Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC–MS Analysis of the Extracts
Class | Methanol Extract | Peak Area (%) | n-Hexane Extract | Peak Area (%) | Anti-RA Effect |
---|---|---|---|---|---|
Fatty acids and derivatives | Tetradecanoic acid;Methyl (9Z,12Z)-octadeca-9,12-dienoate; (9Z, 12Z)-Octadeca-9,12-dienoic acid; 9-octadecenoic acid; octadecanoic acid; Methyl hexadecanoate; n-hexadecanoic acid; heptadecanoic acid; Methyl (9E)-octadec-9-enoate | 62.90 | Methyl (9Z,12Z)-octadeca-9,12-dienoate; (9Z, 12Z)-Octadeca-9,12-dienoic acid; 9-octadecenoic acid; octadecanoic acid; Methyl hexadecanoate; n-hexadecanoic acid; Methyl (9E)-octadec-9-enoate | 68.09 | Yes [28,29] |
Terpene alcohols | 2,4,7,14-Tetramethyl-4-vinyl-tricyclo [5.4.3.0(1,8)]tetradecan-6-ol; bicyclo [4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-3-ol-2)- | 10.59 | (S)-(-)-(4-isopropenyl-1-cyclohexenyl)methanol | 0.11 | Yes [30] |
Terpene esters | Trans-(R,R)-chrysanthemyl (R)-2-methylbutanoate; kauren-19-yl-acetate; Methyl-5,9,13-trimethyltetradecanoate | 4.23 | Not present | 0.00 | Not tested |
Phthalate esters | Phthalic acid, tetradecyl trans-dec-3-enyl ester; phthalic acid, butyl hept-4-yl ester | 2.42 | Not present | 0.00 | Not tested |
Sesquiterpene alcohols | Isospathulenol, thunbergol, 1-(1,5-Dimethylhexyl)-10-hydroxy-3a,6,6,9a,11a-pentamethylhexadecahydrocyclopenta [7,8]- phenanthro [8a,9-b]oxiren-7-yl acetate, (7S)-1,1,7-Trimethyl-4-methylidene-1α,2,3,4α,5,6,7α,7β-octahydrocyclopropa[h]azulen-7-ol; methyl 16-R/S-hydroxy-cleroda-3,13(14)-Z-dien-15,16-olide | 2.39 | Isospathulenol, (7S)-1,1,7-Trimethyl-4-methylidene-1α,2,3,4α,5,6,7α,7β-octahydrocyclopropa[h]azulen-7-o, methyl 16-R/S-hydroxy-cleroda-3,13(14)-Z-dien-15,16-olide; (1R,7S,E)-7-isopropyl-4,10-dimethylenecyclodec-5-enol | 2.72 | Not tested |
Hydrazide derivatives | 2-hydroxyacetohydrazide; 3-hydroxy-3-methyl-butyric acid, hydrazide | 1.91 | Not present | 0.00 | Yes [31] |
Bicyclic terpenes | 2-Ethylidene-1,7,7-trimethylbicyclo [2.2.1]heptane; 8-isopropyl-1,5-dimethyltricyclo [4.4.0.02,7]dec-4-en-3-one | 1.08 | Not present | 0.00 | Not tested |
Ketones | 4,4-Dimethylpentan-2-one | 1.36 | 4-Isopropenylcyclohexanone | 0.46 | Yes [20,32,33] |
Tricyclic alcohols | 3-Isopropyl-6,7-dimethyltricyclo [4.4.0.0(2,8)]decane-9,10-diol | 0.97 | 3-Isopropyl-6,7-dimethyltricyclo [4.4.0.0(2,8)]decane-9,10-diol | 3.65 | Yes [34] |
Furfural derivatives | 5-Hydroxymethylfurfural | 0.87 | Not present | 0.00 | Yes [32] |
Cyclopropane derivatives | Cyclopropanebutanoic acid, Methyl-4-[2-[[2-[[2-[(2-pentylcyclopropyl)methyl]cyclopropyl]methyl]cyclopropyl]methyl]-cyclopropyl]butanoate | 0.71 | Not present | 0.00 | Not tested |
Saturated hydrocarbons | Tetracontane | 0.68 | 3-Methylheptane; 3-Methylhexane; 2,2-Dimethylhexane; heptane | 1.68 | Not tested |
Nitrobenzofurans | 5-nitrobenzofuran-2(3H)-one | 0.64 | Not present | 0.00 | Not tested |
Amino alcohols | (2R/2S)-2-Aminopropan-1-ol | 0.57 | Not present | 0.00 | Yes [35,36] |
Tricyclic sesquiterpenes | (1R,4R,6R,10S)-4,12,12-Trimethyl-9-methylene-5-oxatricyclo [8.2.0.04,6]dodecane | 0.55 | Not present | 0.00 | Yes [37] |
Carboxylic acids and derivatives | 4-Prop-1-en-2-ylcyclohexene-1-carbaldehyde; Undecyl methanoate | 0.48 | Dodecanoic acid, 2-(Tricyclo [3.3.1.13,7]dec-1-yl)propanoic acid | 0.40 | Yes [38,39,40] |
Spiro compounds | Spiro [5.6]dodecan-7-one, spiro [5.5]undeca-1,7-diene | 0.45 | 5,5-Diethyl-4-methyl-6-spiro [2.3] hexane | 1.05 | Not tested |
Steroids | 3beta-trimethylsiloxy-5alpha,6alpha-epoxycholestane | 0.43 | Not present | 0.00 | Not tested |
Heterocyclic compounds | 2,2-bis(oxidanylidene)-1,5-dihydroimidazo [4,5-c][1,2,6]thiadiazin-4-one | 0.38 | Not present | 0.00 | Not tested |
Organosilicon compounds | Trichloro(dodecyl)silane | 0.38 | Not present | 0.00 | Not tested |
Aldehydes | 4-Prop-1-en-2-ylcyclohexene-1-carboxylic acid | 0.35 | 4-Prop-1-en-2-ylcyclohexene-1-carboxylic acid | 3.07 | Not tested |
Siloxanes | Octadecamethyl-cyclononasiloxane | 0.33 | Not present | 0.00 | Not tested |
Sugar derivatives | 1,2,3,4,5-Penta-O-acetyl-D-xylitol | 0.27 | Not present | 0.00 | Not tested |
Phenol derivatives | Thymol | 0.25 | 2,6-Dimethoxy-4-(prop-2-en-1-yl)phenol | 0.79 | Yes [41] |
Phenone oximes | 4’-Hydroxybutyrophenone oxime | 0.22 | Not present | 0.00 | Yes [42] |
Pyranone derivatives | 3,5-Dihydroxy-6-methyl-2,3-dihydropyran-4-one | 0.20 | Not present | 0.00 | Yes [32] |
Cycloalkanols | Cyclopentanol | 0.19 | Not present | 0.00 | Not tested |
Sulfonate esters | [(Z)-4-Methylsulfonyloxybut-2-enyl] 2-(tert-butoxycarbonylamino)acetate | 0.13 | Not present | 0.00 | Yes [33] |
2.2. Protein Denaturation Assay
2.3. Protease Inhibition Activity
2.4. Molecular Docking
2.5. Prediction of Potential Protein Targets and Druglikeness Analysis
3. Materials and Methods
3.1. Phytochemical Extraction
3.2. Phytochemical Analysis by GC–MS
3.3. Protein Denaturation Assay
3.4. Protease Inhibition Activity
3.5. In Silico Molecular Docking
3.6. Prediction of Potential Protein Targets and Druglikeness Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The Etiology of Rheumatoid Arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Alivernini, S. Synovial Tissue Macrophages in Joint Homeostasis, Rheumatoid Arthritis and Disease Remission. Nat. Rev. Rheumatol. 2022, 18, 384–397. [Google Scholar] [CrossRef]
- Chimenti, M.S.; Triggianese, P.; Conigliaro, P.; Candi, E.; Melino, G.; Perricone, R. The Interplay between Inflammation and Metabolism in Rheumatoid Arthritis. Cell Death Dis. 2015, 6, e1887. [Google Scholar]
- Myasoedova, E.; Davis, J.; Matteson, E.L.; Crowson, C.S. Is the Epidemiology of Rheumatoid Arthritis Changing? Results from a Population-Based Incidence Study, 1985–2014. Ann. Rheum. Dis. 2020, 79, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef]
- Köhler, B.M.; Günther, J.; Kaudewitz, D.; Lorenz, H.M. Current Therapeutic Options in the Treatment of Rheumatoid Arthritis. J. Clin. Med. 2019, 8, 938. [Google Scholar] [CrossRef]
- Satriotomo, I.; Bowen, K.K.; Vemuganti, R. JAK2 and STAT3 Activation Contributes to Neuronal Damage Following Transient Focal Cerebral Ischemia. J. Neurochem. 2006, 98, 1353–1368. [Google Scholar] [CrossRef]
- Qiang, R.; Huang, H.; Chen, J.; Shi, X.; Fan, Z.; Xu, G.; Qiu, H. Carbon quantum dots derived from herbal medicine as therapeutic nanoagents for rheumatoid arthritis with ultrahigh lubrication and anti-inflammation. ACS Appl. Mater. Interfaces 2023, 15, 38653–38664. [Google Scholar] [CrossRef]
- Qayyum, S.; Mehdi, A. Potential Efficacy of Turmeric as an Anti-Inflammatory Agent and Antioxidant in the Treatment of Osteoarthritis. Khyber Med. Univ. J. 2023, 15, 190–197. [Google Scholar] [CrossRef]
- Su, S.; Hua, Y.; Wang, Y.; Gu, W.; Zhou, W.; Duan, J.; Jiang, H.; Chen, T.; Tang, Y. Evaluation of the Anti-Inflammatory and Analgesic Properties of Individual and Combined Extracts from Commiphora Myrrha, and Boswellia Carterii. J. Ethnopharmacol. 2012, 139, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Gligorić, E.; Igić, R.; Srđenović Čonić, B.; Kladar, N.; Teofilović, B.; Grujić, N. Chemical Profiling and Biological Activities of “Green” Extracts of Willow Species (Salix L., Salicaceae): Experimental and Chemometric Approaches. Sustain. Chem. Pharm. 2023, 32, 100981. [Google Scholar] [CrossRef]
- Tukiran, T.; Salma, N.A.; Sutoyo, S.; Sabila, F. Anti-Arthritic Activity of Combination of Caesalpinia Sappan and Zingiber Officinale Extracts in Complete Freund’s Adjuvant-Induced Arthritic in Rats. Trop. J. Nat. Prod. Res. 2023, 7, 5164–5171. [Google Scholar] [CrossRef]
- Pushpalatha, D.S.S.P.S.; Kumaraswamy, S.; Selvaraj, G.K.; Narayanaswamy, R.; Prabhakaran, V.-S.; Sivakumar, T.; Kesavan, A. Plant-Derived Bioactive Compounds: Promising Prospective Uses in the Chronic Inflammation. In Natural Products as Cancer Therapeutics; IGI Global: Hershey, PA, USA, 2023; pp. 254–274. [Google Scholar] [CrossRef]
- Idm’hand, E.; Msanda, F.; Cherifi, K. Medicinal Uses, Phytochemistry and Pharmacology of Ammodaucus leucotrichus. Clin. Phytoscience 2020, 6, 6. [Google Scholar] [CrossRef]
- Mustonen, A.-M.; Nieminen, P. Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis—A Complex Field with Significant Potential for Future Treatments. Curr. Rheumatol. Rep. 2021, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Del Prado-Audelo, M.L.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front. Pharmacol. 2021, 12, 704197. [Google Scholar] [CrossRef]
- Kizis, D.; Vichou, A.-E.; Natskoulis, P.I. Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. Sustainability 2021, 13, 2537. [Google Scholar] [CrossRef]
- Yu, G.-W.; Nie, J.; Song, Z.-Y.; Li, Z.-G.; Lee, M.-R.; Wang, S.-P. Microwave-Assisted Simplified Simultaneous Distillation Coupled with Ionic Liquid Pretreatment for the Analysis of Essential Oil in Schisandra Sphenanthera. J. Chromatogr. Sci. 2017, 55, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J.S. Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives. Energy 2023, 16, 5852. [Google Scholar] [CrossRef]
- Zhou, C.; Dowlatshah, S.; Hansen, F.A.; Pedersen-Bjergaard, S. Generic conditions for electromembrane extraction of polar bases. Talanta 2024, 267, 125215. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.V.; Vargas, R.A.; Petricevich, V.L. Chemical Compounds and Biological Activity of an Extract from Bougainvillea x Buttiana (Var. Rose) Holttum and Standl. Int. J. Pharm. Pharm. Sci. 2017, 9, 42. [Google Scholar] [CrossRef]
- Shin, J.; Yang, S.J.; Lim, Y. Gamma-Tocopherol Supplementation Ameliorated Hyper-Inflammatory Response during the Early Cutaneous Wound Healing in Alloxan-Induced Diabetic Mice. Exp. Biol. Med. 2017, 242, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Godara, P.; Dulara, B.K.; Barwer, N.; Chaudhary, N.S. Comparative GC-MS Analysis of Bioactive Phytochemicals from Different Plant Parts and Callus of Leptadenia Reticulata Wight and Arn. Pharmacogn. J. 2019, 11, 129–140. [Google Scholar] [CrossRef]
- Joshua, P.E.; Anosike, C.J.; Asomadu, R.O.; Ekpo, D.E.; Uhuo, E.N.; Nwodo, O.F.C. Bioassay-Guided Fractionation, Phospholipase A2-Inhibitory Activity and Structure Elucidation of Compounds from Leaves of Schumanniophyton magnificum. Pharm. Biol. 2020, 58, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Mishra, P.; Meena, R.; Patni, V. GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Stem and Seed Samples of Distimake Spp. Int. J. Pharm. Res. Allied Sci. 2024, 13, 39–46. [Google Scholar] [CrossRef]
- Abdi Bellau, M.L.; Chiurato, M.A.; Maietti, A.; Fantin, G.; Tedeschi, P.; Marchetti, N.; Tacchini, M.; Sacchetti, G.; Guerrini, A. Nutrients and Main Secondary Metabolites Characterizing Extracts and Essential Oil from Fruits of Ammodaucus leucotrichus Coss. & Dur. (Western Sahara). Molecules 2022, 27, 5013. [Google Scholar] [CrossRef] [PubMed]
- Gnanasundaram, I.; Balakrishnan, K. Characterization of Bioactive Compounds in Ethanolic Extract of Cissus vitiginea Leaves Using GC-MS Technique. IOSR J. Appl. Chem. 2017, 10, 24–27. [Google Scholar]
- Liao, T.; Shen, F.; Zhu, H.; Mu, W.; Qian, H.; Liu, Y. Extracellular Polysaccharides from Sporidiobolus Pararoseus Alleviates Rheumatoid through Ameliorating Gut Barrier Function and Gut Microbiota. Int. J. Biol. Macromol. 2024, 260, 129436. [Google Scholar] [CrossRef]
- Kavitha, R.; Uduman Mohideen, A.M. Identification Of Bioactive Components And Its Biological Activities Of Abelmoschas Moschatus Flower Extrtact-A Gc-Ms Study. IOSR J. Appl. Chem. 2017, 10, 19–22. [Google Scholar]
- Xu, L.; Chang, C.; Jiang, P.; Wei, K.; Zhang, R.; Jin, Y.; Zhao, J.; Xu, L.; Shi, Y.; Guo, S.; et al. Metabolomics in Rheumatoid Arthritis: Advances and Review. Front. Immunol. 2022, 13, 961708. [Google Scholar] [CrossRef]
- Ciaffi, J.; Mitselman, D.; Mancarella, L.; Brusi, V.; Lisi, L.; Ruscitti, P.; Cipriani, P.; Meliconi, R.; Giacomelli, R.; Borghi, C.; et al. The Effect of Ketogenic Diet on Inflammatory Arthritis and Cardiovascular Health in Rheumatic Conditions: A Mini Review. Front. Med. 2021, 8, 2495. [Google Scholar] [CrossRef]
- Torequl Islam, M.; Quispe, C.; Herrera-Bravo, J.; Rahaman, M.M.; Hossain, R.; Sarkar, C.; Raihan, M.A.; Chowdhury, M.M.; Uddin, S.J.; Shilpi, J.A.; et al. Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. Evid.-Based Complement. Altern. Med. 2022, 2022, 4787643. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, H.; Lin, Z.; Wang, Q.; Chen, L.; Liu, S.; Yang, X.; Zhu, F.; Huang, Y.; Cao, S.; et al. A Novel Tricyclic BTK Inhibitor Suppresses B Cell Responses and Osteoclastic Bone Erosion in Rheumatoid Arthritis. Acta Pharmacol. Sin. 2021, 42, 1653–1664. [Google Scholar] [CrossRef]
- Baoqi, Y.; Dan, M.; Xingxing, Z.; Xueqing, Z.; Yajing, W.; Ke, X.; Liyun, Z. Effect of Anti-Rheumatic Drugs on Cardiovascular Disease Events in Rheumatoid Arthritis. Front. Cardiovasc. Med. 2022, 8, 812631. [Google Scholar] [CrossRef]
- Azizov, V.; Zaiss, M.M. Alcohol Consumption in Rheumatoid Arthritis: A Path through the Immune System. Nutrients 2021, 13, 1324. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Yu, H.; Xie, Q.; Wang, B.; Jiang, S.; Su, W.; Mao, Y.; Li, B.; Peng, C.; et al. Sesquiterpenes from Kadsura Coccinea Attenuate Rheumatoid Arthritis-Related Inflammation by Inhibiting the NF-ΚB and JAK2/STAT3 Signal Pathways. Phytochemistry 2022, 194, 113018. [Google Scholar] [CrossRef]
- George, G.; Shyni, G.L.; Raghu, K.G. Current and Novel Therapeutic Targets in the Treatment of Rheumatoid Arthritis. Inflammopharmacology 2020, 28, 1457–1476. [Google Scholar] [CrossRef]
- Babaahmadi, M.; Tayebi, B.; Gholipour, N.M.; Kamardi, M.T.; Heidari, S.; Baharvand, H.; Eslaminejad, M.B.; Hajizadeh-Saffar, E.; Hassani, S.-N. Rheumatoid Arthritis: The Old Issue, the New Therapeutic Approach. Stem Cell Res. Ther. 2023, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Li, S.; Yang, G.; Luo, Y.; Qi, T.; Liang, Y.; Yang, T.; Zhang, L.; Wang, R.; Zhu, L.; et al. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Acrylamide Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase for the Treatment of Rheumatoid Arthritis. Acta Pharm. Sin. B 2021, 11, 795–809. [Google Scholar] [CrossRef]
- Apaza Ticona, L.; Siñani Callisaya, G.B.; Aguilar Rico, F.; Sánchez Sánchez-Corral, J.; Slowing, K. Anti-Inflammatory and Anti-Arthritic Effects of Compounds from Buddleja coriacea. Nat. Prod. Res. 2022, 36, 6324–6328. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Plotnikov, M.B.; Khlebnikov, A.I.; Plotnikova, T.M.; Quinn, M.T. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021, 11, 777. [Google Scholar] [CrossRef]
- Khan, Z.U.R.; Assad, N.; Naeem-ul-Hassan, M.; Sher, M.; Alatawi, F.S.; Alatawi, M.S.; Omran, A.M.E.; Jame, R.M.A.; Adnan, M.; Khan, M.N.; et al. Aconitum Lycoctonum L. (Ranunculaceae) Mediated Biogenic Synthesis of Silver Nanoparticles as Potential Antioxidant, Anti-Inflammatory, Antimicrobial and Antidiabetic Agents. BMC Chem. 2023, 17, 128. [Google Scholar] [CrossRef]
- Pradhan, B.; Patra, S.; Behera, C.; Nayak, R.; Jit, B.P.; Ragusa, A.; Jena, M. Preliminary Investigation of the Antioxidant, Anti-Diabetic, and Anti-Inflammatory Activity of Enteromorpha Intestinalis Extracts. Molecules 2021, 26, 1171. [Google Scholar] [CrossRef]
- Mane, M.P.; Patil, R.S.; Magdum, A.B.; Kakade, S.S.; Patil, D.N.; Nimbalkar, M.S. Chemo-Profiling by UPLC-QTOF MS Analysis and in Vitro Assessment of Anti-Inflammatory Activity of Field Milkwort (Polygala arvensis Willd.). S. Afr. J. Bot. 2022, 149, 49–59. [Google Scholar] [CrossRef]
- Saldanha, E.; Pai, R.J.; George, T.; D’Souza, S.; Adnan, M.; Pais, M.; Naik, T.; D’Souza, R.C.C.; D’Cunha, R.; Shrinath Baliga, M. Health Effects of Various Dietary Agents and Phytochemicals (Therapy of Acute Pancreatitis). In Therapeutic, Probiotic, and Unconventional Foods; Elsevier: Amsterdam, The Netherlands, 2018; pp. 303–314. [Google Scholar]
- Abbotto, E.; Casini, B.; Piacente, F.; Scarano, N.; Cerri, E.; Tonelli, M.; Astigiano, C.; Millo, E.; Sturla, L.; Bruzzone, S.; et al. Novel Thiazole-Based SIRT2 Inhibitors Discovered via Molecular Modelling Studies and Enzymatic Assays. Pharmaceuticals 2023, 16, 1316. [Google Scholar] [CrossRef]
- Oikonomopoulou, K.; Diamandis, E.P.; Hollenberg, M.D.; Chandran, V. Proteinases and Their Receptors in Inflammatory Arthritis: An Overview. Nat. Rev. Rheumatol. 2018, 14, 170–180. [Google Scholar] [CrossRef]
- Mukherjee, A.; Das, B. The Role of Inflammatory Mediators and Matrix Metalloproteinases (MMPs) in the Progression of Osteoarthritis. Biomater. Biosyst. 2024, 13, 100090. [Google Scholar] [CrossRef]
- Bu, Y.; Wu, H.; Deng, R.; Wang, Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front. Pharmacol. 2021, 12, 733387. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Fleischmann, R. Kinase Inhibitors: A New Approach to Rheumatoid Arthritis Treatment. Curr. Opin. Rheumatol. 2010, 22, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wei, K.; Jiang, P.; Chang, C.; Xu, L.; Xu, L.; Shi, Y.; Guo, S.; He, D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front. Immunol. 2022, 13, 907733. [Google Scholar] [CrossRef] [PubMed]
- Stegen, M.; Frey, U.H. The Role of G Protein-Coupled Receptor Kinase 6 Regulation in Inflammation and Pain. Int. J. Mol. Sci. 2022, 23, 15880. [Google Scholar] [CrossRef]
- Nakayamada, S.; Kubo, S.; Iwata, S.; Tanaka, Y. Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis. BioDrugs 2016, 30, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.C.; Laedermann, C.; Alten, R.; Feist, E.; Choy, E.; Haladyj, E.; De La Torre, I.; Richette, P.; Finckh, A.; Tanaka, Y. A JAK Inhibitor for Treatment of Rheumatoid Arthritis: The Baricitinib Experience. J. Clin. Med. 2023, 12, 4527. [Google Scholar] [CrossRef]
- Pieta, A.; Venetsanopoulou, A.I.; Kittas, C.; Christaki, E.; Voulgari, P.V. Recurrent Scedosporium Apiospermum Cutaneous Infection in a Patient with Rheumatoid Arthritis: The Potent Role of IL-6 Signaling Pathway Blockade: A Case-Based Review. J. Fungi 2023, 9, 683. [Google Scholar] [CrossRef]
- Radu, A.-F.; Bungau, S.G. Nanomedical Approaches in the Realm of Rheumatoid Arthritis. Ageing Res. Rev. 2023, 87, 101927. [Google Scholar] [CrossRef]
- Li, R.-L.; Duan, H.-X.; Liang, Q.; Huang, Y.-L.; Wang, L.-Y.; Zhang, Q.; Wu, C.-J.; Liu, S.-Q.; Peng, W. Targeting Matrix Metalloproteases: A Promising Strategy for Herbal Medicines to Treat Rheumatoid Arthritis. Front. Immunol. 2022, 13, 1046810. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, Y. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Synovial Fluids from Patients with Rheumatoid Arthritis or Osteoarthritis. Ann. Rheum. Dis. 2000, 59, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Nejatbakhsh Samimi, L.; Farhadi, E.; Tahmasebi, M.N.; Jamshidi, A.; Sharafat Vaziri, A.; Mahmoudi, M. NF-ΚB Signaling in Rheumatoid Arthritis with Focus on Fibroblast-like Synoviocytes. Autoimmun. Highlights 2020, 11, 11. [Google Scholar] [CrossRef]
- Brown, K.D.; Claudio, E.; Siebenlist, U. The Roles of the Classical and Alternative Nuclear Factor-KappaB Pathways: Potential Implications for Autoimmunity and Rheumatoid Arthritis. Arthritis Res. Ther. 2008, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Kawsar, S.M.A.; Kumer, A.; Munia, N.S.; Hosen, M.A.; Chakma, U.; Akash, S. Chemical Descriptors, PASS, Molecular Docking, Molecular Dynamics and ADMET Predictions of Glucopyranoside Derivatives as Inhibitors to Bacteria and Fungi Growth. Org. Commun. 2022, 15, 184–203. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Wen, Y.; Zhang, H.; Zhao, G.; Gao, Q. Signaling Pathways in Macrophages: Molecular Mechanisms and Therapeutic Targets. MedComm 2023, 4, e349. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational Analysis of Calculated Physicochemical and ADMET Properties of Protein-Protein Interaction Inhibitors. Sci. Rep. 2017, 7, 46277. [Google Scholar] [CrossRef]
- Arrar, L.; Benzidane, N.; Krache, I.; Charef, N.; Khennouf, S.; Baghiani, A. Comparison between Polyphenol Contents and Antioxidant Activities of Different Parts of Capparis Spinosa L. Pharmacogn. Commun. 2013, 3, 70–74. [Google Scholar] [CrossRef]
- Suresh, P. Anti-Inflammatory and Antioxidant Effects of Hydro-Alcoholic Extract of Dicliptera Cuneata Nees Aerial Parts. Bioinformation 2023, 19, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Saleem, M.; Riaz, N.; Lee, Y.S.; Diri, R.; Noor, A.; Almasri, D.; Bagalagel, A.; Elsebai, M.F. The Natural Polypeptides as Significant Elastase Inhibitors. Front. Pharmacol. 2020, 11, 531998. [Google Scholar] [CrossRef]
- Lasmari, S.; Ikhlef, S.; Boulcina, R.; Mokrani, E.H.; Bensouici, C.; Gürbüz, N.; Dündar, M.; Karcı, H.; Özdemir, İ.; Koç, A.; et al. New Silver Nheterocyclic Carbenes Complexes: Synthesis, Molecular Docking Study and Biological Activities Evaluation as Cholinesterase Inhibitors and Antimicrobials. J. Mol. Struct. 2021, 1238, 130399. [Google Scholar] [CrossRef]
- Boualia, I.; Derabli, C.; Boulcina, R.; Bensouici, C.; Yildirim, M.; Birinci Yildirim, A.; Mokrani, E.H.; Debache, A. Synthesis, Molecular Docking Studies, and Biological Evaluation of Novel Alkyl Bis(4-amino-5-cyanopyrimidine) Derivatives. Arch. Pharm. 2019, 352, 1900027. [Google Scholar] [CrossRef] [PubMed]
- Kakularam, K.R.; Karst, F.; Polamarasetty, A.; Ivanov, I.; Heydeck, D.; Kuhn, H. Paralog- and Ortholog-Specificity of Inhibitors of Human and Mouse Lipoxygenase-Isoforms. Biomed. Pharmacother. 2022, 145, 112434. [Google Scholar] [CrossRef]
- Demmak, R.G.; Bordage, S.; Bensegueni, A.; Boutaghane, N.; Hennebelle, T.; Mokrani, E.H.; Sahpaz, S. Chemical Constituents from Solenostemma argel and Their Cholinesterase Inhibitory Activity. Nat. Prod. Sci. 2019, 25, 115. [Google Scholar] [CrossRef]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method Using an Incremental Construction Algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Z.; Xia, N.; Zhang, W.; Wei, Y.; Huang, J.; Ren, Z.; Meng, F.; Yang, L. Anti-Arthritic Activity of Ferulic Acid in Complete Freund’s Adjuvant (CFA)-Induced Arthritis in Rats: JAK2 Inhibition. Inflammopharmacology 2020, 28, 463–473. [Google Scholar] [CrossRef] [PubMed]
Entry | n-Hexadecanoic Acid | Hexadecenoic Acid, Methyl Ester | 9-Octadecenoicacid, Methyl Ester, (E)- | 9,12-Octadecadienoicacid(Z,Z)- | 9-Octadecenoicacid | 2-Hydroxyacetohydrazide |
---|---|---|---|---|---|---|
TPSA (Ų) | 37.30 | 26.30 | 26.30 | 37.30 | 37.30 | 75.35 |
Consensus Log Po/w | 5.20 | 5.54 | 5.95 | 5.95 | 5.71 | −1.51 |
Gastrointestinal absorption | High | High | High | High | High | High |
Bioavailability score | 0.85 | 0.55 | 0.55 | 0.55 | 0.85 | 0.55 |
BBB access | Yes | Yes | No | No | No | No |
P-gp substrate | No | No | No | No | No | No |
CYP1A2 | Yes | Yes | Yes | Yes | Yes | No |
CYP2C19 | No | No | No | No | No | No |
CYP2C9 | Yes | No | No | No | Yes | No |
CYP2D6 CYP3A4 | No | No | No | No | No | No |
inhibitor | No | No | No | No | No | No |
Lipinski | Yes | Yes | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djehiche, C.; Benzidane, N.; Djeghim, H.; Tebboub, M.; Mokrani, E.H.; Mebrek, S.; Messaoudi, M.; Bensouici, C.; Alsalme, A.; Cornu, D.; et al. Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights. Pharmaceuticals 2024, 17, 385. https://doi.org/10.3390/ph17030385
Djehiche C, Benzidane N, Djeghim H, Tebboub M, Mokrani EH, Mebrek S, Messaoudi M, Bensouici C, Alsalme A, Cornu D, et al. Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights. Pharmaceuticals. 2024; 17(3):385. https://doi.org/10.3390/ph17030385
Chicago/Turabian StyleDjehiche, Cheima, Nadia Benzidane, Hanene Djeghim, Mehdi Tebboub, El Hassen Mokrani, Saad Mebrek, Mohammed Messaoudi, Chawki Bensouici, Ali Alsalme, David Cornu, and et al. 2024. "Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights" Pharmaceuticals 17, no. 3: 385. https://doi.org/10.3390/ph17030385
APA StyleDjehiche, C., Benzidane, N., Djeghim, H., Tebboub, M., Mokrani, E. H., Mebrek, S., Messaoudi, M., Bensouici, C., Alsalme, A., Cornu, D., Bechelany, M., Arrar, L., & Barhoum, A. (2024). Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights. Pharmaceuticals, 17(3), 385. https://doi.org/10.3390/ph17030385