Is There a Risk for Semaglutide Misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) Pharmacovigilance Dataset
Abstract
:1. Introduction
Is There a GLP-1 Analogue Misuse Issue?
2. Results
Pharmacovigilance Signals
3. Discussion
3.1. Semaglutide and GLP-1 RA as Image- and Performance-Enhancing Drugs (IPEDs)
3.2. Semaglutide and GLP-1 RAs as Molecules Acting on the Reward System?
3.3. The Potential Use of GLP-1 RA in Neurology
3.4. Limitations
4. Materials and Methods
4.1. Data Source
4.2. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gettman, L. New Drug: Tirzepatide (Mounjaro(™)). Sr. Care Pharm. 2023, 38, 50–62. [Google Scholar] [CrossRef]
- Rendell, M.S. Obesity and diabetes: The final frontier. Expert Rev. Endocrinol. Metab. 2023, 18, 81–94. [Google Scholar] [CrossRef]
- Novograd, J.; Mullally, J.A.; Frishman, W.H. Tirzepatide for Weight Loss: Can Medical Therapy “Outweigh” Bariatric Surgery? Cardiol. Rev. 2023. [Google Scholar] [CrossRef]
- Slahor, L. CME: Metformin–Dos and Don’ts. Praxis 2021, 110, 939–945. [Google Scholar] [CrossRef]
- Haddad, F.; Dokmak, G.; Bader, M.; Karaman, R. A Comprehensive Review on Weight Loss Associated with Anti-Diabetic Medications. Life 2023, 13, 1012. [Google Scholar] [CrossRef]
- Azuri, J.; Hammerman, A.; Aboalhasan, E.; Sluckis, B.; Arbel, R. Tirzepatide versus emaglutide for weight loss in patients with type 2 diabetes mellitus: A value for money analysis. Diabetes Obes. Metab. 2023, 25, 961–964. [Google Scholar] [CrossRef]
- Ryan, D.H.; Deanfield, J.E.; Jacob, S. Prioritizing obesity treatment: Expanding the role of cardiologists to improve cardiovascular health and outcomes. Cardiovasc. Endocrinol. Metab. 2023, 12, e0279. [Google Scholar] [CrossRef]
- Mishra, R.; Raj, R.; Elshimy, G.; Zapata, I.; Kannan, L.; Majety, P.; Edem, D.; Correa, R. Adverse Events Related to Tirzepatide. J. Endocr. Soc. 2023, 7, bvad016. [Google Scholar] [CrossRef]
- Scheen, A.J. Dual GIP/GLP-1 receptor agonists: New advances for treating type-2 diabetes. Ann. Endocrinol. 2023, 10, 316–321. [Google Scholar] [CrossRef]
- Neuville, M.F.; Paquot, N.; Scheen, A.J. A new era for glucagon-like peptide-1 receptor agonists. Rev. Med. Liege 2023, 78, 40–45. [Google Scholar]
- Bhusal, A. Advent of tirzepatide: Boon for diabetic and obese? Ann. Med. Surg. 2023, 85, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Papamargaritis, D.; Sargeant, J.A.; Davies, M.J. Efficacy and Safety of Tirzepatide in Type 2 Diabetes and Obesity Management. J. Obes. Metab. Syndr. 2023, 32, 25–45. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H. Tirzepatide Helps Adults with Obesity without Diabetes Lose 15% to 21% of Their Body Weight over 72 Weeks. Am. Fam. Physician 2023, 107, 99. [Google Scholar] [PubMed]
- Alkhezi, O.S.; Alahmed, A.A.; Alfayez, O.M.; Alzuman, O.A.; Almutairi, A.R.; Almohammed, O.A. Comparative effectiveness of glucagon-like peptide-1 receptor agonists for the management of obesity in adults without diabetes: A network meta-analysis of randomized clinical trials. Obes. Rev. 2023, 24, e13543. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Akindehin, S.E.; Orsso, C.E.; Waldner, R.C.; DiMarchi, R.D.; Müller, T.D.; Haqq, A.M. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front. Endocrinol. 2022, 13, 838410. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Haber, R.; Ghezzawi, M.; Rhayem, C.; Tcheroyan, R.; Mantzoros, C.S. Pharmacotherapy of obesity: An update on the available medications and drugs under investigation. EclinicalMedicine 2023, 58, 101882. [Google Scholar] [CrossRef]
- BBC News. Weight Loss Drug Emaglutide Approved for NHS Use. Available online: https://www.bbc.com/news/health-64874243 (accessed on 8 March 2023).
- Li, A.; Su, X.; Hu, S.; Wang, Y. Efficacy and safety of oral emaglutide in type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2023, 198, 110605. [Google Scholar] [CrossRef]
- Rodríguez, J.E.; Campbell, K.M. Past, Present, and Future of Pharmacologic Therapy in Obesity. Prim. Care 2016, 43, 61–67. [Google Scholar] [CrossRef]
- Douglas, J.G.; Munro, J.F. Drug treatment and obesity. Pharmacol. Ther. 1982, 18, 351–373. [Google Scholar] [CrossRef]
- Cosentino, G.; Conrad, A.O.; Uwaifo, G.I. Phentermine and topiramate for the management of obesity: A review. Drug Des. Devel. Ther. 2011, 7, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Alfaris, N.; Minnick, A.M.; Hopkins, C.M.; Berkowitz, R.I.; Wadden, T.A. Combination phentermine and topiramate extended release in the management of obesity. Expert Opin. Pharmacother. 2015, 16, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Makówka, A.; Zawiasa, A.; Nowicki, M. Prescription-medication sharing among family members: An unrecognized cause of a serious drug adverse event in a patient with impaired renal function. Clin. Nephrol. 2015, 83, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Song, X.B.; Shao, X.T.; Liu, S.Y.; Tan, D.Q.; Wang, Z.; Wang, D.G. Assessment of metformin, nicotine, caffeine, and methamphetamine use during Chinese public holidays. Chemosphere 2020, 258, 127354. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M. Metformin for high-altitude performance? Clin. Exp. Pharmacol. Physiol. 2017, 44, 903. [Google Scholar] [CrossRef]
- Geer, B.; Gibson, D.; Grayeb, D.; Benabe, J.; Victory, S.; Mehler, S.; Mehler, P. Metformin abuse: A novel and dangerous purging behavior in anorexia nervosa. Int. J. Eat. Disord. 2019, 52, 319–321. [Google Scholar] [CrossRef]
- The Independent. Jameela Jamil Calls Out ‘Extreme’ Weight Loss at Oscars Amid Ozempic Controversy. Available online: https://www.independent.co.uk/life-style/ozempic-weight-loss-jameela-jamil-oscars-b2300525.html (accessed on 14 March 2023).
- Le Monde. 2023. Available online: https://www.lemonde.fr/en/health/article/2023/03/02/ozempic-french-authorities-issue-alert-for-anti-diabetic-drug-misused-for-weight-loss_6017913_14.html#:~:text=While%20misuse%20of%20Ozempic%20appears,them%20of%20this%20essential%20treatment.%22 (accessed on 8 April 2023).
- Alvarez-Mon, M.A.; Llavero-Valero, M.; Asunsolo del Barco, A.; Zaragozá, C.; Ortega, M.A.; Lahera, G.; Quintero, J.; Alvarez-Mon, M. Areas of Interest and Attitudes Toward Antiobesity Drugs: Thematic and Quantitative Analysis Using Twitter. J. Med. Internet Res. 2021, 23, e24336. [Google Scholar] [CrossRef]
- The Guardian. 2023. Available online: https://www.theguardian.com/australia-news/2023/jan/06/tga-investigates-influencers-after-diabetes-drug-ozempic-promoted-as-weight-loss-treatment (accessed on 8 April 2023).
- Valdesolo, F. What You Need to Know About Ozempic: The Diabetes Drug Fuelling Hollywood’s Harmful Weight-Loss Obsession. 10 February 2023. Available online: https://www.vogue.co.uk/beauty/article/what-is-ozempic (accessed on 8 April 2023).
- Orsolini, L.; Francesconi, G.; Papanti, D.; Giorgetti, A.; Schifano, F. Profiling online recreational/prescription drugs’ customers and overview of drug vending virtual marketplaces. Hum. Psychopharmacol. 2015, 30, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Zaprutko, T.; Kopciuch, D.; Paczkowska, A.; Sprawka, J.; Cynar, J.; Pogodzińska, M.; Niewczas, K.; Stolecka, A.; Sygit, M.; Michalak, M.; et al. Facebook as a source of access to medicines. PLoS ONE 2022, 17, e0275272. [Google Scholar] [CrossRef]
- Chiappini, S.; Vickers-Smith, R.; Guirguis, A.; Corkery, J.M.; Martinotti, G.; Harris, D.R.; Schifano, F. Pharmacovigilance Signals of the Opioid Epidemic over 10 Years: Data Mining Methods in the Analysis of Pharmacovigilance Datasets Collecting Adverse Drug Reactions (ADRs) Reported to EudraVigilance (EV) and the FDA Adverse Event Reporting System (FAERS). Pharmaceuticals 2022, 15, 675. [Google Scholar] [CrossRef]
- Schifano, N.; Capogrosso, P.; Boeri, L.; Fallara, G.; Cakir, O.O.; Castiglione, F.; Alnajjar, H.M.; Muneer, A.; Deho, F.; Schifano, F.; et al. Medications mostly associated with priapism events: Assessment of the 2015–2020 Food and Drug Administration (FDA) pharmacovigilance database entries. Int. J. Impot. Res. 2022. [Google Scholar] [CrossRef]
- Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front. Pharmacol. 2022, 12, 807548. [Google Scholar] [CrossRef] [PubMed]
- Engler, C.; Leo, M.; Pfeifer, B.; Juchum, M.; Chen-Koenig, D.; Poelzl, K.; Schoenherr, H.; Vill, D.; Oberdanner, J.; Eisendle, E.; et al. Long-term trends in the prescription of antidiabetic drugs: Realworld evidence from the Diabetes Registry Tyrol 2012–2018. BMJ Open Diabetes Res. Care 2020, 8, e001279. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes–state-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Honda, R.; Takahashi, Y.; Mori, Y.; Yamashita, S.; Yoshida, Y.; Kawazu, S.; Iwamoto, Y.; Kajio, H.; Yanai, H.; Mishima, S.; et al. Changes in Antidiabetic Drug Prescription and Glycemic Control Trends in Elderly Patients with Type 2 Diabetes Mellitus from 2005–2013: An Analysis of the National Center Diabetes Database (NCDD-03). Intern. Med. 2018, 57, 1229–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Chen, J.; Wang, L.; Chen, C.; Chen, L. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: A real-world disproportionality study based on FDA adverse event reporting system database. Front. Endocrinol. 2022, 13, 1043789. [Google Scholar] [CrossRef] [PubMed]
- Sarayani, A.; Hampp, C.; Brown, J.D.; Donahoo, W.T.; Winterstein, A.G. Topiramate Utilization After Phentermine/Topiramate Approval for Obesity Management: Risk Minimization in the Era of Drug Repurposing. Drug Saf. 2022, 45, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Verma, S.; Vaidya, S.; Kalia, K.; Tiwari, V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed. Pharmacother. 2018, 108, 952–962. [Google Scholar] [CrossRef]
- Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563. [Google Scholar] [CrossRef]
- Cigrovski Berkovic, M.; Strollo, F. Semaglutide-eye-catching results. World J. Diabetes 2023, 14, 424–434. [Google Scholar] [CrossRef]
- EMCDDA. Health and Social Responses to Problems Associated with the Use of Performance- and Image-Enhancing Drugs a Background Paper for the Updated European Responses Guide. 2020. Available online: https://www.emcdda.europa.eu/system/files/media/attachments/documents/14197/ERG2021_BackgroundPaper_FINAL.pdf (accessed on 6 May 2023).
- Bruening, A.B.; Perez, M.; Ohrt, T.K. Exploring weight control as motivation for illicit stimulant use. Eat. Behav. 2018, 30, 72–75. [Google Scholar] [CrossRef]
- Milano, G.; Chiappini, S.; Mattioli, F.; Martelli, A.; Schifano, F. β-2 Agonists as Misusing Drugs? Assessment of both Clenbuterol- and Salbutamol-related European Medicines Agency Pharmacovigilance Database Reports. Basic Clin. Pharmacol. Toxicol. 2018, 123, 182–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakanalis, A.; Colmegna, F.; Zanetti, M.A.; Di Giacomo, E.; Riva, G.; Clerici, M. Evaluation of the DSM-5 Severity Specifier for Bulimia Nervosa in Treatment-Seeking Youth. Child Psychiatry Hum. Dev. 2018, 49, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Potts, A.J.; Bowman, N.J.; Seger, D.L.; Thomas, S.H.L. Toxicoepidemiology and pre-dictors of death in 2,4-dinitrophenol (DNP) toxicity. Clin. Toxicol. 2021, 59, 515–520. [Google Scholar] [CrossRef]
- Corazza, O.; Bersani, F.S.; Brunoro, R.; Valeriani, G.; Martinotti, G.; Schifano, F. The diffusion of performance and image-enhancing drugs (PIEDs) on the internet: The abuse of the cognitive enhancer piracetam. Subst. Use Misuse 2014, 49, 1849–1856. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, E.J. Off-label drugs for weight management. Diabetes Metab. Syndr. Obes. 2017, 10, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kim, J.; In, S.; Choi, H.; Chung, H.; Chung, K.H. Detection of phentermine in hair samples from drug suspects. Forensic Sci. Int. 2011, 207, e5–e7. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Mantovani, A.; Byrne, C.D. Mechanisms and possible hepatoprotec-tive effects of glucagon-like peptide-1 receptor agonists and other incretin re-ceptor agonists in non-alcoholic fatty liver disease. Lancet Gastroenterol. Hepatol. 2023, 8, 179–191. [Google Scholar] [CrossRef]
- Reiner, D.J.; Leon, R.M.; McGrath, L.E.; Koch-Laskowski, K.; Hahn, J.D.; Kanoski, S.E.; Mietlicki-Baase, E.G.; Hayes, M.R. Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Dorsal Tegmental Nucleus Regulates Energy Balance. Neuropsychopharmacology 2018, 43, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Di Chiara, G.; Tanda, G.; Bassareo, V.; Pontieri, F.; Acquas, E.; Fenu, S.; Cadoni, C.; Carboni, E. Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann. N. Y. Acad. Sci. 1999, 877, 461–485. [Google Scholar] [CrossRef]
- Dickson, S.L.; Shirazi, R.H.; Hansson, C.; Bergquist, F.; Nissbrandt, H.; Skibicka, K.P. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: A new role for mesolimbic GLP-1 receptors. J. Neurosci. 2012, 32, 4812–4820. [Google Scholar] [CrossRef] [Green Version]
- Eren-Yazicioglu, C.Y.; Yigit, A.; Dogruoz, R.E.; Yapici-Eser, H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front. Behav. Neurosci. 2021, 14, 614884. [Google Scholar] [CrossRef] [PubMed]
- Listos, J.; Listos, P.; Baranowska-Bosiacka, I.; Karpiuk, A.; Filarowska, J.; Łupina, M.; Słowik, T.; Zawiślak, S.; Kotlińska, J. Linagliptin, a Selective Dipeptidyl Peptidase-4 Inhibitor, Reduces Physical and Behavioral Effects of Morphine Withdrawal. Molecules 2022, 27, 2478. [Google Scholar] [CrossRef]
- Jerlhag, E. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies. Front. Pharmacol. 2023, 14, 1063033. [Google Scholar] [CrossRef] [PubMed]
- New York Times. 2023. Available online: https://www.nytimes.com/2023/02/03/well/live/ozempic-wegovy-weight-loss.html (accessed on 6 May 2023).
- Wilding, J.P.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of emaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- van Bloemendaal, L.; IJzerman, R.G.; Ten Kulve, J.S.; Barkhof, F.; Konrad, R.J.; Drent, M.L.; Veltman, D.J.; Diamant, M. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes 2014, 63, 4186–4196. [Google Scholar] [CrossRef] [Green Version]
- Urbanik, L.A.; Acharya, N.K.; Grigson, P.S. Acute treatment with the glucagon-like peptide-1 receptor agonist, liraglutide, reduces cue- and drug-induced fentanyl seeking in rats. Brain Res. Bull. 2022, 189, 155–162. [Google Scholar] [CrossRef]
- Douton, J.E.; Acharya, N.K.; Stoltzfus, B.; Sun, D.; Grigson, P.S.; Nyland, J.E. Acute glucagon-like peptide-1 receptor agonist liraglutide prevents cue-, stress-, and drug-induced heroin-seeking in rats. Behav. Pharmacol. 2022, 33, 364–378. [Google Scholar] [CrossRef]
- Colvin, K.J.; Killen, H.S.; Kanter, M.J.; Halperin, M.C.; Engel, L.; Dickinson, M.B.; Fimmel, A.I.; Holland, J.G.; Currie, P.J. Differential effects of intra-ventral tegmental area ghrelin and glucagon-like peptide-1 on the stimulatory action of D-amphetamine and cocaine-induced ethanol intake in male Sprague Dawley rats. Behav. Brain Res. 2022, 421, 113726. [Google Scholar] [CrossRef]
- Douton, J.E.; Augusto, C.; Stoltzfus, B.; Carkaci-Salli, N.; Vrana, K.E.; Grigson, P.S. Glucagon-like peptide-1 receptor agonist, exendin-4, reduces reinstatement of heroin-seeking behavior in rats. Behav. Pharmacol. 2021, 32, 265–277. [Google Scholar] [CrossRef]
- Marty, V.N.; Farokhnia, M.; Munier, J.J.; Mulpuri, Y.; Leggio, L.; Spigelman, I. Long-Acting Glucagon-Like Peptide-1 Receptor Agonists Suppress Voluntary Alcohol Intake in Male Wistar Rats. Front. Neurosci. 2020, 14, 599646. [Google Scholar] [CrossRef]
- Yammine, L.; Green, C.E.; Kosten, T.R.; de Dios, C.; Suchting, R.; Lane, S.D.; Verrico, C.D.; Schmitz, J.M. Exenatide Adjunct to Nicotine Patch Facilitates Smoking Cessation and May Reduce Post-Cessation Weight Gain: A Pilot Randomized Controlled Trial. Nicotine Tob. Res. 2021, 23, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Klausen, M.K.; Jensen, M.E.; Møller, M.; Le Dous, N.; Jensen, A.M.Ø.; Zeeman, V.A.; Johannsen, C.F.; Lee, A.; Thomsen, G.K.; Macoveanu, J.; et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 2022, 7, e159863. [Google Scholar] [CrossRef] [PubMed]
- Harkavyi, A.; Abuirmeileh, A.; Lever, R.; Kingsbury, A.E.; Biggs, C.S.; Whitton, P.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J. Neuroinflamm. 2008, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölscher, C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br. J. Pharmacol. 2022, 179, 695–714. [Google Scholar] [CrossRef]
- Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; et al. Exenatide once weekly versus placebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1664–1675. [Google Scholar] [CrossRef]
- Athauda, D.; Foltynie, T. Protective effects of the GLP-1 mimetic exendin-4 in Parkinson’s disease. Neuropharmacology 2018, 136 Pt B, 260–270. [Google Scholar] [CrossRef]
- Bomba, M.; Granzotto, A.; Castelli, V.; Massetti, N.; Silvestri, E.; Canzoniero, L.M.T.; Cimini, A.; Sensi, S.L. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol. Aging 2018, 64, 33–43. [Google Scholar] [CrossRef]
- Food Drug Administration (FDA). FDAAdverse Event Reporting System (FAERS) Public Dashboard, U.S. Food & Drug Administration. 2021. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-eventreporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (accessed on 8 April 2023).
- Schifano, F. Coming Off Prescribed Psychotropic Medications: Insights from Their Use as Recreational Drugs. Psychother. Psychosom. 2020, 89, 274–282. [Google Scholar] [CrossRef]
- ICH. ‘MedDRA ® TERM Selection: Points to Consider. ICH-Endorsed Guide for MedDRA Users’. London Release 4.21. March 2021. Available online: https://alt.meddra.org/files_acrobat/000571_termselptc_r4_21_mar2021.pdf (accessed on 8 April 2023).
- Ahmed, I.; Poncet, A. PhViD: An R Package for PharmacoVigilance Signal Detection. R Package Version 1.0.8. 12 October 2022. Available online: https://cran.r-project.org/web/packages/PhViD/PhViD.pdf (accessed on 8 April 2023).
- Poluzzi, E.; Raschi, E.; Piccinni, C.; De Ponti, F. Data Mining Techniques in Pharmacovigilance: Analysis of the Publicly Accessible FDA Adverse Event Reporting System (AERS). In Data Mining Applications in Engineering and Medicine; IntechOpen: London, UK, 2012. [Google Scholar]
- Subeesh, V.; Maheswari, E.; Saraswathy, G.R.; Swaroop, A.M.; Minnikanti, S.S.A. Comparative Study of Data Mining Algorithms Used for Signal Detection in FDA AERS Database. J. Young Pharm. 2018, 10, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Thiessard, F.; Miremont-Salame, G.; Haramburu, F.; Kreft-Jais, C.; Be’gaud, B.; Tubert-Bitter, P. Early Detection of Pharmacovigilance Signals with Automated Methods Based on False Discovery Rates: A Comparative Study. Drug Saf. 2012, 35, 495–506. [Google Scholar] [CrossRef]
- Suling, M.; Pigeot, I. Signal detection and monitoring based on longitudinal healthcare data. Pharmaceutics 2012, 4, 607–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Puijenbroek, E.P.; Bate, A.; Leufkens, H.G.M.; Lindquist, M.; Orre, R.; Egberts, A.C.G. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol. Drug Saf. 2002, 11, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.J.W.; Waller, P.C.; Davis, S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol. Drug Saf. 2001, 10, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Bate, A.; Lindquist, M.; Edwards, I.R.; Olsson, S.; Orre, R.; Lansner, A.; De Freitas, R.M. A Bayesian neural network method for adverse drug reaction signal generation. Eur. J. Clin. Pharmacol. 1998, 54, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Szarfman, A.; Machado, S.G.; O’Neill, R.T. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002, 25, 381–392. [Google Scholar] [CrossRef] [PubMed]
Number of AERs (%) | Overall | Semaglutide | Phentermine–Topiramate | Other GLP-1 Analogues * |
---|---|---|---|---|
Mean Age, years (SD) | 61.0 (19.2) | 60.2 (13.7) | 49.9 (14.7) | 61.4 (20.8) |
Females | 16,559 (53%) | 4470 (54%) | 156 (85%) | 11,933 (52%) |
Males | 12,986 (41%) | 3449 (42%) | 22 (12%) | 9515 (41%) |
Concomitant substances (%) | ||||
Alcohol | 23 (0.1%) | 2 (0.0%) | 0 (0.0%) | 21 (0.0%) |
Cannabis | 33 (0.1%) | 13 (0.2%) | 0 (0.0%) | 20 (0.0%) |
Cocaine | 0 (0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Opioids | 1712 (5.4%) | 249 (3.0%) | 16 (8.7%) | 1447 (8.7%) |
Amphetamines | 25 (0.1%) | 9 (0.1%) | 1 (0.0%) | 16 (0.1%) |
Benzodiazepines | 1550 (4.9%) | 238 (2.9%) | 17 (9.3%) | 1295 (5.6%) |
Country of origin | USA 19,664 (62.0%) | USA 5016 (71.0%) | USA 173 (95%) | USA 14,475 (62.0%) |
France 1729 (6.0%) | Canada 825 (10.0%) | Korea 9 (5.0%) | France 1449 (6.0%) | |
Canada 1562 (5.0%) | United Kingdom 360 (4.0%) | Not specified (0.0%) | Japan 1078 (5.0%) |
Semaglutide | Phentermine–Topiramate | Other GLP-1 Analogues * | |||
---|---|---|---|---|---|
Preferred Term | # AER (%) | Preferred Term | # AER (%) | Preferred Term | # AER (%) |
Nausea | 1047 (13%) | Nephrolithiasis | 14 (8%) | Nausea | 1843 (8%) |
Vomiting | 921 (11%) | Headache | 11 (6%) | Blood glucose increased | 1604 (7%) |
Diarrhea | 699 (8%) | Weight increased | 10 (5%) | Vomiting | 1586 (7%) |
Pancreatitis | 492 (6%) | Angle closure glaucoma | 9 (5%) | Pancreatitis | 1459 (6%) |
Off-label use | 483 (6%) | Blurred vision | 9 (5%) | Diarrhea | 1426 (6%) |
Weight decreased | 465 (6%) | Suicidal ideation | 8 (4%) | Acute kidney injury | 1112 (5%) |
Blood glucose increased | 424 (5%) | Chronic kidney disease | 7 (4%) | Weight decrease | 1082 (5%) |
Decreased appetite | 387 (5%) | Hypoesthesia | 7 (4%) | Fatigue | 794 (3%) |
Fatigue | 357 (4%) | Breast cancer | 6 (3%) | Decreased appetite | 711 (3%) |
Dehydration | 352 (4%) | Paresthesia | 6 (3%) | Chronic kidney disease | 689 (3%) |
Semaglutide | Phentermine–Topiramate | Other GLP-1 Analogues * | |||
---|---|---|---|---|---|
Outcome | # AER (%) | Outcome | # AER (%) | Outcome | # AER (%) |
Other outcomes | 5418 (66%) | Other outcomes | 154 (84%) | Other outcomes | 14,206 (61%) |
Hospitalized | 3479 (42%) | Hospitalized | 46 (25%) | Hospitalized | 10,287 (45%) |
Life threatening | 306 (4%) | Disabled | 14 (8%) | Died | 1705 (7%) |
Disabled | 299 (4%) | Life threatening | 3 (2%) | Life threatening | 1103 (5%) |
Died | 273 (3%) | Died | 1 (1%) | Disabled | 671 (3%) |
Required intervention | 67 (1%) | Required intervention | 1 (1%) | Required intervention | 76 (<1%) |
Semaglutide vs. other GLP-1 Analogues | Semaglutide vs. Phentermine–Topiramate | |||||||
---|---|---|---|---|---|---|---|---|
PT (MedDRA) | PRR (FDR) | ROR (FDR) | IC025 (FDR) | EB05 (FDR) | PRR (FDR) | ROR (FDR) | IC025 (FDR) | EB05 (FDR) |
Accidental overdose | 0.59 (0.60) | 0.59 (0.60) | −1.62 (0.34) | 0.50 (0.41) | Inf (<0.01) | Inf (<0.01) | −1.41 (0.50) | 0.99 (0.52) |
Drug abuse | 4.05 (<0.01) | 4.05 (<0.01) | −0.63 (0.16) | 0.80 (0.12) | Inf (<0.01) | Inf (<0.01) | −1.74 (0.52) | 0.99 (0.53) |
Drug level increased | 0.85 (0.46) | 0.85 (0.46) | −1.12 (0.27) | 0.62 (0.29) | Inf (<0.01) | Inf (<0.01) | −1.21 (0.49) | 0.99 (0.52) |
Drug withdrawal syndrome | 4.05 (<0.01) | 4.05 (<0.01) | −0.63 (0.16) | 0.80 (0.12) | Inf (<0.01) | Inf (<0.01) | −1.74 (0.52) | 0.99 (0.53) |
Incorrect route of product administration | 0.55 (0.61) | 0.55 (0.61) | −1.65 (0.34) | 0.48 (0.42) | Inf (<0.01) | Inf (<0.01) | −1.34 (0.50) | 0.99 (0.52) |
Intentional product misuse | 0.42 (0.64) | 0.42 (0.64) | −1.68 (0.35) | 0.40 (0.45) | 0.32 (<0.01) | 0.32 (<0.01) | −1.01 (0.48) | 0.99 (0.53) |
Intentional product use issue | 1.80 (<0.01) | 1.80 (<0.01) | 0.08 (<0.01) | 1.11 (<0.01) | Inf (<0.01) | Inf (<0.01) | −0.54 (0.41) | 0.99 (0.50) |
Overdose | 0.92 (0.46) | 0.92 (0.46) | −0.66 (0.17) | 0.72 (0.19) | Inf (<0.01) | Inf (<0.01) | −0.71 (0.44) | 0.99 (0.51) |
Prescription drug used without a prescription | 3.60 (<0.01) | 3.60 (<0.01) | −0.42 (0.10) | 0.85 (0.08) | Inf (<0.01) | Inf (<0.01) | −1.50 (0.51) | 0.99 (0.53) |
Substance use | Inf (0.70) | Inf (0.70) | −0.29 (0.06) | 0.91 (0.04) | Inf (0.04) | Inf (0.04) | −1.74 (0.53) | 0.99 (0.53) |
# Reports with AE of Interest | # Reports without AE of Interest | |
---|---|---|
# Reports with drug of interest | A | b |
# Reports without drug of interest | C | d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiappini, S.; Vickers-Smith, R.; Harris, D.; Papanti Pelletier, G.D.; Corkery, J.M.; Guirguis, A.; Martinotti, G.; Sensi, S.L.; Schifano, F. Is There a Risk for Semaglutide Misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) Pharmacovigilance Dataset. Pharmaceuticals 2023, 16, 994. https://doi.org/10.3390/ph16070994
Chiappini S, Vickers-Smith R, Harris D, Papanti Pelletier GD, Corkery JM, Guirguis A, Martinotti G, Sensi SL, Schifano F. Is There a Risk for Semaglutide Misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) Pharmacovigilance Dataset. Pharmaceuticals. 2023; 16(7):994. https://doi.org/10.3390/ph16070994
Chicago/Turabian StyleChiappini, Stefania, Rachel Vickers-Smith, Daniel Harris, G. Duccio Papanti Pelletier, John Martin Corkery, Amira Guirguis, Giovanni Martinotti, Stefano L. Sensi, and Fabrizio Schifano. 2023. "Is There a Risk for Semaglutide Misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) Pharmacovigilance Dataset" Pharmaceuticals 16, no. 7: 994. https://doi.org/10.3390/ph16070994
APA StyleChiappini, S., Vickers-Smith, R., Harris, D., Papanti Pelletier, G. D., Corkery, J. M., Guirguis, A., Martinotti, G., Sensi, S. L., & Schifano, F. (2023). Is There a Risk for Semaglutide Misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) Pharmacovigilance Dataset. Pharmaceuticals, 16(7), 994. https://doi.org/10.3390/ph16070994