Rational Approach to New Chemical Entities with Antiproliferative Activity on Ab1 Tyrosine Kinase Encoded by the BCR-ABL Gene: An Hierarchical Biochemoinformatics Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pharmacokinetic Properties Prediction
2.2. Biological Activity Prediction
2.3. Molecular Docking Study
2.4. Molecular Dynamics Simulations
2.5. Structure–Activity Relationship (SAR) and Molecular Overlay
2.6. Synthetic Accessibility
2.7. Theoretical Synthetic Routes Proposed to Compounds LMQC01 and LMQC04
2.8. Prediction of Lipophilicity and Aqueous Solubility via SwissADME Webserver
3. Material and Methods
3.1. Selection of Compounds
3.2. Pharmacokinetic and Toxicological Properties Predictions
3.3. Biological Activity Prediction
3.4. Molecular Docking Study
3.5. Molecular Dynamics Simulations
3.6. Structure–Activity Relationship (SAR) and Molecular Overlay
3.7. Synthetic Accessibility and Theoretical Synthetic Route of Promising Compounds
3.8. Lipophilicity and Water Solubility via SwissADME Webserver
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chereda, B.; Melo, J.V. Natural course and biology of CML. Ann. Hematol. 2015, 94, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Amarante-Mendes, G.P.; Rana, A.; Datoguia, T.S.; Hamerschlak, N.; Brumatti, G. BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 2022, 14, 215. [Google Scholar] [CrossRef] [PubMed]
- Mathisen, M.S.; O’Brien, S.; Thomas, D.; Cortes, J.; Kantarjian, H.; Ravandi, F. Role of Tyrosine Kinase Inhibitors in the Management of Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 2011, 6, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.J.; Cortes, J.E.; Kantarjian, H.M. Resistance to Tyrosine Kinase Inhibition Therapy for Chronic Myelogenous Leukemia: A Clinical Perspective and Emerging Treatment Options. Clin. Lymphoma Myeloma Leuk. 2013, 13, 515–529. [Google Scholar] [CrossRef]
- Raslan, M.A.; Raslan, S.A.; Shehata, E.M.; Mahmoud, A.S.; Sabri, N.A. Advances in the Applications of Bioinformatics and Chemoinformatics. Pharmaceuticals 2023, 16, 1050. [Google Scholar] [CrossRef]
- Shi, L.; Su, Z.; Xie, A.; Liao, C.; Qiao, W.; Zhang, D.; Shan, S.; Pan, D.; Li, Z.; Ning, Z.; et al. An Integrated Biochemoinformatics System for Drug Discovery. In Frontiers in Biochip Technology; Xing, W.-L., Cheng, J., Eds.; Springer: Boston, MA, USA, 2006; pp. 191–206. [Google Scholar]
- Banavath, H.N.; Sharma, O.P.; Kumar, M.S.; Baskaran, R. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: A virtual screening and molecular dynamics simulations study. Sci. Rep. 2014, 4, 6948. [Google Scholar] [CrossRef]
- Carofiglio, F.; Trisciuzzi, D.; Gambacorta, N.; Leonetti, F.; Stefanachi, A.; Nicolotti, O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020, 25, 4210. [Google Scholar] [CrossRef]
- Martorana, A.; La Monica, G.; Bono, A.; Mannino, S.; Buscemi, S.; Palumbo Piccionello, A.; Gentile, C.; Lauria, A.; Peri, D. Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel. Int. J. Mol. Sci. 2022, 23, 14374. [Google Scholar] [CrossRef]
- Firdayani, F.; Sani, A.W.; Rahayu, M.D.; Sartono, A.; Widiyarti, G.; Sundowo, A.; Setyawati, D.R. Machine learning model for antiproliferative virtual screening of herbal compounds against hepatocellular carcinoma. J. Appl. Pharm. Sci. 2023, 13, 177–184. [Google Scholar] [CrossRef]
- Bonanni, D.; Pinzi, L.; Rastelli, G. Development of machine learning classifiers to predict compound activity on prostate cancer cell lines. J. Cheminform. 2022, 14, 77. [Google Scholar] [CrossRef]
- Köhn, H.-F.; Hubert, L.J. Hierarchical Cluster Analysis. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2015; pp. 1–13. [Google Scholar]
- Kim, J.C.; Chan-Seng-Yue, M.; Ge, S.; Zeng, A.G.X.; Ng, K.; Gan, O.I.; Garcia-Prat, L.; Flores-Figueroa, E.; Woo, T.; Zhang, A.X.W.; et al. Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia. Nat. Genet. 2023, 55, 1186–1197. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, S.; Kim, J.H.; Ito, M.; Maeda, M.; Okuno, Y.; Koyama, D.; Ozawa, Y.; Gunji, M.; Osaki, M.; Kitamura, K.; et al. Multi-Lineage BCR-ABL Expression in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Is Associated With Improved Prognosis but No Specific Molecular Features. Front. Oncol. 2020, 10, 586567. [Google Scholar] [CrossRef] [PubMed]
- Malolo, F.-A.E.; Bissoue Nouga, A.; Kakam, A.; Franke, K.; Ngah, L.; Flausino, O.; Mpondo Mpondo, E.; Ntie-Kang, F.; Ndom, J.C.; Bolzani, V.d.S.; et al. Protease-inhibiting, molecular modeling and antimicrobial activities of extracts and constituents from Helichrysum foetidum and Helichrysum mechowianum (compositae). Chem. Cent. J. 2015, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- PASS Online. Available online: http://www.pharmaexpert.ru/passonline/predict.php (accessed on 12 April 2024).
- Smith, M.T.; McHale, C.M. Toxic Responses of the Blood. In Casarett & Doull’s Toxicology: The Basic Science of Poisons, 9th ed.; Klaassen, C.D., Ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Deininger, M.W.N.; Druker, B.J. Specific Targeted Therapy of Chronic Myelogenous Leukemia with Imatinib. Pharmacol. Rev. 2003, 55, 401–423. [Google Scholar] [CrossRef]
- Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Kandagalla, S.; Sharath, B.S.; Bharath, B.R.; Hani, U.; Manjunatha, H. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacol. 2017, 5, 15. [Google Scholar] [CrossRef]
- Kotha Anusha, R.; Mohammed, A.; Sandala Anuradha, b.; Vemuri, J.; Tangeda Saritha, J. Molecular Properties Prediction of Phenothiazine Derivatives by Using Swiss ADME, PkCSM, Lazar and Protox. World J. Pharm. Sci. 2019, 7, 65–71. [Google Scholar]
- Schrödinger Release 2024-3: QikProp; Schrödinger, LLC: New York, NY, USA, 2024.
- Rojas, H.; Ritter, C.; Pizzol, F.D. Mecanismos de disfunção da barreira hematoencefálica no paciente criticamente enfermo: Ênfase no papel das metaloproteinases de matriz. Rev. Bras.Ter. Intensiv. 2011, 23, 222–227. [Google Scholar] [CrossRef]
- DRUGBANK Online. Available online: https://www.drugbank.ca (accessed on 10 April 2024).
- Poroikov, V.V.; Filimonov, D.A.; Ihlenfeldt, W.-D.; Gloriozova, T.A.; Lagunin, A.A.; Borodina, Y.V.; Stepanchikova, A.V.; Nicklaus, M.C. PASS Biological Activity Spectrum Predictions in the Enhanced Open NCI Database Browser. J. Chem. Inf. Comput. Sci. 2003, 43, 228–236. [Google Scholar] [CrossRef]
- Almeida, V.L.d.; Leitão, A.; Reina, L.d.C.B.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Cancer and cell cicle-specific and cell cicle nonspecific anticancer DNA-interactive agents: An introduction. Química Nova 2005, 28, 118–129. [Google Scholar] [CrossRef]
- Bursulaya, B.D.; Totrov, M.; Abagyan, R.; Brooks, C.L., 3rd. Comparative study of several algorithms for flexible ligand docking. J. Comput.-Aided Mol. Des. 2003, 17, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.C.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Comparing protein–ligand docking programs is difficult. Proteins Struct. Funct. Bioinform. 2005, 60, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 2009, 49, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Kontoyianni, M.; McClellan, L.M.; Sokol, G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004, 47, 558–565. [Google Scholar] [CrossRef]
- Nissink, J.W.M.; Murray, C.; Hartshorn, M.; Verdonk, M.L.; Cole, J.C.; Taylor, R. A new test set for validating predictions of protein–ligand interaction. Proteins Struct. Funct. Bioinform. 2002, 49, 457–471. [Google Scholar] [CrossRef]
- Barcellos, M.P.; Santos, C.B.R.; Federico, L.B.; Almeida, P.F.d.; da Silva, C.H.T.d.P.; Taft, C.A. Pharmacophore and structure-based drug design, molecular dynamics and admet/tox studies to design novel potential pad4 inhibitors. J. Biomol. Struct. Dyn. 2019, 37, 966–981. [Google Scholar] [CrossRef]
- Borges, R.S.; Palheta, I.C.; Ota, S.S.B.; Morais, R.B.; Barros, V.A.; Ramos, R.S.; Silva, R.C.; Costa, J.d.S.; Silva, C.H.T.P.; Campos, J.M.; et al. Toward of Safer Phenylbutazone Derivatives by Exploration of Toxicity Mechanism. Molecules 2019, 24, 143. [Google Scholar] [CrossRef]
- Costa, J.d.S.; Ramos, R.d.S.; Costa, K.d.S.L.; Brasil, D.d.S.B.; Silva, C.H.T.d.P.d.; Ferreira, E.F.B.; Borges, R.d.S.; Campos, J.M.; Macêdo, W.J.d.C.; Santos, C.B.R.d. An In Silico Study of the Antioxidant Ability for Two Caffeine Analogs Using Molecular Docking and Quantum Chemical Methods. Molecules 2018, 23, 2801. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.V.; Neto, M.F.A.; Silva, L.B.; Ramos, R.D.S.; Costa, J.D.S.; Brasil, D.S.B.; Lobato, C.C.; Da Costa, G.V.; Bittencourt, J.A.H.M.; Da Silva, C.H.T.P.; et al. Identification of Novel Protein Kinase Receptor Type 2 Inhibitors Using Pharmacophore and Structure-Based Virtual Screening. Molecules 2018, 23, 453. [Google Scholar] [CrossRef]
- Ramos, R.d.S.; Costa, J.d.S.; Silva, R.C.; da Costa, G.V.; Rodrigues, A.B.L.; Rabelo, É.d.M.; Souto, R.N.P.; Taft, C.A.; Silva, C.H.T.d.P.d.; Rosa, J.M.C.; et al. Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals 2019, 12, 20. [Google Scholar] [CrossRef]
- Nagar, B.; Bornmann, W.G.; Pellicena, P.; Schindler, T.; Veach, D.R.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Crystal Structures of the Kinase Domain of c-Abl in Complex with the Small Molecule Inhibitors PD173955 and Imatinib (STI-571)1. Cancer Res. 2002, 62, 4236–4243. [Google Scholar]
- Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. (Int. Ed. Engl.) 2002, 41, 2644–2676. [Google Scholar] [CrossRef]
- Cera, E.D. Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 21 June 2024).
- Pedersen, O.S.; Pedersen, E.B. The Flourishing Syntheses of Non-Nucleoside Reverse Transcriptase Inhibitors. Synthesis 2000, 2000, 479–495. [Google Scholar] [CrossRef]
- Ren, L.; Nan, G.; Wang, Y.; Xiao, Z. Carboxylic Acid-Promoted Single-Step Indole Construction from Simple Anilines and Ketones via Aerobic Cross-Dehydrogenative Coupling. J. Org. Chem. 2018, 83, 14472–14488. [Google Scholar] [CrossRef] [PubMed]
- Leal, E.S.; Aucar, M.G.; Gebhard, L.G.; Iglesias, N.G.; Pascual, M.J.; Casal, J.J.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg. Med. Chem. Lett. 2017, 27, 3851–3855. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Lima, L.R.; Bastos, R.S.; Ferreira, E.F.B.; Leão, R.P.; Araújo, P.H.F.; Pita, S.S.d.R.; De Freitas, H.F.; Espejo-Román, J.M.; Dos Santos, E.L.V.S.; Ramos, R.d.S.; et al. Identification of Potential New Aedes aegypti Juvenile Hormone Inhibitors from N-Acyl Piperidine Derivatives: A Bioinformatics Approach. Int. J. Mol. Sci. 2022, 23, 9927. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Kerns, E.H. Chapter 5—Lipophilicity. In Drug-Like Properties, 2nd ed.; Di, L., Kerns, E.H., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 39–50. [Google Scholar]
- Johnson, T.W.; Gallego, R.A.; Edwards, M.P. Lipophilic Efficiency as an Important Metric in Drug Design. J. Med. Chem. 2018, 61, 6401–6420. [Google Scholar] [CrossRef] [PubMed]
- Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov. 2010, 5, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Sepay, N.; Sepay, N.; Al Hoque, A.; Mondal, R.; Halder, U.C.; Muddassir, M. In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Struct. Chem. 2020, 31, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- OpenEye. ROCS, 3.6.2.0; Cadence Molecular Sciences: Santa Fe, NM, USA, 2024. [Google Scholar]
- Hawkins, P.C.D.; Skillman, A.G.; Nicholls, A. Comparison of Shape-Matching and Docking as Virtual Screening Tools. J. Med. Chem. 2007, 50, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Neves, B.J.; Mottin, M.; Moreira-Filho, J.T.; Sousa, B.K.d.P.; Mendonca, S.S.; Andrade, C.H. Chapter 4—Best Practices for Docking-Based Virtual Screening. In Molecular Docking for Computer-Aided Drug Design; Coumar, M.S., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 75–98. [Google Scholar]
- OpenEye. EON, 3.0.0.0; Cadence Molecular Sciences: Santa Fe, NM, USA, 2024. [Google Scholar]
- Marchant, C.A.; Briggs, K.A.; Long, A. In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for windows, meteor, and vitic. Toxicol. Mech. Methods 2008, 18, 177–187. [Google Scholar] [CrossRef]
- McConkey, B.J.; Sobolev, V.; Edelman, M. The performance of current methods in ligand–protein docking. Curr. Sci. 2002, 83, 845–856. [Google Scholar]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Turner, G.W.; Tedesco, E.; Harris, K.D.M.; Johnston, R.L.; Kariuki, B.M. Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data. Chem. Phys. Lett. 2000, 321, 183–190. [Google Scholar] [CrossRef]
- Shamsara, J. CrossDocker: A tool for performing cross-docking using Autodock Vina. SpringerPlus 2016, 5, 344. [Google Scholar] [CrossRef] [PubMed]
- Sousa dos Santos, E.L.V.; Cruz, J.N.; da Costa, G.V.; de Sá, E.M.F.; da Silva, A.K.P.; Fernandes, C.P.; de Faria Mota Oliveira, A.E.M.; Duarte, J.L.; Bezerra, R.M.; Tavares, J.F.; et al. Essential Oil of Ocimum basilicum against Aedes aegypti and Culex quinquefasciatus: Larvicidal Activity of a Nanoemulsion and In Silico Study. Separations 2024, 11, 97. [Google Scholar] [CrossRef]
- de Almeida, R.B.M.; Barbosa, D.B.; do Bomfim, M.R.; Amparo, J.A.O.; Andrade, B.S.; Costa, S.L.; Campos, J.M.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; et al. Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies. Pharmaceuticals 2023, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Protein Data Bank. Available online: https://www.rcsb.org/ (accessed on 2 April 2024).
- BIOVIA_Dassault_Systèmes. Discovery Studio Visualizer, 17.2; Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Schrödinger Release 2024-3: Desmond Molecular Dynamics System; D.E. Shaw Research: New York, NY, USA, 2024.
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the SC ‘06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Schrödinger Release 2024-3: Maestro; Schrödinger, LLC: New York, NY, USA, 2024.
- Schrödinger Release 2024-3: Prime; Schrödinger, LLC: New York, NY, USA, 2024.
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins Struct. Funct. Bioinform. 2004, 55, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the Role of the Crystal Environment in Determining Protein Side-chain Conformations. J. Mol. Biol. 2002, 320, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.F.B.; Silva, L.B.; Costa, G.V.; Costa, J.S.; Fujishima, M.A.T.; Leão, R.P.; Ferreira, A.L.S.; Federico, L.B.; Silva, C.H.T.P.; Rosa, J.M.C.; et al. Identification of New Inhibitors with Potential Antitumor Activity from Polypeptide Structures via Hierarchical Virtual Screening. Molecules 2019, 24, 2943. [Google Scholar] [CrossRef]
- Silva, L.B.; Ferreira, E.F.B.; Maryam; Espejo-Román, J.M.; Costa, G.V.; Cruz, J.V.; Kimani, N.M.; Costa, J.S.; Bittencourt, J.A.H.M.; Cruz, J.N.; et al. Galantamine Based Novel Acetylcholinesterase Enzyme Inhibitors: A Molecular Modeling Design Approach. Molecules 2023, 28, 1035. [Google Scholar] [CrossRef]
- Gabrielson, S. SciFinder. J. Med. Libr. Assoc. JMLA 2018, 106, 588–590. [Google Scholar] [CrossRef]
- dos Santos, I.V.F.; Borges, R.S.; Silva, G.M.; de Lima, L.R.; Bastos, R.S.; Ramos, R.S.; Silva, L.B.; da Silva, C.H.T.P.; dos Santos, C.B.R. Hierarchical Virtual Screening Based on Rocaglamide Derivatives to Discover New Potential Anti-Skin Cancer Agents. Front. Mol. Biosci. 2022, 9, 836572. [Google Scholar] [CrossRef]
- da Silva Costa, J.; da Silva Lopes Costa, K.; Cruz Viana, J.; da Silva Ramos, R.; Silva Barros, L.; Do Socorro Barros Brasil, D.; de Paula da Silva Henrique Tomich, C.; dos Santos Breno Rodrigues, C.; da Cruz Macedo Jorge, W. Virtual Screening and Statistical Analysis in the Design of New Caffeine Analogues Molecules with Potential Epithelial Anticancer Activity. Curr. Pharm. Des. 2018, 24, 576–594. [Google Scholar] [CrossRef]
- Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 2009, 98, 861–893. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef] [PubMed]
- Wildman, S.A.; Crippen, G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Moriguchi, I.; Hirono, S.; Nakagome, I.; Hirano, H. Comparison of Reliability of log P Values for Drugs Calculated by Several Methods. Chem. Pharm. Bull. 1994, 42, 976–978. [Google Scholar] [CrossRef]
- Silicos-It. Available online: http://www.silicos-it.be/software.html (accessed on 21 June 2024).
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm 2012, 2012, 195727. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area. J. Chem. Inf. Model. 2012, 52, 420–428. [Google Scholar] [CrossRef]
Compound | Toxicity Prediction Alert | Toxic Group | Toxicity Alert |
---|---|---|---|
Imatinib | Methemoglobinaemia | Simple Aniline | Plausible |
Compounds resulting from virtual screening based on imatinib | Entry | Compounds | #Stars | SNC | %AOH | #Metab | Volume | QPPCaco | QPlogCS | HFOAS | HFIAS |
Reference | Imatinib | 3 | 1 | 91.058 | 8 | 493.610 | 75.791 | −0.391 | 338.382 | 95.970 | |
LMQC01 | BindingDB1944 | 0 | −2 | 83.755 | 4 | 456.562 | 188.827 | −1.755 | 356.054 | 181.360 | |
LMQC02 | Omega39040 | 0 | 0 | 82.665 | 2 | 461.451 | 75.894 | −0.561 | 421.652 | 125.478 | |
LMQC03 | ZINC29051126 | 0 | 0 | 100.000 | 3 | 489.250 | 125.654 | −0.465 | 365.621 | 102.632 | |
LMQC04 | Omega9146 | 0 | 0 | 100.000 | 4 | 459.909 | 181.654 | −0.671 | 345.025 | 111.375 | |
LMQC05 | BindingDB50001859 | 0 | 0 | 87.507 | 5 | 385.508 | 246.411 | −0.466 | 477.384 | 105.572 | |
LMQC06 | BindingDB31046 | 0 | 0 | 100.000 | 5 | 281.357 | 1582.196 | −0.493 | 233.195 | 84.007 | |
LMQC07 | BindingDB50335522 | 0 | −1 | 86.157 | 7 | 406.536 | 56.082 | −1.202 | 497.059 | 158.911 | |
LMQC08 | Omega48308 | 0 | 0 | 82.759 | 5 | 372.423 | 349.361 | −0.291 | 441.534 | 89.584 | |
LMQC09 | Omega45294 | 0 | 0 | 83.631 | 2 | 367.468 | 201.737 | −0.262 | 270.567 | 114.733 |
Compound | Structure | Biological Activity | Pa [a] | Pi [b] |
---|---|---|---|---|
Imatinib | Protein Kinase Inhibitor | 0.802 | 0.005 | |
LMQC01 | 0.457 | 0.049 | ||
LMQC02 | 0.137 | 0.049 | ||
LMQC04 | 0.658 | 0.021 | ||
LMQC08 | 0.222 | 0.013 |
Ligand | Experimental Binding Affinity (kcal mol−1) | Ki (nM) | Predicted Binding Affinity (kcal mol−1) |
---|---|---|---|
Imatinib | −11.18 [a] | 13.0 [38] | −13.3 |
LMQC01 | - | - | −8.6 |
LMQC04 | - | - | −12.2 |
Compound | Pivot Molecule | Molecular Overlay | ||
---|---|---|---|---|
50 est/50 elt | 70 est/30 elt | 100 est | ||
LMQC01 | Imatinib | 0.41 | 0.57 | 0.82 |
LMQC04 | 0.41 | 0.58 | 0.83 |
Compound | Synthetic Accessibility Score | |
---|---|---|
SwissADME | AMBIT-SA | |
Imatinib | 3.78 | 65.70 |
LMQC01 | 4.46 | 58.32 |
LMQC04 | 3.43 | 55.26 |
Compound | iLOGP | XLOGP3 | WLOGP | MLOGP | Silicos-IT LogP | Consensus LogP |
---|---|---|---|---|---|---|
Imatinib | 4.04 | 3.52 | 3.49 | 2.15 | 3.69 | 3.38 |
LMQC01 | 2.68 | 2.11 | 2.65 | 0.75 | 0.53 | 1.75 |
LMQC04 | 3.67 | 4.77 | 5.66 | 2.06 | 5.29 | 4.29 |
Compound | ESOL LogS | Ali LogS | Silicos-IT LogSw | Consensus LogS |
---|---|---|---|---|
Imatinib | −5.07 | −5.02 | −9.67 | −6.59 |
LMQC01 | −3.88 | −4.24 | −5.75 | −4.62 |
LMQC04 | −5.92 | −6.98 | −9.63 | −7.51 |
Enzyme | Inhibitor | Spatial Coordinates of the Grid Center | Grid Dimensions (Angstrom) |
---|---|---|---|
BCR-ABL Tyrosine Kinase (PDB ID 1IEP) | Imatinib | X = 14.79 | X = 16.5 |
Y = 52.87 | Y = 25.0 | ||
Z = 15.94 | Z = 20.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanches, V.H.d.S.; Lobato, C.C.; Silva, L.B.; dos Santos, I.V.F.; Barros, E.d.S.; Maciel, A.d.A.; Ferreira, E.F.B.; da Costa, K.S.; Espejo-Román, J.M.; Rosa, J.M.C.; et al. Rational Approach to New Chemical Entities with Antiproliferative Activity on Ab1 Tyrosine Kinase Encoded by the BCR-ABL Gene: An Hierarchical Biochemoinformatics Analysis. Pharmaceuticals 2024, 17, 1491. https://doi.org/10.3390/ph17111491
Sanches VHdS, Lobato CC, Silva LB, dos Santos IVF, Barros EdS, Maciel AdA, Ferreira EFB, da Costa KS, Espejo-Román JM, Rosa JMC, et al. Rational Approach to New Chemical Entities with Antiproliferative Activity on Ab1 Tyrosine Kinase Encoded by the BCR-ABL Gene: An Hierarchical Biochemoinformatics Analysis. Pharmaceuticals. 2024; 17(11):1491. https://doi.org/10.3390/ph17111491
Chicago/Turabian StyleSanches, Vitor H. da S., Cleison C. Lobato, Luciane B. Silva, Igor V. F. dos Santos, Elcimar de S. Barros, Alexandre de A. Maciel, Elenilze F. B. Ferreira, Kauê S. da Costa, José M. Espejo-Román, Joaquín M. C. Rosa, and et al. 2024. "Rational Approach to New Chemical Entities with Antiproliferative Activity on Ab1 Tyrosine Kinase Encoded by the BCR-ABL Gene: An Hierarchical Biochemoinformatics Analysis" Pharmaceuticals 17, no. 11: 1491. https://doi.org/10.3390/ph17111491
APA StyleSanches, V. H. d. S., Lobato, C. C., Silva, L. B., dos Santos, I. V. F., Barros, E. d. S., Maciel, A. d. A., Ferreira, E. F. B., da Costa, K. S., Espejo-Román, J. M., Rosa, J. M. C., Kimani, N. M., & Santos, C. B. R. (2024). Rational Approach to New Chemical Entities with Antiproliferative Activity on Ab1 Tyrosine Kinase Encoded by the BCR-ABL Gene: An Hierarchical Biochemoinformatics Analysis. Pharmaceuticals, 17(11), 1491. https://doi.org/10.3390/ph17111491