Synthesis and Evaluation of 99mTc-Labelled 2-Nitroimidazole Derivatives with Different Linkers for Tumour Hypoxia Imaging
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Radiolabelling and Quality Control
2.3. In Vitro Stability Study
2.4. Determination of the Partition Coefficients of the Complexes
2.5. In Vitro Cellular Uptake Study
2.6. Biodistribution Studies
2.7. SPECT/CT Imaging Studies
2.8. In Vivo Metabolic Studies
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Chemistry
- Ligand L1 (1-isocyano-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)-3,6,9,12-tetraoxapentadecan-15-amide): yellow oily liquid, yield 66%. 1H NMR (400 MHz, DMSO-d6) δ 7.46 (d, J = 1.1 Hz, 1H), 7.12 (d, J = 1.0 Hz, 1H), 4.47–4.31 (m, 2H), 3.64–3.39 (m, 20H), 2.20 (t, J = 6.4 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 171.16, 145.12, 129.14, 128.11, 70.18, 70.01, 68.48, 67.13, 49.54, 42.08, 38.60, 36.45; IR (KBr)/cm−1: 3269.48, 3072.74, 2912.64, 2875.99, 2152.65, 1660.78, 1537.33, 1487.18, 1361.80, 1286.58, 1163.13, 1109.12, 1028.10; HR-MS (ESI) for C17H28N5O7 [M + H]+: found 414.1975, calcd 414.1983.
- Ligand L2 (8-isocyano-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)octanamide): white solid, yield 87%. 1H NMR (400 MHz, DMSO-d6) δ 7.49 (d, J = 1.2 Hz, 1H), 7.11 (d, J = 1.1 Hz, 1H), 4.40 (dd, J = 6.4, 5.0 Hz, 2H), 3.44 (ddt, J = 9.0, 6.8, 3.6 Hz, 4H), 1.93 (dd, J = 9.1, 5.7 Hz, 2H), 1.52 (dt, J = 11.0, 6.5, 4.5, 2.3 Hz, 2H), 1.36 (p, J = 7.5 Hz, 2H), 1.31–1.24 (m, 2H), 1.23–1.12 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ 173.09, 155.87, 145.21, 129.02, 128.08, 49.65, 41.65, 38.56, 35.65, 28.91, 28.35, 26.13, 25.45; IR (KBr)/cm−1: 3309.09, 3078.52, 2930.00, 2856.70, 2148.79, 1653.07, 1539.26, 1489.11, 1363.73, 1273.07, 1165.05, 1082.11; HR-MS (ESI) for C14H22N5O3 [M + H]+: found 308.1721, calcd 308.1717.
- Ligand L3 (2-(4-(isocyanomethyl)phenyl)-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl) acetamide): yellow oily liquid, yield 56%. 1H NMR (400 MHz, DMSO-d6) δ 7.32 (d, J = 1.1 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 1.1 Hz, 1H), 4.39 (t, J = 5.7 Hz, 2H), 3.45 (td, J = 6.1, 3.0 Hz, 2H), 3.31 (s, 2H), 2.46 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 170.97, 156.87, 145.15, 136.44, 132.06, 130.05, 128.86, 128.09, 127.36, 49.58, 45.23, 42.28, 40.19; IR (KBr)/cm−1: 3315.78, 3105.53, 2146.86, 1637.63, 1535.40, 1477.54, 1357.94, 1276.93, 1153.48, 1089.83; HR-MS (ESI) for C15H16N5O3 [M + H]+: found 314.1245, calcd 314.1247.
- Ligand L4 (4-(isocyanomethyl)-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)benzamide): white solid, yield 75%. 1H NMR (400 MHz, CD3OD-d4) δ 7.79–7.66 (m, 2H), 7.49–7.40 (m, 2H), 7.34 (d, J = 1.1 Hz, 1H), 7.06 (d, J = 1.1 Hz, 1H), 4.81 (d, J = 2.3 Hz, 2H), 4.72–4.59 (m, 2H), 3.82 (dd, J = 6.3, 5.0 Hz, 2H); 13C NMR (101 MHz, CD3OD-d4) δ 168.59, 156.03, 137.04, 133.77, 127.67, 127.55, 127.11, 126.65, 49.24, 44.40, 39.15; IR (KBr)/cm−1: 3364.00, 2945.43, 2835.48, 2150.72, 1651.14, 1548.91, 1479.49, 1356.02, 1286.58, 1253.78, 1161.20, 1028.10; HR-MS (ESI) for C14H14N5O3 [M + H]+: found 300.1090, calcd 300.1091.
- Ligand L5 (4-isocyano-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)benzamide): white solid, yield 63%. 1H NMR (400 MHz, DMSO-d6) δ 7.03–6.90 (m, 2H), 6.75–6.65 (m, 2H), 6.54 (t, J = 1.4 Hz, 1H), 6.25 (d, J = 1.3 Hz, 1H), 3.89–3.82 (m, 2H), 3.01 (td, J = 5.7, 1.5 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 165.69, 155.72, 135.49, 129.23, 128.18, 126.98, 49.55, 39.01; IR (KBr)/cm−1: 3358.21, 3275.27, 2922.28, 2852.84, 2125.65, 1653.07, 1539.26, 1489.11, 1363.73, 1282.72, 1165.13, 1097.54; HR-MS (ESI) for C13H12N5O3 [M + H]+: found 286.0939, calcd 286.0934.
4.3. Radiolabelling and Quality Control
4.4. Preparation of Rhenium Analogue
4.5. In Vitro Stability Study
4.6. Determination of the Partition Coefficient (Log D)
4.7. In Vitro Cellular Uptake
4.8. Biodistribution Studies
4.9. SPECT/CT Imaging Studies
4.10. In Vivo Metabolic Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001, 93, 266–276. [Google Scholar] [CrossRef]
- Vaupel, P.; Mayer, A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Kakkad, S.; Krishnamachary, B.; Jacob, D.; Pacheco-Torres, J.; Goggins, E.; Bharti, S.K.; Penet, M.-F.; Bhujwalla, Z.M. Molecular and functional imaging insights into the role of hypoxia in cancer aggression. Cancer Metastasis Rev. 2019, 38, 51–64. [Google Scholar] [CrossRef]
- Zhou, H.; Qin, F.; Chen, C. Designing hypoxia-responsive nanotheranostic agents for tumor imaging and therapy. Adv. Healthcare Mater. 2021, 10, 2001277. [Google Scholar] [CrossRef] [PubMed]
- Moeller, B.J.; Richardson, R.A.; Dewhirst, M.W. Hypoxia and radiotherapy: Opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007, 26, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Widmer, D.S.; Hoek, K.S.; Cheng, P.F.; Eichhoff, O.M.; Biedermann, T.; Raaijmakers, M.I.G.; Hemmi, S.; Dummer, R.; Levesque, M.P. Hypoxia contributes to melanoma heterogeneity by triggering HIF1α-dependent phenotype switching. J. Investig. Dermatol. 2013, 133, 2436–2443. [Google Scholar] [CrossRef]
- Apte, S.; Chin, F.T.; Graves, E.E. Molecular imaging of hypoxia: Strategies for probe design and application. Curr. Org. Synth. 2011, 8, 593–603. [Google Scholar] [CrossRef]
- Cabral, P.; Cerecetto, H. Radiopharmaceuticals in tumor hypoxia imaging: A review focused on medicinal chemistry aspects. Anti-Cancer Agents Med. Chem. 2017, 17, 318–332. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, J.; Li, Y.; Fu, S.; Chen, Y.; Wu, J. Imaging of tumor hypoxia with radionuclide-labeled tracers for PET. Front. Oncol. 2021, 11, 731503. [Google Scholar] [CrossRef]
- Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410. [Google Scholar] [CrossRef]
- Yang, D.J.; Wallace, S.; Cherif, A.; Li, C.; Gretzer, M.B.; Kim, E.E.; Podoloff, D.A. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 1995, 194, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.M.; Kachur, A.V.; Shiue, C.Y.; Hustinx, R.; Jenkins, W.T.; Shive, G.G.; Karp, J.S.; Alavi, A.; Lord, E.M.; Dolbier, W.R., Jr.; et al. Noninvasive detection of tumor hypoxia using the 2-nitroimidazole [18F]EF1. J. Nucl. Med. 2000, 41, 327–336. [Google Scholar] [PubMed]
- Postema, E.J.; McEwan, A.J.; Riauka, T.A.; Kumar, P.; Richmond, D.A.; Abrams, D.N.; Wiebe, L.I. Initial results of hypoxia imaging using 1-α-d-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Grierson, J.R.; Link, J.M.; Mathis, C.A.; Rasey, J.S.; Krohn, K.A. A radiosynthesis of fluorine-18 fluoromisonidazole. J. Nucl. Med. 1989, 30, 343–350. [Google Scholar]
- Souvatzoglou, M.; Grosu, A.L.; Röper, B.; Krause, B.J.; Beck, R.; Reischl, G.; Picchio, M.; Machulla, H.J.; Wester, H.J.; Piert, M. Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: A pilot study. European Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1566–1575. [Google Scholar] [CrossRef]
- Giglio, J.; Rey, A. 99mTc labelling strategies for the development of potential nitroimidazolic hypoxia imaging agents. Inorganics 2019, 7, 128. [Google Scholar] [CrossRef]
- Linder, K.E.; Chan, Y.W.; Cyr, J.E.; Malley, M.F.; Nowotnik, D.P.; Nunn, A.D. TcO(PnA.O-1-(2-nitroimidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: Synthesis, characterization, and xanthine oxidase-catalyzed reduction. J. Med. Chem. 1994, 37, 9–17. [Google Scholar] [CrossRef]
- Vats, K.; Mallia, M.B.; Mathur, A.; Sarma, H.D.; Banerjee, S. ‘4+1’ mixed ligand strategy for the preparation of 99mTc-radiopharmaceuticals for hypoxia detecting applications. ChemistrySelect 2017, 2, 2910–2916. [Google Scholar] [CrossRef]
- Su, H.; Chu, T. Synthesis and bioevaluation of the cyclopentadienyl tricarbonyl technetium-99m 2-nitroimidazole derivatives for tumor hypoxia imaging. Bioorg. Med. Chem. Lett. 2022, 60, 128583. [Google Scholar] [CrossRef]
- Ruan, Q.; Zhang, X.; Lin, X.; Duan, X.; Zhang, J. Novel 99mTc labelled complexes with 2-nitroimidazole isocyanide: Design, synthesis and evaluation as potential tumor hypoxia imaging agents. MedChemComm 2018, 9, 988–994. [Google Scholar] [CrossRef]
- Bonnitcha, P.; Grieve, S.; Figtree, G. Clinical imaging of hypoxia: Current status and future directions. Free Radic. Biol. Med. 2018, 126, 296–312. [Google Scholar] [CrossRef]
- Abrams, M.J.; Davison, A.; Jones, A.G.; Costello, C.E.; Pang, H. Synthesis and characterization of hexakis(alkyl isocyanide) and hexakis(aryl isocyanide) complexes of technetium(I). Inorg. Chem. 1983, 22, 2798–2800. [Google Scholar] [CrossRef]
- Zhang, X.; Ruan, Q.; Duan, X.; Gan, Q.; Song, X.; Fang, S.; Lin, X.; Du, J.; Zhang, J. Novel 99mTc-labeled glucose derivative for single photon emission computed tomography: A promising tumor imaging agent. Mol. Pharmaceutics 2018, 15, 3417–3424. [Google Scholar] [CrossRef]
- Ruan, Q.; Wang, Q.; Jiang, Y.; Feng, J.; Yin, G.; Zhang, J. Synthesis and evaluation of 99mTc-labeled FAP inhibitors with different linkers for imaging of fibroblast activation proteins in tumors. J. Med. Chem. 2023, 66, 4952–4960. [Google Scholar] [CrossRef] [PubMed]
- Höckel, M.; Schlenger, K.; Höckel, S.; Vaupel, P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res. 1999, 59, 4525–4528. [Google Scholar]
- Brizel, D.M.; Scully, S.P.; Harrelson, J.M.; Layfield, L.J.; Bean, J.M.; Prosnitz, L.R.; Dewhirst, M.W. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996, 56, 941–943. [Google Scholar]
- Kallinowski, F.; Zander, R.; Höckel, M.; Vaupel, P. Tumor tissue oxygenation as evaluated by computerized pO2 -histography. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 953–961. [Google Scholar] [CrossRef]
- Griffiths, J.R.; Robinson, S.P. The OxyLite: A fibre-optic oxygen sensor. Br. J. Radiol. 1999, 72, 627–630. [Google Scholar] [CrossRef]
- Ritt, P. Recent developments in SPECT/CT. Semin. Nucl. Med. 2022, 52, 276–285. [Google Scholar] [CrossRef]
- Riondato, M.; Rigamonti, D.; Martini, P.; Cittanti, C.; Boschi, A.; Urso, L.; Uccelli, L. Oldie but goodie: Is technetium-99m still a treasure trove of innovation for medicine? A Patents Analysis (2000–2022). J. Med. Chem. 2023, 66, 4532–4547. [Google Scholar] [PubMed]
- Bodei, L.; Herrmann, K.; Schöder, H.; Scott, A.M.; Lewis, J.S. Radiotheranostics in oncology: Current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 534–550. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.F.A.; Zhang, H.; Mehmood, S.; Sanad, M. Synthesis of 99mTc-labeled 2-mercaptobenzimidazole as a novel radiotracer to diagnose tumor hypoxia. Transl. Oncol. 2020, 13, 100854. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, F.; Zhu, H.; Yang, Z.; Chu, T. Synthesis and bioevaluation of novel [18F]FDG-conjugated 2-nitroimidazole derivatives for tumor hypoxia imaging. Mol. Pharm. 2019, 16, 2118–2128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Ma, Z.; Wu, B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1691–1702. [Google Scholar] [CrossRef]
- Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 2012, 13, 105–119. [Google Scholar] [CrossRef]
- Mallia, M.B.; Subramanian, S.; Mathur, A.; Sarma, H.D.; Banerjee, S. A study on nitroimidazole-99mTc(CO)3 complexes as hypoxia marker: Some observations towards possible improvement in in vivo efficacy. Nucl. Med. Biol. 2014, 41, 600–610. [Google Scholar] [CrossRef]
Complexes | Log D ± SD |
---|---|
[99mTc]Tc-L1 | −2.70 ± 0.22 |
[99mTc]Tc-L2 | −0.18 ± 0.05 |
[99mTc]Tc-L3 | −0.06 ± 0.02 |
[99mTc]Tc-L4 | 0.10 ± 0.02 |
[99mTc]Tc-L5 | 0.24 ± 0.08 |
[99mTc]Tc-L1 | [99mTc]Tc-L2 | [99mTc]Tc-L3 | [99mTc]Tc-L4 | [99mTc]Tc-L5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.5 h | 2 h | 0.5 h | 2 h | 0.5 h | 2 h | 0.5 h | 2 h | 0.5 h | 2 h | |
Heart | 0.43 ± 0.12 | 0.12 ± 0.03 | 1.19 ± 0.20 | 0.82 ± 0.10 | 0.35 ± 0.02 | 0.26 ± 0.11 | 0.88 ± 0.09 | 0.56 ± 0.05 | 0.59 ± 0.20 | 0.32 ± 0.05 |
Liver | 3.71 ± 0.47 | 3.49 ± 0.45 | 35.36 ± 5.42 | 33.31 ± 3.75 | 11.26 ± 0.54 | 11.21 ± 1.07 | 19.62 ± 3.43 | 17.16 ± 2.36 | 45.08 ± 8.90 | 39.67 ± 8.11 |
Lung | 0.86 ± 0.02 | 0.24 ± 0.02 | 2.78 ± 0.52 | 4.32 ± 1.90 | 1.33 ± 0.31 | 0.88 ± 0.19 | 2.76 ± 0.14 | 1.27 ± 0.13 | 2.76 ± 1.19 | 1.71 ± 1.44 |
Kidneys | 10.08 ± 1.14 | 8.93 ± 0.80 | 20.10 ± 1.97 | 24.70 ± 2.77 | 8.55 ± 0.67 | 4.87 ± 0.77 | 11.85 ± 2.18 | 10.15 ± 1.54 | 1.39 ± 0.17 | 0.96 ± 0.09 |
Spleen | 0.84 ± 0.07 | 0.65 ± 0.03 | 2.83 ± 0.81 | 3.09 ± 0.51 | 2.11 ± 0.34 | 1.78 ± 0.41 | 2.53 ± 0.25 | 1.79 ± 0.16 | 36.16 ± 3.80 | 27.51 ± 7.68 |
Stomach | 0.50 ± 0.08 | 0.41 ± 0.36 | 1.21 ± 0.46 | 3.16 ± 2.60 | 0.45 ± 0.28 | 0.22 ± 0.07 | 0.55 ± 0.12 | 0.63 ± 0.10 | 0.66 ± 0.23 | 0.30 ± 0.13 |
Bone | 0.77 ± 0.09 | 0.47 ± 0.04 | 2.08 ± 0.32 | 1.46 ± 0.24 | 0.89 ± 0.09 | 0.73 ± 0.19 | 1.25 ± 0.14 | 1.11 ± 0.13 | 0.70 ± 0.12 | 0.58 ± 0.17 |
Muscle | 0.32 ± 0.08 | 0.10 ± 0.04 | 0.99 ± 0.58 | 0.46 ± 0.13 | 0.22 ± 0.05 | 0.16 ± 0.07 | 0.31 ± 0.04 | 0.23 ± 0.03 | 0.30 ± 0.06 | 0.18 ± 0.04 |
Small Intestine | 1.34 ± 0.62 | 0.45 ± 0.15 | 3.74 ± 1.15 | 2.93 ± 1.34 | 1.70 ± 0.30 | 1.05 ± 0.31 | 2.04 ± 0.23 | 2.06 ± 0.21 | 0.64 ± 0.15 | 0.21 ± 0.04 |
Large Intestine | 0.71 ± 0.12 | 2.49 ± 0.20 | 0.83 ± 0.30 | 7.36 ± 2.09 | 0.23 ± 0.04 | 3.11 ± 0.85 | 0.31 ± 0.11 | 2.40 ± 0.25 | 0.29 ± 0.06 | 0.72 ± 0.14 |
Tumour | 1.11 ± 0.13 | 0.47 ± 0.10 | 1.22 ± 0.22 | 1.19 ± 0.24 | 0.40 ± 0.10 | 0.31 ± 0.09 | 1.05 ± 0.19 | 0.97 ± 0.13 | 0.33 ± 0.09 | 0.31 ± 0.09 |
Blood | 0.80 ± 0.06 | 0.13 ± 0.00 | 2.23 ± 0.44 | 1.38 ± 0.06 | 0.56 ± 0.04 | 0.23 ± 0.04 | 1.22 ± 0.01 | 0.85 ± 0.14 | 0.38 ± 0.08 | 0.17 ± 0.02 |
Thyroid (%ID) | 0.05 ± 0.02 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.02 | 0.04 ± 0.04 | 0.03 ± 0.02 | 0.06 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.02 | 0.03 ± 0.01 |
Tumour/Muscle | 4.10 ± 0.63 | 4.68 ± 0.44 | 1.24 ± 0.50 | 2.44 ± 0.05 | 1.87 ± 0.51 | 2.32 ± 0.62 | 2.84 ± 0.41 | 4.15 ± 0.54 | 1.32 ± 0.17 | 1.72 ± 0.30 |
Tumour/Blood | 1.38 ± 0.10 | 3.81 ± 0.46 | 0.55 ± 0.05 | 0.87 ± 0.18 | 0.71 ± 0.12 | 1.42 ± 0.12 | 0.64 ± 0.05 | 1.16 ± 0.22 | 1.00 ± 0.17 | 1.79 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Q.; Liu, Y.; Liao, L.; Hao, J.; Jiang, Y.; Jiang, J.; Zhang, J. Synthesis and Evaluation of 99mTc-Labelled 2-Nitroimidazole Derivatives with Different Linkers for Tumour Hypoxia Imaging. Pharmaceuticals 2023, 16, 1276. https://doi.org/10.3390/ph16091276
Ruan Q, Liu Y, Liao L, Hao J, Jiang Y, Jiang J, Zhang J. Synthesis and Evaluation of 99mTc-Labelled 2-Nitroimidazole Derivatives with Different Linkers for Tumour Hypoxia Imaging. Pharmaceuticals. 2023; 16(9):1276. https://doi.org/10.3390/ph16091276
Chicago/Turabian StyleRuan, Qing, Yitong Liu, Lihao Liao, Jinyu Hao, Yuhao Jiang, Jianyong Jiang, and Junbo Zhang. 2023. "Synthesis and Evaluation of 99mTc-Labelled 2-Nitroimidazole Derivatives with Different Linkers for Tumour Hypoxia Imaging" Pharmaceuticals 16, no. 9: 1276. https://doi.org/10.3390/ph16091276
APA StyleRuan, Q., Liu, Y., Liao, L., Hao, J., Jiang, Y., Jiang, J., & Zhang, J. (2023). Synthesis and Evaluation of 99mTc-Labelled 2-Nitroimidazole Derivatives with Different Linkers for Tumour Hypoxia Imaging. Pharmaceuticals, 16(9), 1276. https://doi.org/10.3390/ph16091276