2 and AKT pathway | PS (0–1 µM) | [40] |
Cancer | Animal Models | Mechanism of Action/s | PS Alone or/in Combination with Other Drug | References |
---|---|---|---|---|
Breast cancer | Breast cancer xenograft model | The inhibition of proteasomal activity and inhibition of tumor migration and invasion | PS (1 mg/kg) | [41] |
MDA-MB-231 tumor xenografts in nude mice | The stimulation of ROS/ASK1/JNK-mediated apoptosis and autophagy. Suppression of tumor growth | PS (0.5 mg/kg) | [28] | |
Human breast cancer xenograft model | Suppression of VEGF, tumor growth, and angiogenesis | PS (3 mg/kg) | [42] | |
Cervical cancer | Tumor xenografts on nude mice | Apoptosis via mitochondrial signaling and activation of pro-apoptotic protein Bax | PS + Taxol | [43] |
Colorectal cancer | Human colorectal cancer xenograft model | Inhibited tumor growth via targeting PI3K/AKT/mTOR pathway | PS (1 mg/kg) | [23] |
Human colorectal cancer xenograft model | Inhibited NF-кB signaling pathway | PS (1 mg/kg) | [44] | |
Tumor xenograft in nude mice | Apoptosis through activation of the ROS/ER stress/JNK pathway | PS | [45] | |
Leukemia | Imatinib-resistant Bcr-Abl-T315I xenografts in mice | Suppressed TNFα-induced NFKB, as well as inhibition of the Bcr-Abl expression | PS (1 mg/kg) | [46] |
Lung cancer | Human lung tumors xenograft model | Anticancer activity via targeting miR−23a/AKT/GSK3b pathway | PS (0.8 mg/kg) + cisplatin (2 mg/kg) | [47] |
Lung tissue samples from patients | Exerted anticancer activities through EphB4/CDC42/N-WASP pathway. | PS (0–8 µM) | [48] | |
Prostate cancer | Intra-tibial injection mouse model | Suppressed stem cell activity and angiogenesis via VEGF inhibition | PS (1.6 µM) | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabhu, K.S.; Jessy, S.; Kuttikrishnan, S.; Mujeeb, F.; Mariyam, Z.; Habeeba, U.; Ahmad, N.; Bhat, A.A.; Uddin, S. Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies. Pharmaceuticals 2024, 17, 578. https://doi.org/10.3390/ph17050578
Prabhu KS, Jessy S, Kuttikrishnan S, Mujeeb F, Mariyam Z, Habeeba U, Ahmad N, Bhat AA, Uddin S. Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies. Pharmaceuticals. 2024; 17(5):578. https://doi.org/10.3390/ph17050578
Chicago/Turabian StylePrabhu, Kirti S., Serah Jessy, Shilpa Kuttikrishnan, Farina Mujeeb, Zahwa Mariyam, Ummu Habeeba, Nuha Ahmad, Ajaz A. Bhat, and Shahab Uddin. 2024. "Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies" Pharmaceuticals 17, no. 5: 578. https://doi.org/10.3390/ph17050578
APA StylePrabhu, K. S., Jessy, S., Kuttikrishnan, S., Mujeeb, F., Mariyam, Z., Habeeba, U., Ahmad, N., Bhat, A. A., & Uddin, S. (2024). Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies. Pharmaceuticals, 17(5), 578. https://doi.org/10.3390/ph17050578