In Vivo Pharmacodynamics of Calophyllum soulattri as Antiobesity with In Silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Calophyllum Soulattri Leaves Extract (CLSE) as Potential Antiobesity Agent
3.2. Molecular Docking and Pharmacokinetic Prediction of Selected Potential Compounds of Calophyllum Soulattri
4. Materials and Methods
4.1. In Vivo Study
4.1.1. Extraction of CSL Powder
4.1.2. Phytochemical Screening and Thin Layer Chromatography (TLC)
4.1.3. Foam Index Test
4.1.4. Fish index Test
4.1.5. Antiobesity Test
4.2. In Silico Study
4.2.1. Molecular Docking
4.2.2. ADMET Prediction
4.2.3. Molecular Dynamics Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engin, A.B.; Engin, A. Obesity and Lipotoxicity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 960. [Google Scholar]
- Rahman, H.A.; Sahib, N.G.; Saari, N.; Abas, F.; Ismail, A.; Mumtaz, M.W.; Hamid, A.A. Anti-Obesity Effect of Ethanolic Extract from Cosmos Caudatus Kunth Leaf in Lean Rats Fed a High Fat Diet. BMC Complement. Altern. Med. 2017, 17, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 24 June 2022).
- Armaini, A.; Dharma, A.; Salim, M. The Nutraceutical Effect of Scenedesmus Dimorphus for Obesity and Nonalcoholic Fatty Liver Disease-Linked Metabolic Syndrome. J. Appl. Pharm. Sci. 2020, 10, 70–76. [Google Scholar]
- Singh, A.K.; Singh, R. Pharmacotherapy in Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials of Anti-Obesity Drugs. Expert Rev. Clin. Pharmacol. 2020, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.G.; Park, C.Y. Anti-Obesity Drugs: A Review about Their Effects and Safety. Diabetes Metab. J. 2012, 36, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooda, S.N.; Saari, N.; Ismail, A.; Khatib, A.; Mahomoodally, F.; Abdul Hamid, A. Plants’ Metabolites as Potential Antiobesity Agents. Sci. World J. 2012, 2012, 436039. [Google Scholar]
- De Freites Junior, L.M.; de Almeide, E.B., Jr. Medicinal plants for the treatment of obesity: Ethnopharmacological approach and chemical and biological studies. Am. J. Transl. Res. 2017, 9, 2050–2064. [Google Scholar]
- Fajriaty, I.; Ih, H.; Andres, A.; Setyaningrum, R. Skrining Fitokimia Dan Analisis Kromatografi Lapis Tipis Dari Ekstrak Etanol Daun Bintangur (Calophyllum soulattri Burm F.). J. Pendidik. Inform. Sains 2018, 7, 54–67. [Google Scholar]
- Putra, D.; Noveliandi. Friedelin, a Triterpenoid Pentacyclic from the Leaves of Calophyllum soulattri Burm F. (Guttiferae). J. Sains Teknol. Farm. 2008, 13, 49–52. [Google Scholar]
- Irudayaraj, S.S.; Stalin, A.; Sunil, C.; Duraipandiyan, V.; Al-Dhabi, N.A.; Ignacimuthu, S. Antioxidant, Antilipidemic and Antidiabetic Effects of Ficusin with Their Effects on GLUT4 Translocation and PPARγ Expression in Type 2 Diabetic Rats. Chem. Biol. Interact. 2016, 256, 85–93. [Google Scholar] [CrossRef]
- Fajriaty, I.; Apridamayanti, P.; Rahmawani, S.P.; Abdurrachman, A. Transaminase Enzymes and Lipid Profiles and Histological Changes in Wistar Rats after Administration of Bintangur (Calophyllum soulattri) Leaves Ethanolic Extract. Nusant. Biosci. 2018, 10, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Susanto, D.F.; Aparamarta, H.W.; Widjaja, A.; Gunawan, S. Identification of Phytochemical Compounds in Calophyllum Inophyllum Leaves. Asian Pac. J. Trop. Biomed. 2017, 7, 773–781. [Google Scholar] [CrossRef]
- Jamous, R.M.; Abu-Zaitoun, S.Y.; Akkawi, R.J.; Ali-Shtayeh, M.S. Antiobesity and Antioxidant Potentials of Selected Palestinian Medicinal Plants. Evid. Based Complement. Altern. Med. 2018, 2018, 8426752. [Google Scholar] [CrossRef] [PubMed]
- Azlan, A.; Sultana, S.; Huei, C.S.; Razman, M.R. Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review. Molecules 2022, 27, 898. [Google Scholar] [CrossRef]
- Syukri, Y.; Purwati, R.; Hazami, N.; Anshory Tahmid, H.; Fitria, A. Standardization of Specific and Non-Specific Parameters of Propolis Extract as Raw Material for Herbal Product. EKSAKTA J. Sci. Data Anal. 2020, 20, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Lunkenheimer, K.; Malysa, K. Simple and Generally Applicable Method of Determination and Evaluation of Foam Properties. J. Surfactants Deterg. 2003, 6, 69–74. [Google Scholar] [CrossRef]
- Alamrew, E.; Abebe, G. Acute Toxicity Evaluation of Water Extract Stem Barks of Balanites Aegyptiaca on Adults of Three Different Fish Species. J. Toxicol. Environ. Health Sci. 2019, 11, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.; Magnuson, A.; Fouts, J.; Foster, M.T. Adipose Tissue: An Endocrine Organ Playing a Role in Metabolic Regulation. Horm. Mol. Biol. Clin. Investig. 2016, 26, 25–42. [Google Scholar] [CrossRef]
- Hadváry, P.; Lengsfeld, H.; Wolfer, H. Inhibition of Pancreatic Lipase in Vitro by the Covalent Inhibitor Tetrahydrolipstatin. Biochem. J. 1988, 256, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Uranga, R.M.; Keller, J.N. The Complex Interactions Between Obesity, Metabolism and the Brain. Front. Neurosci. 2019, 13, 513. [Google Scholar] [CrossRef] [Green Version]
- Poojashree, M.J.; Siddalingaprasad, H.S.; Swetha, B.R.; Shivukumar, S. A Review on the Current Drugs and New Targets for Obesity. J. Appl. Pharm. Res. 2020, 8, 11–21. [Google Scholar]
- Frazer, A.C.; Sammons, H.G. The Formation of Mono- and Di-Glycerides during the Hydrolysis of Triglyceride by Pancreatic Lipase. Biochem. J. 2014, 39, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Draznin, B.; Epstein, S.; Turner, H.E.; Wass, J.A. Oxford American Handbook of Endocrinology and Diabetes; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Packard, C.J.; Boren, J.; Taskinen, M.-R. Causes and Consequences of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Hasibuan, H.P.T.; Thristy, I. Comparison of Tryglicerides Levels and Total Cholesterol in Ischemic Stroke and Haemorrhagic Stroke Patients. Muhammadiyah Med. J. 2020, 1, 49. [Google Scholar] [CrossRef]
- National Library of Medicine. Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 20 November 2021).
- Xie, X.Q.S. Exploiting PubChem for Virtual Screening. Expert Opin. Drug Discov. 2010, 5, 1205–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, W.; Beard, H.S.; Farid, R. Use of an Induced Fit Receptor Structure in Virtual Screening. Chem. Biol. Drug Des. 2006, 67, 83–84. [Google Scholar] [CrossRef]
- Yunta, M. Docking and Ligand Binding Affinity: Uses and Pitfalls. Am. J. Model. Optim. 2016, 4, 74–114. [Google Scholar]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. Admetlab: A Platform for Systematic ADMET Evaluation Based on a Comprehensively Collected ADMET Database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Raies, A.; Bajic, V. In Silico Toxicology: Computational Methods for the Prediction of Chemical Toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 147–172. [Google Scholar] [CrossRef] [Green Version]
- Rim, K.T. In Silico Prediction of Toxicity and Its Applications for Chemicals at Work. Toxicol. Environ. Health Sci. 2020, 12, 191–202. [Google Scholar] [CrossRef]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In Silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef] [PubMed]
- Redfern, J.; Kinninmonth, M.; Burdass, D.; Verran, J. Using Soxhlet Ethanol Extraction to Produce and Test Plant Material (Essential Oils) for Their Antimicrobial Properties. J. Microbiol. Biol. Educ. 2014, 15, 45–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Yahyaoui, O.; Ouaaziz, N.A.; Guinda, I.; Sammama, A.; Kerrouri, S.; Bouabid, B.; El Bakkall, M.; Quyou, A.; Lrhorfi, L.A.; Bengueddour, R. Phytochemical Screening and Thin Layer Chromatography of Two Medicinal Plants: Adansonia Digitata (Bombacaceae) and Acacia Raddiana (Fabaceae). J. Pharmacogn. Phytochem. 2017, 6, 10–15. [Google Scholar]
- Apandi, M. Teknologi Buah Dan Sayur. Alumni. Bandung. 1984. [Google Scholar]
- Choe, D.; Jung, H.H.; Kim, D.; Shin, C.S.; Johnston, T.V.; Ku, S. In Vivo Evaluation of the Anti-Obesity Effects of Combinations of Monascus Pigment Derivatives. RSC Adv. 2020, 10, 1456–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miñarro-Lleonar, M.; Ruiz-Carmona, S.; Alvarez-Garcia, D.; Schmidtke, P.; Barril, X. Development of an Automatic Pipeline for Participation in the CELPP Challenge. Int. J. Mol. Sci. 2022, 23, 4756. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M. AutoDock Version 4.2—User Guide; The Scripps Research Institute: San Diego, CA, USA, 2014. [Google Scholar]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM-Biosig Lab. Available online: https://biosig.lab.uq.edu.au/pkcsm/prediction (accessed on 21 November 2021).
- Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N.; et al. AMBER 2016 Reference Manual; University of California: San Francisco, CA, USA, 2016. [Google Scholar]
- Suhartanto, H.; Yanuar, A.; Wibisono, A.; Hermawan, D.; Bustamam, A. The Performance of a Molecular Dynamics Simulation for the Plasmodium Falciparum Enoyl-Acyl Carrier-Protein Reductase Enzyme Using Amber and GTX 780 and 970 Double Graphical Processing Units. Int. J. Technol. 2018, 9, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Noor, Z.I.; Ahmed, D.; Rehman, H.M.; Qamar, M.T.; Froeyen, M.; Ahmad, S.; Mirza, M.U. In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum Basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Biology 2019, 8, 92. [Google Scholar] [CrossRef]
No. | Parameter | Results |
---|---|---|
Specific Parameter | ||
1. | Organoleptic | Thick, dark greenish, aromatic |
2. | Water-soluble extract (%) | 23.1 |
3. | Ethanol-soluble extract (%) | 24.0 |
Nonspecific parameters | ||
1. | Density (g/mL) | 0.8033 |
2. | Drying losses (%) | 16.32 ± 0.66 |
3. | Water content (%) | 12.76 |
No. | Parameter | Results * |
---|---|---|
1. | Alkaloid | + |
2. | Polyphenol | + |
3. | Tannin | − |
4. | Flavonoid | + |
5. | Steroid-triterpenoid | + |
6. | Saponin | + |
No | Sample | Foaming Index | Fish Index |
---|---|---|---|
1. | Powdered CSL | <100 | 200 |
2. | CSLE | 166.67 | 400 |
Selected Compound | Mr | XlogP3 AA | H Donor | H Akseptor | Chemical Structure |
---|---|---|---|---|---|
Friedelin | 426.7 | 9.8 | 0 | 1 | |
Caloxanthone B | 410.5 | 6 | 2 | 6 | |
Macluraxanthone | 394.4 | 5.3 | 3 | 6 | |
Stigmasterol | 412.7 | 8.6 | 1 | 1 | |
Trapezifolixanthone | 378.4 | 5.7 | 2 | 5 | |
Dombakinaxanthone | 446.5 | 7.6 | 2 | 5 | |
Brasixanthone B | 378.4 | 5.7 | 2 | 5 | |
Orlistat | 495.7 | 10 | 1 | 5 |
Selected Compound | △G (Kcal/mol) |
---|---|
Caloxanthone B | –9.74 |
Brasixanthone B | –9.39 |
Stigmasterol | –9.34 |
Trapezifolixanthone | –8.85 |
Dombakinaxanthone | –8.68 |
Macluraxanthone | –8.48 |
Friedelin | –8.27 |
Ref. ligan | –6.53 |
Orlistat | –5.93 |
Selected Compound | Water Solubility (log mol/L) | Intestinal Absorption (Human) (% Absorbed) | Distribution Volume (Human) (log L/kg) | Total Clearance (log mL/min/kg) | AMES Toxicity | Oral Rat Acute Toxicity (LD50) (mol/kg) | Hepatotoxicity |
---|---|---|---|---|---|---|---|
Friedelin | –5.52 | 98.74 | –0.27 | –0.04 | No | 2.64 | No |
Caloxanthone B | –5.00 | 94.82 | –0.21 | −0.035 | Yes | 1.87 | No |
Macluraxanthone | –3.58 | 91.98 | 0.2 | 0.08 | Yes | 2.02 | No |
Stigmasterol | –6.68 | 94.97 | 0.18 | 0.62 | No | 2.54 | No |
Trapezifolixanthone | –4.32 | 95.46 | 0.29 | 0.09 | No | 1.89 | No |
Dombakinaxanthone | –5.24 | 93.21 | 0.06 | –0.11 | Yes | 1.79 | Yes |
Brasixanthone B | –4.41 | 95.31 | 0.49 | 0.11 | Yes | 1.95 | No |
Orlistat | –5.29 | 90.58 | –0.55 | 1.68 | No | 1.97 | Yes |
Component of Energy | Orlistat (kcal/mol) | Caloxanthone_B (kcal/mol) |
---|---|---|
van der Waals | –54.92 | –34.22 |
Electrostatic | –15.15 | –15.61 |
Electrostatic Poisson-Boltzmann | 42.16 | 30.92 |
Nonpolar | –6.30 | –3.63 |
Delta G Binding | –34.21 | –22.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajriaty, I.; Ih, H.; Fidrianny, I.; Kurniati, N.F.; Reynaldi, M.A.; Adnyana, I.K.; Rommy, R.; Kurniawan, F.; Tjahjono, D.H. In Vivo Pharmacodynamics of Calophyllum soulattri as Antiobesity with In Silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies. Pharmaceuticals 2023, 16, 191. https://doi.org/10.3390/ph16020191
Fajriaty I, Ih H, Fidrianny I, Kurniati NF, Reynaldi MA, Adnyana IK, Rommy R, Kurniawan F, Tjahjono DH. In Vivo Pharmacodynamics of Calophyllum soulattri as Antiobesity with In Silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies. Pharmaceuticals. 2023; 16(2):191. https://doi.org/10.3390/ph16020191
Chicago/Turabian StyleFajriaty, Inarah, Hariyanto Ih, Irda Fidrianny, Neng Fisheri Kurniati, Muhammad Andre Reynaldi, I Ketut Adnyana, Rommy Rommy, Fransiska Kurniawan, and Daryono Hadi Tjahjono. 2023. "In Vivo Pharmacodynamics of Calophyllum soulattri as Antiobesity with In Silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies" Pharmaceuticals 16, no. 2: 191. https://doi.org/10.3390/ph16020191
APA StyleFajriaty, I., Ih, H., Fidrianny, I., Kurniati, N. F., Reynaldi, M. A., Adnyana, I. K., Rommy, R., Kurniawan, F., & Tjahjono, D. H. (2023). In Vivo Pharmacodynamics of Calophyllum soulattri as Antiobesity with In Silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies. Pharmaceuticals, 16(2), 191. https://doi.org/10.3390/ph16020191