Real-World Safety Data of the Orphan Drug Onasemnogene Abeparvovec (Zolgensma®) for the SMA Rare Disease: A Pharmacovigilance Study Based on the EMA Adverse Event Reporting System
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaytow, H.; Huang, Y.T.; Gillingwater, T.H.; Faller, K.M.E. The Role of Survival Motor Neuron Protein (SMN) in Protein Homeostasis. Cell. Mol. Life Sci. 2018, 75, 3877–3894. [Google Scholar] [CrossRef]
- Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, Incidence and Carrier Frequency of 5q-Linked Spinal Muscular Atrophy-a Literature Review. Orphanet J. Rare Dis. 2017, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.F.; Kwon, J.M. Spinal Muscular Atrophy: Past, Present, and Future. Neoreviews 2019, 20, e437–e451. [Google Scholar] [CrossRef]
- Oliveira, D.; Sarkar, P.S.; Zeng, C.-W.; Tedesco, B.; Dimitriadi, M.; Rashid, S. Autophagy in Spinal Muscular Atrophy: From Pathogenic Mechanisms to Therapeutic Approaches. Front. Cell. Neurosci 2024, 17, 1307636. [Google Scholar] [CrossRef]
- Younger, D.S.; Mendell, J.R. Childhood Spinal Muscular Atrophy. Handb. Clin. Neurol. 2023, 196, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Kolb, S.J.; Kissel, J.T. Spinal Muscular Atrophy. Neurol. Clin. 2015, 33, 831–846. [Google Scholar] [CrossRef]
- Arnold, E.S.; Fischbeck, K.H. Spinal Muscular Atrophy. Handb. Clin. Neurol. 2018, 148, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Sarret, C. Pathogenesis and Therapeutic Targets in Spinal Muscular Atrophy (SMA). Arch. Pédiatrie 2020, 27, 7S3–7S8. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, S.; Boccanegra, B.; Vitturi, G.; Trifirò, G.; De Luca, A. Pharmacological Therapies of Spinal Muscular Atrophy: A Narrative Review of Preclinical, Clinical–Experimental, and Real-World Evidence. Brain Sci. 2023, 13, 1446. [Google Scholar] [CrossRef]
- Hagenacker, T.; Schara-Schmidt, U. Gene Replacement Therapy in Spinal Muscular Atrophy: Filling the Data Gaps. Lancet Reg. Health—Eur. 2024, 37, 100822. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaidy, S.; Pickard, A.S.; Kotha, K.; Alfano, L.N.; Lowes, L.; Paul, G.; Church, K.; Lehman, K.; Sproule, D.M.; Dabbous, O.; et al. Health Outcomes in Spinal Muscular Atrophy Type 1 Following AVXS-101 Gene Replacement Therapy. Pediatr. Pulmonol. 2019, 54, 179–185. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Summary of the Risk Management for Zolgensma® (onasemnogene abeparvovec). Last updated:18/10/2023. Available online: https://www.ema.europa.eu/en/documents/rmp-summary/zolgensma-epar-risk-management-plan-summary_en.pdf (accessed on 3 March 2024).
- Zinzi, A.; Gaio, M.; Liguori, V.; Ruggiero, R.; Tesorone, M.; Rossi, F.; Rafaniello, C.; Capuano, A. Safety Monitoring of MRNA COVID-19 Vaccines in Children Aged 5 to 11 Years by Using EudraVigilance Pharmacovigilance Database: The CoVaxChild Study. Vaccines 2023, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, R.; Balzano, N.; Di Napoli, R.; Fraenza, F.; Pentella, C.; Riccardi, C.; Donniacuo, M.; Tesorone, M.; Danesi, R.; Del Re, M.; et al. Do Peripheral Neuropathies Differ among Immune Checkpoint Inhibitors? Reports from the European Post-Marketing Surveillance Database in the Past 10 Years. Front. Immunol. 2023, 14, 1134436. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.R.; Sarpatwari, A.; Desai, R.J.; Bohn, J.M.; Khan, N.F.; Kesselheim, A.S.; Fischer, M.A.; Gagne, J.J.; Connolly, J.G. Effect of Lawyer-Submitted Reports on Signals of Disproportional Reporting in the Food and Drug Administration’s Adverse Event Reporting System. Drug Saf. 2019, 42, 85–93. [Google Scholar] [CrossRef]
- Toki, T.; Ono, S. Spontaneous Reporting on Adverse Events by Consumers in the United States: An Analysis of the Food and Drug Administration Adverse Event Reporting System Database. Drugs—Real World Outcomes 2018, 5, 117–128. [Google Scholar] [CrossRef]
- Sienkiewicz, K.; Burzyńska, M.; Rydlewska-Liszkowska, I.; Sienkiewicz, J.; Gaszyńska, E. The Importance of Direct Patient Reporting of Adverse Drug Reactions in the Safety Monitoring Process. Int. J. Environ. Res. Public Health 2022, 19, 413. [Google Scholar] [CrossRef]
- Herdeiro, M.T.; Figueiras, A.; Polónia, J.; Gestal-Otero, J.J. Physicians’ Attitudes and Adverse Drug Reaction Reporting: A Case-Control Study in Portugal. Drug Saf. 2005, 28, 825–833. [Google Scholar] [CrossRef]
- Hoffman, K.B.; Demakas, A.R.; Dimbil, M.; Tatonetti, N.P.; Erdman, C.B. Stimulated Reporting: The Impact of US Food and Drug Administration-Issued Alerts on the Adverse Event Reporting System (FAERS). Drug Saf. 2014, 37, 971–980. [Google Scholar] [CrossRef]
- Castel, E.S.; Ginsburg, L.R.; Zaheer, S.; Tamim, H. Understanding Nurses’ and Physicians’ Fear of Repercussions for Reporting Errors: Clinician Characteristics, Organization Demographics, or Leadership Factors? BMC Health Serv. Res. 2015, 15, 326. [Google Scholar] [CrossRef]
- Bihan, K.; Lebrun-Vignes, B.; Funck-Brentano, C.; Salem, J.E. Uses of Pharmacovigilance Databases: An Overview. Therapie 2020, 75, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.; Ailani, J.; Smith, T.R.; Abdrabboh, A.; Xue, F.; Navetta, M.S. Pharmacovigilance: Reporting Requirements throughout a Product’s Lifecycle. Ther. Adv. Drug Saf. 2022, 13, 20420986221125006. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Agency. New Gene Therapy to Treat Spinal Muscolar Atrophy; European Medicine Agency: Amsterdam, The Netherlands, 2020; Volume 31.
- Martini, N.; Trifirò, G.; Capuano, A.; Corrao, G.; Corrao, G.; Racagni, G.; Pani, L. Expert Opinion on Real World Evidence RWE in Drug Development and Usage. Pharmadvances 2020, 2, 41–50. [Google Scholar] [CrossRef]
- Pani, L.; Cicchetti, A.; De Luca, A.; Mennini, F.S.; Mini, E.; Nocentini, G.; Racagni, G.; Jommi, C. Pricing for Multi Indication Medicines: A Discussion with Italian Experts. Pharmadvances 2022, 4, 163–170. [Google Scholar] [CrossRef]
- Nuijten, M. Pricing Zolgensma—The World’s Most Expensive Drug. J. Mark. Access Health Policy 2022, 10, 2022353. [Google Scholar] [CrossRef]
- Dean, R.; Jensen, I.; Cyr, P.; Miller, B.; Maru, B.; Sproule, D.M.; Feltner, D.E.; Wiesner, T.; Malone, D.C.; Bischof, M.; et al. An Updated Cost-Utility Model for Onasemnogene Abeparvovec (Zolgensma®) in Spinal Muscular Atrophy Type 1 Patients and Comparison with Evaluation by the Institute for Clinical and Effectiveness Review (ICER). J. Mark. Access Heal. Policy 2021, 9, 1889841. [Google Scholar] [CrossRef]
- Mitsue Ivama-Brummell, A.; Wagner, A.K.; Lúcia, V.; Pepe, E.; Naci, H. Ultraexpensive Gene Therapies, Industry Interests and the Right to Health: The Case of Onasemnogene Abeparvovec in Brazil Commentary. BMJ Glob. Health 2022, 7, 8637. [Google Scholar] [CrossRef]
- Dias Fernandes, B.; D’Athayde Rodrigues, F.; Cardoso Cirilo, H.N.; Borges, S.S.; Krug, B.C.; Fernandes Probst, L.; Zimmermann, I. Economic Evaluation Cost-Effectiveness of Onasemnogene Abeparvovec Compared with Nusinersen and Risdiplam in Patients with Spinal Muscular Atrophy Type 1 in Brazil. Value Health Reg. Issues 2024, 40, 108–117. [Google Scholar] [CrossRef]
- Dangouloff, T.; Botty, C.; Beaudart, C.; Servais, L.; Hiligsmann, M. Systematic Literature Review of the Economic Burden of Spinal Muscular Atrophy and Economic Evaluations of Treatments. Orphanet J. Rare Dis. 2021, 16, 47. [Google Scholar] [CrossRef]
- Malone, D.C.; Dean, R.; Arjunji, R.; Jensen, I.; Cyr, P.; Miller, B.; Maru, B.; Sproule, D.M.; Feltner, D.E.; Dabbous, O. Cost-Effectiveness Analysis of Using Onasemnogene Abeparvocec (AVXS-101) in Spinal Muscular Atrophy Type 1 Patients. J. Mark. Access Health Policy 2019, 7, 1601484. [Google Scholar] [CrossRef]
- Zhuang, W.; Lu, M.; Wu, Y.; Chen, Z.; Wang, M.; Wang, X.; Guan, S.; Lin, W. Safety Concerns with Nusinersen, Risdiplam, and Onasemnogene Abeparvovec in Spinal Muscular Atrophy: A Real-World Pharmacovigilance Study. Clin. Drug Investig. 2023, 43, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Harrington, M.A.; Porter, B. Sex Difference in Spinal Muscular Atrophy Patients—Are Males More Vulnerable? J. Neuromuscul. Dis. 2023, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Antonacci, Y.; Liguori, M. Sex and Gender Differences in Neurodegenerative Diseases: Challenges for Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 6354. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Ruggiero, R.; Sportiello, L.; Pentella, C.; Gaio, M.; Pinto, A.; Rafaniello, C. Did the COVID-19 Pandemic Affect Contrast Media-Induced Adverse Drug Reaction’s Reporting? A Pharmacovigilance Study in Southern Italy. J. Clin. Med. 2022, 11, 5104. [Google Scholar] [CrossRef]
- Scavone, C.; Carnovale, C.; Ruggiero, R.; Radice, S.; Scatigna, M.; Racagni, G.; Mugelli, A.; Rossi, F.; Clementi, E.; Capuano, A. On the Policy of the Italian Government in the Discovery, Development, and Access to Medicines. Clin. Ther. 2018, 40, 1931–1940. [Google Scholar] [CrossRef]
- Day, J.W.; Mendell, J.R.; Mercuri, E.; Finkel, R.S.; Strauss, K.A.; Kleyn, A.; Tauscher-Wisniewski, S.; Tukov, F.F.; Reyna, S.P.; Chand, D.H. Clinical Trial and Postmarketing Safety of Onasemnogene Abeparvovec Therapy. Drug Saf. 2021, 44, 1109. [Google Scholar] [CrossRef]
- Blair, H.A. Onasemnogene Abeparvovec: A Review in Spinal Muscular Atrophy. CNS Drugs 2022, 36, 995–1005. [Google Scholar] [CrossRef]
- Chand, D.; Mohr, F.; Mcmillan, H.; Tukov, F.F.; Montgomery, K.; Kleyn, A.; Sun, R.; Tauscher-Wisniewski, S.; Kaufmann, P.; Kullak-Ublick, G. Hepatotoxicity Following Administration of Onasemnogene Abeparvovec (AVXS-101) for the Treatment of Spinal Muscular Atrophy. J. Hepatol. 2020, 74, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Finkel, R.S.; Chiriboga, C.A.; Connolly, A.M.; Crawford, T.O.; Darras, B.T.; Iannaccone, S.T.; Kuntz, N.L.; Peña, L.D.M.; Shieh, P.B.; et al. Onasemnogene Abeparvovec Gene Therapy for Symptomatic Infantile-Onset Spinal Muscular Atrophy in Patients with Two Copies of SMN2 (STR1VE): An Open-Label, Single-Arm, Multicentre, Phase 3 Trial. Artic. Lancet Neurol 2021, 20, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Strauss, K.A.; Farrar, M.A.; Muntoni, F.; Saito, K.; Mendell, J.R.; Servais, L.; Mcmillan, H.J.; Finkel, R.S.; Swoboda, K.J.; Kwon, J.M.; et al. Onasemnogene Abeparvovec for Presymptomatic Infants with Two Copies of SMN2 at Risk for Spinal Muscular Atrophy Type 1: The Phase III SPR1NT Trial. Nat. Med. 2022, 28, 1381–1389. [Google Scholar] [CrossRef]
- García-Abeijon, P.; Costa, C.; Taracido, M.; Herdeiro, M.T.; Torre, C.; Figueiras, A. Factors Associated with Underreporting of Adverse Drug Reactions by Health Care Professionals: A Systematic Review Update. Drug Saf. 2023, 46, 625–636. [Google Scholar] [CrossRef]
- Biagi, C.; Montanaro, N.; Buccellato, E.; Roberto, G.; Vaccheri, A.; Motola, D. Underreporting in Pharmacovigilance: An Intervention for Italian GPs (Emilia-Romagna Region). Eur. J. Clin. Pharmacol. 2013, 69, 237–244. [Google Scholar] [CrossRef]
- Pellegrino, P.; Carnovale, C.; Cattaneo, D.; Perrone, V.; Antoniazzi, S.; Pozzi, M.; Napoleone, E.; Filograna, M.R.; Clementi, E.; Radice, S. Pharmacovigilance Knowledge in Family Paediatricians. A Survey Study in Italy. Health Policy 2013, 113, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Shariff, M.; Bhat, V.; DeSimone, C.; Deshmukh, A. Atrial Fibrillation after Vaccination for COVID-19: Analysis of the Vaccine Adverse Event Reporting System. J. Interv. Card. Electrophysiol. 2022, 65, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gonzalez, E.; Herdeiro, M.T.; Figueiras, A. Determinants of Under-Reporting of Adverse Drug Reactions A Systematic Review. Drug Saf. 2009, 32, 19–31. [Google Scholar] [CrossRef]
- Van Alstyne, M.; Tattoli, I.; Delestrée, N.; Recinos, Y.; Workman, E.; Shihabuddin, L.S.; Zhang, C.; Mentis, G.Z.; Pellizzoni, L. Gain of Toxic Function by Long-Term AAV9-Mediated SMN Overexpression in the Sensory-Motor Circuit. Nat. Neurosci. 2021, 24, 930. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 661) | |
---|---|
Age Group | |
0–1 month (neonates) | 61 (9.2%) |
2 months–2 years (infants) | 396 (59.9%) |
3–11 years (children) | 76 (11.5%) |
12–17 years (adolescents) | 1 (0.2%) |
18–64 years (adults) | 1 (0.2%) |
Not specified | 126 (19.1%) |
Patient Sex | |
Female | 287 (43.4%) |
Male | 249 (37.7%) |
Not specified | 125 (18.9%) |
Reporter Type | |
Healthcare professional | 585 (88.5%) |
Non-healthcare professional | 76 (11.5%) |
Country | |
European Economic Area | 319 (48.3%) |
Non-European Economic Area | 342 (51.7%) |
Concomitant Drugs per ICSR | |
0 | 407 (61.6%) |
1 | 143 (21.6%) |
2 | 49 (7.4%) |
3 | 33 (5.0%) |
4 | 12 (1.8%) |
≥5 | 17 (2.6%) |
Suspected Drugs per ICSR | |
1 | 609 (92.1%) |
2 | 42 (6.4%) |
3 | 8 (1.2%) |
4 | 1 (0.2%) |
≥5 | 1 (0.2%) |
Overall ADRs (n = 2744) | |
---|---|
ADR Seriousness Criteria | |
Caused/prolonged hospitalization | 588 (21.4%) |
Disabling | 2 (0.1%) |
Life-threatening | 118 (4.3%) |
Not serious | 1185 (43.1%) |
Other medically important condition | 721 (26.3%) |
Results in death | 130 (4.7%) |
ADR Outcome | |
Fatal | 130 (4.7%) |
Not recovered/not resolved | 188 (6.9%) |
Recovered/resolved | 676 (24.6%) |
Recovered/resolved with sequelae | 10 (0.4%) |
Recovering/resolving | 238 (8.7%) |
Unknown | 1502 (54.7%) |
Reported Adverse Events | Overall ADRs (n = 2744) | Overall ICSRs (n = 661) | |
---|---|---|---|
n | % per Total ADRs | % per Total ICSRs | |
Pyrexia | 173 | 6.30% | 26.17% |
Vomiting | 141 | 5.10% | 21.33% |
Aspartate aminotransferase increased | 129 | 4.70% | 19.52% |
Alanine aminotransferase increased | 120 | 4.40% | 18.15% |
Thrombocytopenia | 118 | 4.30% | 17.85% |
Transaminases increased | 91 | 3.30% | 13.77% |
Hepatic enzyme increased | 77 | 2.80% | 11.65% |
Decreased appetite | 50 | 1.80% | 7.56% |
Platelet count decreased | 49 | 1.80% | 7.41% |
Troponin I increased | 40 | 1.50% | 6.05% |
Pneumonia | 36 | 1.30% | 5.45% |
Liver function test increased | 35 | 1.30% | 5.30% |
Hypertransaminasaemia | 30 | 1.10% | 4.54% |
Asthenia | 29 | 1.10% | 4.39% |
Dyspnoea | 25 | 0.90% | 3.78% |
Gamma-glutamyltransferase increased | 23 | 0.80% | 3.48% |
Blood lactate dehydrogenase increased | 22 | 0.80% | 3.33% |
Body temperature increased | 22 | 0.80% | 3.33% |
Nausea | 21 | 0.80% | 3.18% |
Apathy | 19 | 0.70% | 2.87% |
Thrombotic microangiopathy | 19 | 0.70% | 2.87% |
Adverse Events Belonging to the Investigation MedDRA SOC (n = 982) | n | % |
---|---|---|
Aspartate aminotransferase increased | 129 | 13.10% |
Alanine aminotransferase increased | 120 | 12.20% |
Transaminases increased | 91 | 9.30% |
Hepatic enzyme increased | 77 | 7.80% |
Platelet count decreased | 49 | 5.00% |
Troponin I increased | 40 | 4.10% |
Liver function test increased | 35 | 3.60% |
Gamma-glutamyltransferase increased | 23 | 2.30% |
Blood lactate dehydrogenase increased | 22 | 2.20% |
Body temperature increased | 22 | 2.20% |
Troponin increased | 18 | 1.80% |
Oxygen saturation decreased | 15 | 1.50% |
Troponin T increased | 15 | 1.50% |
C-reactive protein increased | 14 | 1.40% |
Heart rate increased | 13 | 1.30% |
Monocyte count increased | 13 | 1.30% |
Blood bilirubin increased | 11 | 1.10% |
Adverse Events Belonging to the Cardiac Disorders MedDRA SOC (n = 59) | n | % |
---|---|---|
Tachycardia | 14 | 23.70% |
Bradycardia | 11 | 18.60% |
Cardiac arrest | 9 | 15.30% |
Cardio-respiratory arrest | 4 | 6.80% |
Tachyarrhythmia | 3 | 5.10% |
Arrhythmia | 2 | 3.40% |
Cardiac failure | 2 | 3.40% |
Pericardial effusion | 2 | 3.40% |
Pericarditis | 2 | 3.40% |
Bradyarrhythmia | 1 | 1.70% |
Cardiac disorder | 1 | 1.70% |
Cardiomegaly | 1 | 1.70% |
Myocardial hypoxia | 1 | 1.70% |
Myocardial injury | 1 | 1.70% |
Pulseless electrical activity | 1 | 1.70% |
Sinus tachycardia | 1 | 1.70% |
Toxic cardiomyopathy | 1 | 1.70% |
Ventricular extrasystoles | 1 | 1.70% |
Ventricular hypertrophy | 1 | 1.70% |
Adverse Events Belonging to the Hepatobiliary Disorders MedDRA SOC | n | % |
---|---|---|
Hypertransaminasaemia | 30 | 25.90% |
Liver disorder | 10 | 8.60% |
Acute hepatic faliure | 9 | 7.80% |
Hepatic cytolysis | 9 | 7.80% |
Abnormal hepatic function | 8 | 6.90% |
Hepatitis | 8 | 6.90% |
Hepatotoxicity | 6 | 5.20% |
Drug-induced liver injury | 5 | 4.30% |
Jaundice | 4 | 3.40% |
Cholestasis | 3 | 2.60% |
Hepatic failure | 3 | 2.60% |
Hepatomegaly | 3 | 2.60% |
Liver injury | 3 | 2.60% |
Gallbladder enlargement | 2 | 1.70% |
Hepatic fibrosis | 2 | 1.70% |
Hyperbilirubinaemia | 2 | 1.70% |
Ocular icterus | 2 | 1.70% |
Autoimmune hepatitis | 1 | 0.90% |
Cholangitis | 1 | 0.90% |
Hepatic steatosis | 1 | 0.90% |
Hepatosplenomegaly | 1 | 0.90% |
Ischaemic hepatitis | 1 | 0.90% |
Liver tenderness | 1 | 0.90% |
Subacute hepatic failure | 1 | 0.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, R.; Balzano, N.; Nicoletti, M.M.; di Mauro, G.; Fraenza, F.; Campitiello, M.R.; Rossi, F.; Capuano, A. Real-World Safety Data of the Orphan Drug Onasemnogene Abeparvovec (Zolgensma®) for the SMA Rare Disease: A Pharmacovigilance Study Based on the EMA Adverse Event Reporting System. Pharmaceuticals 2024, 17, 394. https://doi.org/10.3390/ph17030394
Ruggiero R, Balzano N, Nicoletti MM, di Mauro G, Fraenza F, Campitiello MR, Rossi F, Capuano A. Real-World Safety Data of the Orphan Drug Onasemnogene Abeparvovec (Zolgensma®) for the SMA Rare Disease: A Pharmacovigilance Study Based on the EMA Adverse Event Reporting System. Pharmaceuticals. 2024; 17(3):394. https://doi.org/10.3390/ph17030394
Chicago/Turabian StyleRuggiero, Rosanna, Nunzia Balzano, Maria Maddalena Nicoletti, Gabriella di Mauro, Federica Fraenza, Maria Rosaria Campitiello, Francesco Rossi, and Annalisa Capuano. 2024. "Real-World Safety Data of the Orphan Drug Onasemnogene Abeparvovec (Zolgensma®) for the SMA Rare Disease: A Pharmacovigilance Study Based on the EMA Adverse Event Reporting System" Pharmaceuticals 17, no. 3: 394. https://doi.org/10.3390/ph17030394
APA StyleRuggiero, R., Balzano, N., Nicoletti, M. M., di Mauro, G., Fraenza, F., Campitiello, M. R., Rossi, F., & Capuano, A. (2024). Real-World Safety Data of the Orphan Drug Onasemnogene Abeparvovec (Zolgensma®) for the SMA Rare Disease: A Pharmacovigilance Study Based on the EMA Adverse Event Reporting System. Pharmaceuticals, 17(3), 394. https://doi.org/10.3390/ph17030394