Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management
Abstract
:1. Introduction
2. Pathophysiology of Bone TB
2.1. Primary Infection, Latency, and Reactivation
2.2. Predilection for Bone Tissue
2.3. Adhesion to Bone Tissue
2.4. Granuloma Formation in Bone Tuberculosis
2.5. Bone Destruction by Tuberculosis
3. Current Treatment Approaches for Bone Tuberculosis
3.1. Antibiotic Regimen Challenges
3.2. Surgical Intervention and Bone Reconstruction
4. Nanotechnology in Bone Tuberculosis Treatment
4.1. Mesoporous Silica Nanoparticles
4.2. Tetracycline-Modified Nanoparticles
4.3. Liposomes Nanoparticles
4.4. Poly(Lactide-Co-Glycolide) Nanoparticles
4.5. Bovine Serum Albumin Nanoparticles
4.6. Nanoscale Mineralized Collagen
4.7. Chitosan/Carbon Nanotubes Nanoparticles
5. Conclusions, Challenges, and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, G.M.; Murphy, E.; Hopkins, R.; Rutland, P.; Chistov, Y. First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiology 2007, 153 Pt 4, 1243–1249. [Google Scholar] [CrossRef]
- Jordao, L.; Vieira, O.V. Tuberculosis: New aspects of an old disease. Int. J. Cell Biol. 2011, 2011, 403623. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Bhakta, S. The Prospect of Repurposing Immunomodulatory Drugs for Adjunctive Chemotherapy against Tuberculosis: A Critical Review. Antibiotics 2021, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Alajlani, M.M.; Backlund, A. Evaluating Antimycobacterial Screening Schemes Using Chemical Global Positioning System-Natural Product Analysis. Molecules 2020, 25, 945. [Google Scholar] [CrossRef] [PubMed]
- Ambrożkiewicz, W.; Kučerová-Chlupáčová, M.; Janďourek, O.; Konečná, K.; Paterová, P.; Bárta, P.; Vinšová, J.; Doležal, M.; Zitko, J. 5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation. Molecules 2020, 25, 1561. [Google Scholar] [CrossRef] [PubMed]
- Jeremiah, K.; Lyimo, E.; Ritz, C.; PrayGod, G.; Rutkowski, K.T.; Korsholm, K.S.; Ruhwald, M.; Tait, D.; Grewal, H.M.S.; Faurholt-Jepsen, D. Prevalence of Mycobacterium tuberculosis infection as measured by the QuantiFERON-TB Gold assay and ESAT-6 free IGRA among adolescents in Mwanza, Tanzania. PLoS ONE 2021, 16, e0252808. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Humayun, A.; Imran, M.; Bashir, M.A.; Malik, A.A. A bibliometric analysis of global research performance on tuberculosis (2011–2020): Time for a global approach to support high-burden countries. J. Fam. Community Med. 2022, 29, 117–124. [Google Scholar] [CrossRef]
- Shiratori, B.; Leano, S.; Nakajima, C.; Chagan-Yasutan, H.; Niki, T.; Ashino, Y.; Suzuki, Y.; Telan, E.; Hattori, T. Elevated OPN, IP-10, and neutrophilia in loop-mediated isothermal amplification confirmed tuberculosis patients. Mediat. Inflamm. 2014, 2014, 513263. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Qin, W.; Zhang, Y.; Yang, Z.; Li, J.; Yang, J.; Deng, Q. Topical streptomycin irrigation of lesions to prevent postoperative site infections in spinal tuberculosis: A retrospective analysis. J. Orthop. Surg. Res. 2023, 18, 592. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Zhang, Z.; Jiang, D.; Jia, R.; Zhang, Y. A comparison of three bone graft struts for interbody fusion using a posterior approach for lower lumbar spinal tuberculosis in adults: A midterm follow-up study. BMC Musculoskelet. Disord. 2022, 23, 590. [Google Scholar] [CrossRef]
- Wu, H.; Cui, Y.; Gong, L.; Liu, J.; Fan, Y.; Zhou, Y.; Li, W. Comparison between single anterior and single posterior approaches of debridement interbody fusion and fixation for the treatment of mono-segment lumbar spine tuberculosis. Arch. Orthop. Trauma. Surg. 2022, 142, 3643–3649. [Google Scholar] [CrossRef]
- Kabore, C.; Poncin, M.; Hurtgen, B.; Moerman, F.; Moonen, M. Tuberculose ostéoarticulaire: Nosologie et pièges diagnostiques. [Osteoarticular tuberculosis nosology and diagnostic pitfalls]. Rev. Med. Liege 2018, 73, 191–196. [Google Scholar]
- Çay, Ü.; Alabaz, D.; Gündeşlioglu, Ö.; Mirioglu, A.; Pehlivan, U.A. Skeletal Tuberculosis in Pediatric Population for 15 Years; Twenty Cases from Southern Turkey. Niger. J. Clin. Pract. 2023, 26, 1602–1609. [Google Scholar] [CrossRef]
- Narayan, V.; Mohammed, N.; Savardekar, A.R.; Patra, D.P.; Nanda, A. Tuberculous Spondylolisthesis: A Reappraisal of the Clinicoradiologic Spectrum and Surgical Treatment Paradigm. World Neurosurg. 2018, 114, 361–367. [Google Scholar] [CrossRef]
- Teka, M.; Ghozlen, H.B.; Zaier, A.Y.; Hnia, M.B.; Naouar, N.; Abid, F. Cervical spine tuberculosis. Pan Afr. Med. J. 2020, 37, 7. [Google Scholar] [CrossRef]
- Yang, S.; Yu, Y.; Ji, Y.; Luo, D.J.; Zhang, Z.Y.; Huang, G.P.; He, F.Y.; Wu, W.J.; Mou, X.P. Multi-drug resistant spinal tuberculosis-epidemiological characteristics of in-patients: A multicentre retrospective study. Epidemiol. Infect. 2020, 148, e11. [Google Scholar] [CrossRef]
- Broderick, C.; Hopkins, S.; Mack, D.J.F.; Aston, W.; Pollock, R.; Skinner, J.A.; Warren, S. Delays in the diagnosis and treatment of bone and joint tuberculosis in the United Kingdom. Bone Jt. J. 2018, 100, 119–124. [Google Scholar] [CrossRef]
- Chong, S.G.; Herron, M.; Dolan, L.; McDonald, C.; O’Donnell, R.; Fahy, R.J.; Keane, J.; McLaughlin, A.M. TB osteomyelitis. QJM Int. J. Med. 2016, 109, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Yang, Z.; Song, Q. Diagnostic values of peripheral blood T-cell spot of tuberculosis assay (T-SPOT.TB) and magnetic resonance imaging for osteoarticular tuberculosis: A case-control study. Aging 2021, 13, 9693–9703. [Google Scholar] [CrossRef] [PubMed]
- Shikhare, S.N.; Singh, D.R.; Shimpi, T.R.; Peh, W.C. Tuberculous osteomyelitis and spondylodiscitis. Semin. Musculoskelet. Radiol. 2011, 15, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Vielgut, I.; Putzl, L.; Thomüller, I.; Igrec, J.; Brcic, I.; Valentin, T.; Wittig, U.; Zettl, R.; Sadoghi, P.; Leithner, A.; et al. Musculoskeletal tuberculosis revisited: Bone and joint tuberculosis in Austria. Arch. Orthop. Trauma. Surg. 2023, 143, 3845–3855. [Google Scholar] [CrossRef]
- Pigrau-Serrallach, C.; Rodríguez-Pardo, D. Bone and joint tuberculosis. Eur. Spine J. 2013, 22 (Suppl. S4), 556–566. [Google Scholar] [CrossRef]
- Peloquin, C.A.; Davies, G.R. The Treatment of Tuberculosis. Clin. Pharmacol. Ther. 2021, 110, 1455–1466. [Google Scholar] [CrossRef]
- De Vito, A.; Fiore, V.; Urru, V.; Bozzi, E.; Geremia, N.; Princic, E.; Canu, D.; Molicotti, P.; Are, R.; Babudieri, S.; et al. Use of bedaquiline in spinal osteomyelitis and soft tissue abscess caused by multidrug-resistant Mycobacterium tuberculosis: A case report. Braz. J. Infect. Dis. 2022, 26, 102701. [Google Scholar] [CrossRef]
- Mahajanakatti, A.B.; Deepak, T.S.; Achar, R.R.; Pradeep, S.; Prasad, S.K.; Narayanappa, R.; Bhaskar, D.; Shetty, S.; Melappa, G.; Chandramouli, L.; et al. Nanoconjugate Synthesis of Elaeocarpus ganitrus and the Assessment of Its Antimicrobial and Antiproliferative Properties. Molecules 2022, 27, 2442. [Google Scholar] [CrossRef]
- Alzahabi, K.H.; Usmani, O.; Georgiou, T.K.; Ryan, M.P.; Robertson, B.D.; Tetley, T.D.; Porter, A.E. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg. Top. Life Sci. 2020, 4, 581–600. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zhang, J.; Chen, Z.; Ma, H.; Liu, X.; Liang, S.; Wu, P.; Ge, Z. Treatment of spinal tuberculosis in rabbits using bovine serum albumin nanoparticles loaded with isoniazid and rifampicin. Neurol. Res. 2022, 44, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, P.; Zhang, L.; Luan, H.; Li, X.; Xiang, H.; Jing, S.; Song, X. Development of tetracycline-modified nanoparticles for bone-targeted delivery of anti-tubercular drug. Front. Bioeng. Biotechnol. 2023, 11, 1207520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wang, H.; Liu, J.; He, H.; Hua, X.; He, Q.; Zhang, L.; Ye, X.; Shi, J. A mesoporous silica nanoparticulate/β-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomaterials 2011, 32, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, K.; Zhu, Y.; Zhang, J.; Ye, X. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater. 2015, 16, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.X.; Li, L.; Ma, Y.G.; Li, B.N.; Li, G.; Zhou, Z.; Shi, F.; Weng, J.; Zhang, C.; Wang, F.; et al. A bioactive implant in situ and long-term releases combined drugs for treatment of osteoarticular tuberculosis. Biomaterials 2018, 176, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Yahia, S.; Khalil, I.A.; Ghoniem, M.G.; El-Sherbiny, I.M. 3D-bioimplants mimicking the structure and function of spine units for the treatment of spinal tuberculosis. RSC Adv. 2023, 13, 17340–17353. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.F.; Khosravi, A.D.; Goodarzi, H.; Nashibi, R.; Teimouri, A.; Motamedfar, A.; Ranjbar, R.; Afzalzadeh, S.; Cyrus, M.; Hashemzadeh, M. Pathogen Identification in Suspected Cases of Pyogenic Spondylodiscitis. Front. Cell. Infect. Microbiol. 2017, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Fan, J.; Shang, X.; Wang, L.; Tuohetaerbaike, B.; Li, Y.; Zhang, L.; Huo, Y.; Wang, J.; Ma, X. Bioinformation Analysis Reveals IFIT1 as Potential Biomarkers in Central Nervous System Tuberculosis. Infect. Drug Resist. 2022, 15, 35–45. [Google Scholar] [CrossRef]
- Wang, C.; Peng, J.; Kuang, Y.; Zhang, J.; Dai, L. Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion. Mol. Med. Rep. 2017, 16, 1147–1156. [Google Scholar] [CrossRef]
- Maccauro, G.; Spinelli, M.S.; Mauro, S.; Perisano, C.; Graci, C.; Rosa, M.A. Physiopathology of spine metastasis. Int. J. Surg. Oncol. 2011, 2011, 107969. [Google Scholar] [CrossRef]
- Lu, S.; Yang, Z.; Guo, L. Lumbar spine and paravertebral muscle infarction after endovascular abdominal aortic aneurysm repair: A case description. Quant. Imaging Med. Surg. 2023, 13, 6334–6337. [Google Scholar] [CrossRef]
- Zihad, S.; Sifat, N.; Islam, M.A.; Monjur-Al-Hossain, A.S.M.; Sikdar, K.; Sarker, M.M.R.; Shilpi, J.A.; Uddin, S.J. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023, 9, e20636. [Google Scholar] [CrossRef]
- Stamm, C.E.; Collins, A.C.; Shiloh, M.U. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol. Rev. 2015, 264, 204–219. [Google Scholar] [CrossRef]
- Silveiro, C.; Marques, M.; Olivença, F.; Pires, D.; Mortinho, D.; Nunes, A.; Pimentel, M.; Anes, E.; Catalão, M.J. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival. Front. Cell. Infect. Microbiol. 2023, 13, 1089911. [Google Scholar] [CrossRef]
- Pandey, S.; Ehtesham, N.Z.; Hasnain, S.E. Editorial: Emerging concepts in Mycobacterium tuberculosis pathogenesis: Host-pathogen interaction and stress adaption mechanisms. Front. Cell. Infect. Microbiol. 2023, 13, 1148756. [Google Scholar] [CrossRef]
- Liu, J.; Jaijyan, D.K.; Tang, Q.; Zhu, H. Promising Cytomegalovirus-Based Vaccine Vector Induces Robust CD8+ T-Cell Response. Int. J. Mol. Sci. 2019, 20, 4457. [Google Scholar] [CrossRef]
- Poladian, N.; Orujyan, D.; Narinyan, W.; Oganyan, A.K.; Navasardyan, I.; Velpuri, P.; Chorbajian, A.; Venketaraman, V. Role of NF-κB during Mycobacterium tuberculosis Infection. Int. J. Mol. Sci. 2023, 24, 1772. [Google Scholar] [CrossRef]
- Sundararajan, S.; Babu, S.; Das, S.D. Comparison of localized versus systemic levels of Matrix metalloproteinases (MMPs), its tissue inhibitors (TIMPs) and cytokines in tuberculous and non-tuberculous pleuritis patients. Hum. Immunol. 2012, 73, 985–991. [Google Scholar] [CrossRef]
- Viswanathan, G.; Tobin, D.M. Macrophage ACKRobatics: An atypical Cxcr3 keeps macrophages in check. J. Leukoc. Biol. 2020, 107, 171–173. [Google Scholar] [CrossRef]
- Wallis, R.S. Reconsidering adjuvant immunotherapy for tuberculosis. Clin. Infect. Dis. 2005, 41, 201–208. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Gao, B.; Zhang, L. Exosome mediated biological functions within skeletal microenvironment. Front. Bioeng. Biotechnol. 2022, 10, 953916. [Google Scholar] [CrossRef]
- Seed, M.P.; Gardner, C.R. The modulation of intra-articular inflammation, cartilage matrix and bone loss in mono-articular arthritis induced by heat-killed Mycobacterium tuberculosis. Inflammopharmacology 2005, 12, 551–567. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, Z.; Xue, L.; Wang, D.; Tan, Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front. Immunol. 2022, 13, 1064245. [Google Scholar] [CrossRef]
- Wang, T.; Ma, Z.; Lei, W.; Wu, Z.; Xu, H.; Ma, T.; Li, T. Clinical efficacy of different open approaches in the surgical treatment of thoracolumbar tuberculosis: A single-center retrospective comparative study. J. Orthop. Surg. Res. 2023, 18, 352. [Google Scholar] [CrossRef]
- Ahuja, K.; Ifthekar, S.; Mittal, S.; Yadav, G.; Sarkar, B.; Kandwal, P. Defining mechanical instability in tuberculosis of the spine: A systematic review. EFORT Open Rev. 2021, 6, 202–210. [Google Scholar] [CrossRef]
- Dunn, R.N.; Ben Husien, M. Spinal tuberculosis: Review of current management. Bone Jt. J. 2018, 100, 425–431. [Google Scholar] [CrossRef]
- Jain, A.K.; Rajasekaran, S.; Jaggi, K.R.; Myneedu, V.P. Tuberculosis of the Spine. J. Bone Jt. Surg. Am. 2020, 102, 617–628. [Google Scholar] [CrossRef]
- Khanna, K.; Sabharwal, S. Spinal tuberculosis: A comprehensive review for the modern spine surgeon. Spine J. 2019, 19, 1858–1870. [Google Scholar] [CrossRef]
- Leowattana, W.; Leowattana, P.; Leowattana, T. Tuberculosis of the spine. World J. Orthop. 2023, 14, 275–293. [Google Scholar] [CrossRef]
- Nagel, S.; Streicher, E.M.; Klopper, M.; Warren, R.M.; Van Helden, P.D. Isoniazid Resistance and Dosage as Treatment for Patients with Tuberculosis. Curr. Drug Metab. 2017, 18, 1030–1039. [Google Scholar] [CrossRef]
- Parumasivam, T.; Chang, R.Y.; Abdelghany, S.; Ye, T.T.; Britton, W.J.; Chan, H.K. Dry powder inhalable formulations for anti-tubercular therapy. Adv. Drug Deliv. Rev. 2016, 102, 83–101. [Google Scholar] [CrossRef]
- Hussain, Z.; Zhu, J.; Ma, X. Metabolism and Hepatotoxicity of Pyrazinamide, an Antituberculosis Drug. Drug Metab. Dispos. 2021, 49, 679–682. [Google Scholar] [CrossRef]
- Ramappa, V.; Aithal, G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013, 3, 37–49. [Google Scholar] [CrossRef]
- Tostmann, A.; Boeree, M.J.; Aarnoutse, R.E.; de Lange, W.C.; van der Ven, A.J.; Dekhuijzen, R. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. J. Gastroenterol. Hepatol. 2008, 23, 192–202. [Google Scholar] [CrossRef]
- Alsultan, A.; Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs 2014, 74, 839–854. [Google Scholar] [CrossRef]
- Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 5, a017863. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, S.; Zheng, Q.; Jin, Y.; Dai, Y. Application of 3-dimensional printing technology combined with guide plates for thoracic spinal tuberculosis. Medicine 2021, 100, e24636. [Google Scholar] [CrossRef]
- Gao, Y.; Ou, Y.; Deng, Q.; He, B.; Du, X.; Li, J. Comparison between titanium mesh and autogenous iliac bone graft to restore vertebral height through posterior approach for the treatment of thoracic and lumbar spinal tuberculosis. PLoS ONE 2017, 12, e0175567. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Chen, R.; Huang, Y.; Chen, X.; Lin, J. Could Allograft Bones Combined with Poly-Ether-Ether-Ketone Cages or Titanium Mesh Cages be an Alternative Grafting Method in the Management of Cervical Spinal Tuberculosis? World Neurosurg. 2019, 128, e653–e659. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, H.Q.; Li, M.; Tang, M.X.; Guo, C.F.; Deng, A.; Gao, Q.; Wu, J.H.; Liu, J.Y. Debridement, interbody graft using titanium mesh cages, posterior instrumentation and fusion in the surgical treatment of multilevel noncontiguous spinal tuberculosis in elderly patients via a posterior-only. Injury 2017, 48, 378–383. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Li, Z.; Lin, R.; Lin, J. Posterior-only approach with titanium mesh cages versus autogenous iliac bone graft for thoracic and lumbar spinal tuberculosis. J. Spinal Cord. Med. 2021, 44, 598–605. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Q.; Wang, Y.; Guo, C.; Tang, M. The efficiency of the posterior-only approach using shaped titanium mesh cage for the surgical treatment of spine tuberculosis in children: A preliminary study. J. Orthop. Surg. 2018, 26, 2309499018806684. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Li, M.; Wang, Y.X.; Tang, M.X.; Guo, C.F.; Liu, S.H.; Deng, A.; Gao, Q. Minimum 5-Year Follow-Up Outcomes for Comparison Between Titanium Mesh Cage and Allogeneic Bone Graft to Reconstruct Anterior Column Through Posterior Approach for the Surgical treatment of Thoracolumbar Spinal Tuberculosis with Kyphosis. World Neurosurg. 2019, 127, e407–e415. [Google Scholar] [CrossRef]
- Zhong, W.; Liang, X.; Tang, K.; Luo, X.; Quan, Z. Transverse process strut and titanium mesh cages in the stability reconstruction of thoracic single segment tuberculosis: A retrospective single-center cohort study. BMC Musculoskelet. Disord. 2020, 21, 172. [Google Scholar] [CrossRef]
- Liu, J.M.; Chen, X.Y.; Zhou, Y.; Long, X.H.; Chen, W.Z.; Liu, Z.L.; Huang, S.H.; Yao, H.Q. Is nonstructural bone graft useful in surgical treatment of lumbar spinal tuberculosis? A retrospective case-control study. Medicine 2016, 95, e4677. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, G.; Yang, J.; Zhang, S.; Song, Y.; Wang, Q. Anterior debridement, bone grafting and fixation for cervical spine tuberculosis: An iliac bone graft versus a structural manubrium graft. BMC Musculoskelet. Disord. 2022, 23, 236. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, H.; Xiu, P.; Zeng, J.; Song, Y.; Li, T. Comparative evaluation of multi-fold rib and structural iliac bone grafts in single-segment thoracic and thoracolumbar spinal tuberculosis: Clinical and radiological outcomes. J. Orthop. Surg. Res. 2023, 18, 917. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, S.; Liu, H.; Li, X.; Liu, Y.; Du, Y. Novel alternative therapy for spinal tuberculosis during surgery: Reconstructing with anti-tuberculosis bioactivity implants. Expert. Opin. Drug Deliv. 2014, 11, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, S.; Ma, J.; Liu, H.; Du, Y.; Liu, Y. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant. PLoS ONE 2014, 9, e94937. [Google Scholar] [CrossRef]
- Baldwin, P.; Li, D.J.; Auston, D.A.; Mir, H.S.; Yoon, R.S.; Koval, K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma 2019, 33, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J. Mater. Sci. Mater. Med. 2014, 25, 2445–2461. [Google Scholar] [CrossRef]
- Skochdopole, A.J.; Wagner, R.D.; Davis, M.J.; Raj, S.; Winocour, S.J.; Ropper, A.E.; Xu, D.S.; Bohl, M.A.; Reece, E.M. Vascularized Bone Grafts in Spinal Reconstruction: An Overview of Nomenclature and Indications. Semin. Plast. Surg. 2021, 35, 50–53. [Google Scholar] [CrossRef]
- Kotrych, D.; Angelini, A.; Bohatyrewicz, A.; Ruggieri, P. 3D printing for patient-specific implants in musculoskeletal oncology. EFORT Open Rev. 2023, 8, 331–339. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Wang, D.; Liu, H.; Boughton, R.I. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation. Int. J. Nanomed. 2013, 8, 2903–2916. [Google Scholar] [CrossRef]
- Liang, X.; Li, F.; Gong, X.; Li, J.; Yin, S.; Li, Q.; Liu, Z.; Zhao, Z.; Tu, X.; Huang, W.; et al. In vivo evaluation of porous nanohydroxyapatite/polyamide 66 struts in a goat cervical fusion model. Sci. Rep. 2020, 10, 10495. [Google Scholar] [CrossRef]
- Girones Molera, J.; Mendez, J.A.; San Roman, J. Bioresorbable and nonresorbable polymers for bone tissue engineering. Curr. Pharm. Des. 2012, 18, 2536–2557. [Google Scholar] [CrossRef]
- Ran, Z.; Wang, Y.; Li, J.; Xu, W.; Tan, J.; Cao, B.; Luo, D.; Ding, Y.; Wu, J.; Wang, L.; et al. 3D-printed biodegradable magnesium alloy scaffolds with zoledronic acid-loaded ceramic composite coating promote osteoporotic bone defect repair. Int. J. Bioprint 2023, 9, 769. [Google Scholar] [CrossRef]
- Amarnath Praphakar, R.; Sumathra, M.; Sam Ebenezer, R.; Vignesh, S.; Shakila, H.; Rajan, M. Fabrication of bioactive rifampicin loaded κ-Car-MA-INH/Nano hydroxyapatite composite for tuberculosis osteomyelitis infected tissue regeneration. Int. J. Pharm. 2019, 565, 543–556. [Google Scholar] [CrossRef]
- Liu, P.; Guo, B.; Wang, S.; Ding, J.; Zhou, W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int. J. Pharm. 2019, 558, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, P.; Fernandes, T.; Chaubey, P.; Kaur, P.; Narayanan, S.; Vk, R.; Sawarkar, S.P. Mannose-conjugated chitosan nanoparticles for delivery of Rifampicin to Osteoarticular tuberculosis. Drug Deliv. Transl. Res. 2021, 11, 1509–1519. [Google Scholar] [CrossRef]
- Wu, J.; Zuo, Y.; Hu, Y.; Wang, J.; Li, J.; Qiao, B.; Jiang, D. Development and in vitro characterization of drug delivery system of rifapentine for osteoarticular tuberculosis. Drug Des. Devel Ther. 2015, 9, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lou, C.; Wang, X.; Wang, C.; Shi, Z.; Niu, N. Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infect. Dis. 2022, 22, 824. [Google Scholar] [CrossRef] [PubMed]
- Yahia, S.; Khalil, I.A.; El-Sherbiny, I.M. Dual antituberculosis drugs-loaded gelatin hydrogel bioimplant for treating spinal tuberculosis. Int. J. Pharm. 2023, 633, 122609. [Google Scholar] [CrossRef]
- Huang, D.; Li, D.; Wang, T.; Shen, H.; Zhao, P.; Liu, B.; You, Y.; Ma, Y.; Yang, F.; Wu, D.; et al. Isoniazid conjugated poly(lactide-co-glycolide): Long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials 2015, 52, 417–425. [Google Scholar] [CrossRef]
- Chen, G.; Wu, Y.; Yu, D.; Li, R.; Luo, W.; Ma, G.; Zhang, C. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J. Biomater. Appl. 2019, 33, 989–996. [Google Scholar] [CrossRef]
- Fang, X.; Dong, J.F.; Wang, Q.; Feng, A.; Krishnan, S.; Shoma Suresh, K.; Ramalingam, M. Preparation and Biocompatibility Evaluation of Nanoscale Isoniazide-Loaded Mineralized Collagen Implants for Tuberculous Bone and Joint Repair. J. Biomed. Nanotechnol. 2022, 18, 193–201. [Google Scholar] [CrossRef]
- Xie, T.H.; Song, Y.M.; Peng, H.T.; Dai, Z.Q.; Kang, Y.; Xiu, P.; Wang, L.N.; Li, H.; Yang, X. A bioactive implant combining isoniazid with nanohydroxyapatite/polyamide 66 for the treatment of osteoarticular tuberculosis. Mater. Des. 2021, 210, 110064. [Google Scholar] [CrossRef]
- Hoang Thi, T.T.; Cao, V.D.; Nguyen, T.N.Q.; Hoang, D.T.; Ngo, V.C.; Nguyen, D.H. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 631–656. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Walsh, L.J.; Xu, C. Modulating Osteoimmune Responses by Mesoporous Silica Nanoparticles. ACS Biomater. Sci. Eng. 2022, 8, 4110–4122. [Google Scholar] [CrossRef]
- Porrang, S.; Davaran, S.; Rahemi, N.; Allahyari, S.; Mostafavi, E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int. J. Nanomed. 2022, 17, 1803–1827. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Alsehli, M.; Al-Enizi, A.; Nafady, A. Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery Applications. Curr. Drug Deliv. 2022, 19, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, X.; He, C. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1573. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef]
- Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct. Target. Ther. 2023, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Koneru, B.; Shi, Y.; Wang, Y.C.; Chavala, S.H.; Miller, M.L.; Holbert, B.; Conson, M.; Ni, A.; Di Pasqua, A.J. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli. Molecules 2015, 20, 19690–19698. [Google Scholar] [CrossRef]
- Xia, D.; Liu, Y.; Cao, W.; Gao, J.; Wang, D.; Lin, M.; Liang, C.; Li, N.; Xu, R. Dual-Functional Nanofibrous Patches for Accelerating Wound Healing. Int. J. Mol. Sci. 2022, 23, 10983. [Google Scholar] [CrossRef] [PubMed]
- Odore, R.; De Marco, M.; Gasco, L.; Rotolo, L.; Meucci, V.; Palatucci, A.T.; Rubino, V.; Ruggiero, G.; Canello, S.; Guidetti, G.; et al. Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation. Poult. Sci. 2015, 94, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Huang, Y.; Yang, C.; Liao, Y.; Zhang, X.; Yan, M.; Cui, S.; Zhao, C. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int. J. Pharm. 2017, 516, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- Gautam, B.; Luo, C.H.; Gao, H.D.; Hsiao, J.C.; Tseng, H.R.; Lee, H.M.; Yu, H.H. Nano-On-Nano: Responsive Nanosubstrate-Mediated Liposome Delivery with High Cellular Uptake Efficiency. ACS Appl. Bio Mater. 2023, 6, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: Preparation and applications. Colloids Surf. B Biointerfaces 2022, 218, 112737. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Gao, J.; Ding, Y.; Lu, Y.; Wei, Q.; Cui, D.; Fan, J.; Li, X.; Zhu, E.; Lu, Y.; et al. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. Adv. Sci. 2021, 8, e2100876. [Google Scholar] [CrossRef] [PubMed]
- Zong, T.X.; Silveira, A.P.; Morais, J.A.V.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.S.; Liu, S.K. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. Nanomaterials 2022, 12, 1855. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, W.; Zhang, J.; Xia, X. Antimicrobial lipids in nano-carriers for antibacterial delivery. J. Drug Target. 2020, 28, 271–281. [Google Scholar] [CrossRef]
- Ferreira, M.; Ogren, M.; Dias, J.N.R.; Silva, M.; Gil, S.; Tavares, L.; Aires-da-Silva, F.; Gaspar, M.M.; Aguiar, S.I. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules 2021, 26, 2047. [Google Scholar] [CrossRef] [PubMed]
- Kataria, M.; Sethi, M.; Kaur, J.; Punia, S.; Kumar, K. Formulation of Nanoparticles Against TB—A Review. Recent. Pat. Inflamm. Allergy Drug Discov. 2015, 9, 120–127. [Google Scholar] [CrossRef]
- Jacobo-Delgado, Y.M.; Navarro-Tovar, G.; Rivas-Santiago, B. [Potential use of liposomes in tuberculosis treatment]. Rev. Med. Inst. Mex. Seguro Soc. 2023, 61, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Rosales, A.; Rodríguez-Sanoja, R.; Hernández-Pando, R.; Moreno-Mendieta, S. The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges. Microorganisms 2023, 11, 1988. [Google Scholar] [CrossRef]
- Ma, C.; Wu, M.; Ye, W.; Huang, Z.; Ma, X.; Wang, W.; Wang, W.; Huang, Y.; Pan, X.; Wu, C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv. Transl. Res. 2021, 11, 1218–1235. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Grobler, A.; Rath, G.; Goyal, A.K.; Jain, A.K.; Mehta, A. Pulmonary Delivery of Anti-Tubercular Drugs Using Ligand Anchored pH Sensitive Liposomes for the Treatment of Pulmonary Tuberculosis. Curr. Drug Deliv. 2016, 13, 909–922. [Google Scholar] [CrossRef]
- Guo, X.; Zuo, X.; Zhou, Z.; Gu, Y.; Zheng, H.; Wang, X.; Wang, G.; Xu, C.; Wang, F. PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int. J. Mol. Sci. 2023, 24, 4333. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Zhu, Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 1041–1060. [Google Scholar] [CrossRef]
- Bahlool, A.Z.; Fattah, S.; O’Sullivan, A.; Cavanagh, B.; MacLoughlin, R.; Keane, J.; O’Sullivan, M.P.; Cryan, S.A. Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis. Pharmaceutics 2022, 14, 1745. [Google Scholar] [CrossRef]
- Khademi, F.; Yousefi, A.; Derakhshan, M.; Najafi, A.; Tafaghodi, M. Enhancing immunogenicity of novel multistage subunit vaccine of Mycobacterium tuberculosis using PLGA:DDA hybrid nanoparticles and MPLA: Subcutaneous administration. Iran. J. Basic. Med. Sci. 2019, 22, 893–900. [Google Scholar] [CrossRef]
- Tukulula, M.; Gouveia, L.; Paixao, P.; Hayeshi, R.; Naicker, B.; Dube, A. Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages. Pharm. Res. 2018, 35, 111. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Gothwal, A.; Pandey, P.K.; Chauhan, D.S.; Pachouri, P.K.; Gupta, U.D.; Gupta, U. HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Pharm. Res. 2018, 36, 19. [Google Scholar] [CrossRef]
- Puri, V.; Chaudhary, K.R.; Singh, A.; Singh, C. Inhalation potential of N-Acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: In vitro lung deposition and efficacy studies. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100084. [Google Scholar] [CrossRef]
- Khademi, F.; Derakhshan, M.; Yousefi-Avarvand, A.; Najafi, A.; Tafaghodi, M. A novel antigen of Mycobacterium tuberculosis and MPLA adjuvant co-entrapped into PLGA:DDA hybrid nanoparticles stimulates mucosal and systemic immunity. Microb. Pathog. 2018, 125, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Shen, S.; Liu, H. Recent advances in PLGA micro/nanoparticle delivery systems as novel therapeutic approach for drug-resistant tuberculosis. Front. Bioeng. Biotechnol. 2022, 10, 941077. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Z.; He, R.; Li, Y.; Xiong, B.; Yi, M.; Chen, Y.; Liu, J.; Lu, B. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf. B Biointerfaces 2023, 224, 113201. [Google Scholar] [CrossRef]
- Sristi; Fatima, M.; Sheikh, A.; Almalki, W.H.; Talegaonkar, S.; Dubey, S.K.; Amin, M.; Sahebkar, A.; Kesharwani, P. Recent advancement on albumin nanoparticles in treating lung carcinoma. J. Drug Target. 2023, 31, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.; Rostamabadi, H.; Patel, S.; Jafari, S.M. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int. J. Biol. Macromol. 2021, 193, 528–540. [Google Scholar] [CrossRef]
- Pichardo-Molina, J.L.; Cardoso-Avila, P.E.; Flores-Villavicencio, L.L.; Gomez-Ortiz, N.M.; Rodriguez-Rivera, M.A. Fluorescent carbon nanoparticles synthesized from bovine serum albumin nanoparticles. Int. J. Biol. Macromol. 2020, 142, 724–731. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Bran, S.; Băciuț, M.; Băciuț, G.; Lucaciu, O.; Dinu, C.M.; Todea, D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- Hoveidaei, A.H.; Sadat-Shojai, M.; Mosalamiaghili, S.; Salarikia, S.R.; Roghani-Shahraki, H.; Ghaderpanah, R.; Ersi, M.H.; Conway, J.D. Nano-hydroxyapatite structures for bone regenerative medicine: Cell-material interaction. Bone 2024, 179, 116956. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, D.; Liu, K.; Zhao, X.; Li, X.; Wang, W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 1291. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liu, T.; Qin, M.; Cheng, Y.; Lan, W.; Niu, X.; Wei, Y.; Hu, Y.; Lian, X.; Zhao, L.; et al. Bone-like hydroxyapatite anchored on alginate microspheres for bone regeneration. Carbohydr. Polym. 2022, 287, 119330. [Google Scholar] [CrossRef] [PubMed]
- Tansavatdi, K.; Mangat, D.S. Calcium hydroxyapatite fillers. Facial Plast. Surg. 2011, 27, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Zheng, M.H.; Tägil, M. The composite of hydroxyapatite and calcium sulphate: A review of preclinical evaluation and clinical applications. Expert. Rev. Med. Devices 2013, 10, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Uthappa, U.T.; Altalhi, T.; Jung, H.Y.; Kurkuri, M.D. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater. Sci. Eng. 2022, 8, 4039–4076. [Google Scholar] [CrossRef] [PubMed]
- George, S.M.; Nayak, C.; Singh, I.; Balani, K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater. Sci. Eng. 2022, 8, 3162–3186. [Google Scholar] [CrossRef]
- Uskoković, V.; Uskoković, D.P. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 96, 152–191. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, Y.; Liu, L.; Kong, Q.; Gong, Q.; Zeng, J.; Li, T.; Tu, C. [Effectiveness of nano-hydroxyapatite/polyamide 66 cage in anterior spinal reconstruction: A mid-term study]. Zhonghua Wai Ke Za Zhi 2014, 52, 20–24. [Google Scholar]
- Ye, J.; Fei, J.; Lai, Z.; Zhang, P.; Hu, J.; Hu, S.; Zhang, C. Comparison of nano-hydroxyapatite/polyamide 66 bioactive support and autologous iliac bone in bone grafting and fusion for elderly patients with lumbar tuberculosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2022, 36, 296–304. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, H.; Li, S.; Lin, Z.; Jiang, J. Determination of anti-tuberculosis drug concentration and distribution from sustained release microspheres in the vertebrae of a spinal tuberculosis rabbit model. J. Orthop. Res. 2017, 35, 200–208. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, D. Effect of bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres on bone and joint tuberculosis in vitro. Cell Biol. Int. 2017, 41, 369–373. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Jiang, D. Release characteristics of bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo. Mol. Med. Rep. 2017, 16, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Qayoom, I.; Verma, R.; Murugan, P.A.; Raina, D.B.; Teotia, A.K.; Matheshwaran, S.; Nair, N.N.; Tägil, M.; Lidgren, L.; Kumar, A. A biphasic nanohydroxyapatite/calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation. Sci. Rep. 2020, 10, 14128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Maimaitiaili, A.; Wang, T.; Song, X. Rifapentine Polylactic Acid Sustained-Release Microsphere Complex for Spinal Tuberculosis Therapy: Preparation, in vitro and in vivo Studies. Infect. Drug Resist. 2021, 14, 1781–1794. [Google Scholar] [CrossRef] [PubMed]
- Ben Shoham, A.; Rot, C.; Stern, T.; Krief, S.; Akiva, A.; Dadosh, T.; Sabany, H.; Lu, Y.; Kadler, K.E.; Zelzer, E. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development 2016, 143, 3933–3943. [Google Scholar] [CrossRef] [PubMed]
- Depalle, B.; McGilvery, C.M.; Nobakhti, S.; Aldegaither, N.; Shefelbine, S.J.; Porter, A.E. Osteopontin regulates type I collagen fibril formation in bone tissue. Acta Biomater. 2021, 120, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Terajima, M.; Perdivara, I.; Sricholpech, M.; Deguchi, Y.; Pleshko, N.; Tomer, K.B.; Yamauchi, M. Glycosylation and cross-linking in bone type I collagen. J. Biol. Chem. 2014, 289, 22636–22647. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.M.; Chen, Q.; Fang, M.; Erickson, B.; Orr, B.G.; Banaszak Holl, M.M. Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir 2010, 26, 7349–7354. [Google Scholar] [CrossRef]
- Wallace, J.M.; Erickson, B.; Les, C.M.; Orr, B.G.; Banaszak Holl, M.M. Distribution of type I collagen morphologies in bone: Relation to estrogen depletion. Bone 2010, 46, 1349–1354. [Google Scholar] [CrossRef]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-based (Nano)materials for Novel Biomedical Applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.; Aboulkhair, A.G.; Tawifq, M.M. Effect of nano-chitosan and nano-doxycycline gel on healing of induced oral ulcer in rat model: Histological and immunohistochemical study. Clin. Oral. Investig. 2022, 26, 3109–3118. [Google Scholar] [CrossRef] [PubMed]
- Rashki, S.; Asgarpour, K.; Tarrahimofrad, H.; Hashemipour, M.; Ebrahimi, M.S.; Fathizadeh, H.; Khorshidi, A.; Khan, H.; Marzhoseyni, Z.; Salavati-Niasari, M.; et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr. Polym. 2021, 251, 117108. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.D.; Cevher, E. Topical drug delivery using chitosan nano- and microparticles. Expert. Opin. Drug Deliv. 2012, 9, 1129–1146. [Google Scholar] [CrossRef]
- Zaiki, Y.; Iskandar, A.; Wong, T.W. Functionalized chitosan for cancer nano drug delivery. Biotechnol. Adv. 2023, 67, 108200. [Google Scholar] [CrossRef]
Drug | Dosage | Duration | Mechanism of Action | Advantages | Disadvantages |
---|---|---|---|---|---|
Isoniazid | 5 mg/kg/day (max 300 mg/day) | 6–18 months | Inhibits mycolic acid synthesis, essential for cell wall | Highly potent, good penetration into tissues | Hepatotoxicity, Peripheral neuropathy |
Rifampicin | 10–20 mg/kg/day (max 600 mg/day) | 6–18 months | Inhibits DNA-dependent RNA polymerase, blocking RNA synthesis | Broad activity, reduces treatment duration | Hepatotoxicity, Drug interactions |
Pyrazinamide | 15–30 mg/kg/day (max 2 g/day) | Initial 2 months | Effective in acidic pH, disrupts mycobacterial cell membrane | Effective against latent TB | Hepatotoxicity, Hyperuricemia |
Ethambutol | 15–25 mg/kg/day | Initial 2 months | Inhibits arabinose transferase, affecting cell wall biosynthesis | Prevents resistance emergence | Optic neuritis, Visual disturbances |
Material Type | Source | Properties | Clinical Use | Advantages | Disadvantages | References No. |
---|---|---|---|---|---|---|
Autografts | Patient’s own bone | Osteogenic, osteoinductive, osteoconductive, biocompatible | Preferred for its biological properties | Best integration and growth potential | Limited availability, donor site complications | [76] |
Allografts | Donor human bone | Various forms, may be processed | Useful when autograft quantity is insufficient | Reduced donor site morbidity | Risk of disease transmission, immune response | [76] |
Xenografts | Bone from another species | Processed for biocompatibility | Alternative when human bone is not preferred | No risk of disease transmission from human | Cross-species compatibility issues | [77] |
Bone Graft Substitutes | Synthetic or naturally derived | Includes ceramics, cements, glass | Fill bone defects and provide a scaffold | Variety of options and ease of use | Lack of osteogenic, osteoinductive, osteoconductive, and biocompatible properties | [76] |
Vascularized Bone Grafts | Bone with its own blood supply | Improved healing in avascular areas | Used in challenging defects | Superior in areas with poor blood supply | Technically demanding, donor site morbidity | [78] |
Custom 3D-Printed Implants | Based on patient-specific imaging | Tailor-made, biocompatible | Perfect fit for defect area | Custom-fit, reduces adaptation issues | High-cost, complex pre-surgical planning | [79] |
Titanium Mesh | Metallic scaffolds | Support and allows bone growth | Spinal fusion surgeries | Immediate structural support | Biological incompatibility, subsidence, stress shielding, and radiopacity | [80,81] |
Polymers | Biodegradable or non-biodegradable | Scaffolds for bone regeneration | Gradual bone regeneration | Versatility and controlled degradation | May induce inflammatory response | [82] |
Metal Alloys | Stainless steel, cobalt-chromium, etc. | Used for structural support | Load-bearing area repair | High strength and fatigue resistance | Stress shielding, toxic ion release, secondary surgery, and imaging artifacts | [83] |
Author/ Year | Types of Delivery System | Drug Loaded | Animal Model | Designed Route of Administration | Target Area | Release Time | Effect | Limitation | References No. |
---|---|---|---|---|---|---|---|---|---|
Zhu et al., 2015 | Mesoporous Silica NPs | IHN/RIF | New Zealand rabbits | Implantation into rabbit femoral bone defects | Bone tuberculosis foci | 84 days | Direct drug delivery to bone TB sites promotes bone growth and limits side effects on the liver and kidneys | Faces challenges with biodegradability and stability, including potential pore blockage and surface modifier degradation | [30] |
Zhu et al., 2011 | Mesoporous Silica NPs | IHN/RIF | New Zealand rabbits | Implantation into rabbit femoral bone defects | Bone tuberculosis foci | 30 days | Ensuring prolonged drug efficacy while minimizing systemic side effects | Faces challenges with biodegradability and stability, including potential pore blockage and surface modifier degradation | [29] |
Yahia et al., 2023 | Mesoporous Silica NPs | LVX/RIF | Wistar rats | Subcutaneous implantable composite scaffold | Bone tuberculosis foci | 60 days | Lowers drug IC50, aiding in spinal repair and regeneration, with minimal biological side effects | Similar biodegradability and clearance issues; may encounter pore clogging and surface alteration | [89] |
Yahia et al., 2023 | Mesoporous Silica NPs | LVX/RIF | Wistar rats | Subcutaneous implantable composite scaffold | Bone tuberculosis foci | 30 days/32 days | Delivers TB medication directly to infection sites for sustained effect, reducing systemic drug dependency | Similar biodegradability and clearance issues; may encounter pore clogging and surface alteration | [32] |
Liang et al., 2023 | Tetracycline-modified NPs | RPT | Kunming mice | Vein injection | Bone tuberculosis foci | 60 h | Increases rifapentine’s efficacy in osteoarticular TB, minimizing dosage and treatment frequency | May promote the development of resistance in bacteria | [28] |
Huang et al., 2015 | Poly(lactide-co-glycolide) NPs | IHN | New Zealand rabbits | Implantation into rabbit radius bone defects | Bone tuberculosis foci | 100 days | Achieves long-term, localized drug release and facilitates bone healing | Water-soluble drugs face integration challenges; degradation byproducts may affect drug release and tissue health | [90] |
Ma et al., 2021 | Bovine serum albumin NPs | IHN/RIF | New Zealand rabbits | Vein injection | Bone tuberculosis foci through systemic circulation | 42 days | Continuous drug release at the infection site enhances treatment and lowers adverse reactions | Risks immunogenic reactions; variable composition may affect consistency and safety | [27] |
Liu et al., 2019 | Liposome NPs | DINH | New Zealand rabbits | Intra-articular injection | Bone tuberculosis foci | 72 h | Provides stable drug levels at the infection site, potentially decreasing dosing frequency and reducing side effects | Susceptible to oxidation and hydrolysis; may have limitations in carrying hydrophobic drugs | [85] |
Chen et al., 2019 | Chitosan/carbon nanotubes NPs | INH | Guinea pigs | Vein injection | Secondary wound of bone tuberculosis through systemic circulation | 48 h | Supports ulcer healing and reduces bacterial load and isoniazid-induced toxicity | Toxicity and immunogenicity are concerns; non-biodegradability poses environmental risks | [91] |
Fang et al., 2022 | Nanoscale mineralized collagen | INH | Kunming mice | Subcutaneous implantable composite scaffold | Bone tuberculosis foci | 84 days | Delivers isoniazid effectively to bone, with improved biodegradability and compatibility | Collagen’s variability can lead to inconsistent properties and potential immunogenicity | [92] |
Xie et al., 2021 | Chitosan NPs | INH | New Zealand rabbits | Implantation into rabbit femoral bone defects | Bone tuberculosis foci | 28 days | Inhibits TB bacteria growth and adhesion, promoting bone integration and health | Risk of immunogenicity and allergic reactions; may aggregate in biological fluids | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Chen, H.; Chen, H.; Xiu, P.; Zeng, J.; Song, Y.; Li, T. Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals 2024, 17, 170. https://doi.org/10.3390/ph17020170
Luo Y, Chen H, Chen H, Xiu P, Zeng J, Song Y, Li T. Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals. 2024; 17(2):170. https://doi.org/10.3390/ph17020170
Chicago/Turabian StyleLuo, Yuanrui, Hongwei Chen, Hua Chen, Peng Xiu, Jiancheng Zeng, Yueming Song, and Tao Li. 2024. "Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management" Pharmaceuticals 17, no. 2: 170. https://doi.org/10.3390/ph17020170
APA StyleLuo, Y., Chen, H., Chen, H., Xiu, P., Zeng, J., Song, Y., & Li, T. (2024). Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals, 17(2), 170. https://doi.org/10.3390/ph17020170