Galangal–Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 MPro, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation
Abstract
:1. Introduction
2. Results
2.1. Antiviral Effect of the Galangal–Cinnamon Aqueous Extract (GCAE) on Low Pathogenic Coronavirus (229E)
2.2. HPLC-UV Analysis of Phenolic Compounds in GCAE, Galangal Aqueous Extract (GAE), and Cinnamon Aqueous Extract (CAE)
2.3. Quantum-Chemical Calculations
2.4. Molecular Docking Studies
3. Discussion
4. Materials and Methods
4.1. Collection of Medicinal Plants
4.2. Preparation of the Herbal Extracts
4.3. Antiviral Assay Using Low Pathogenic Coronavirus (229E)
(MOD sample − MOD of virus controls)] × 100%.
4.4. High-Performance Liquid Chromatography–Ultraviolet Analysis (HPLC-UV)
4.5. Quantum-Chemical Calculations
4.6. Molecular Docking Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dhawan, M.; Choudhary, O.P.; Saied, A.A. Russo-ukrainian war amid the COVID-19 pandemic: Global impact and containment strategy. Int. J. Surg. 2022, 102, 106675. [Google Scholar] [CrossRef]
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C. The continuing 2019-ncov epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in wuhan, china. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Taki, K.; Gahlot, R.; Sharma, A.; Dhangar, K. A chronicle of SARS-CoV-2: Part-i-epidemiology, diagnosis, prognosis, transmission and treatment. Sci. Total Environ. 2020, 734, 139278. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, M.O.; El-Gendy, A.O.; Abdelrahim, M.E. Public awareness in egypt about COVID-19 spread in the early phase of the pandemic. Patient Educ. Couns. 2020, 103, 2598–2601. [Google Scholar] [CrossRef]
- Losso, J.N.; Losso, M.N.; Toc, M.; Inungu, J.N.; Finley, J.W. The young age and plant-based diet hypothesis for low SARS-CoV-2 infection and COVID-19 pandemic in sub-saharan africa. Plant Foods Hum. Nutr. 2021, 76, 270–280. [Google Scholar] [CrossRef]
- Purwidiani, N.; Kristiastuti, D.; Handajani, S.; Romadhoni, I.F.; Afifah, C.A.N.; Sutiadiningsih, A. Making instant spiced coffee drink to prevent COVID-19. In Proceedings of the International Joint Conference on Science and Engineering 2021 (IJCSE 2021), Online, 14 October 2021; Atlantis Press: Paris, France, 2021; pp. 40–45. [Google Scholar]
- El-Hawary, S.S.; El-Hefnawy, H.M.; Osman, S.M.; Mostafa, E.S.; Mokhtar, F.; El-Raey, M. Chemical profile of two Jasminum sambac L. (ait) cultivars cultivated in egypt-their mediated silver nanoparticles synthesis and selective cytotoxicity. Int. J. Appl. Pharm. 2019, 11, 154–164. [Google Scholar] [CrossRef]
- Hamed, E.M.; Ibrahim, A.R.N.; Meabed, M.H.; Khalaf, A.M.; El Demerdash, D.M.; Elgendy, M.O.; Saeed, H.; Salem, H.F.; Rabea, H. The Outcomes and Adverse Drug Patterns of Immunomodulators and Thrombopoietin Receptor Agonists in Primary Immune Thrombocytopenia Egyptian Patients with Hemorrhage Comorbidity. Pharmaceuticals 2023, 16, 868. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Hefnawy, H.M.; El-Raey, M.A.; Mokhtar, F.A.; Osman, S.M. Jasminum azoricum L. Leaves: Hplc-pda/ms/ms profiling and in-vitro cytotoxicity supported by molecular docking. Nat. Prod. Res. 2021, 35, 5518–5520. [Google Scholar] [CrossRef] [PubMed]
- Peele, K.A.; Durthi, C.P.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Babu, D.J.; Indira, M.; Reddy, A.R.; Venkateswarulu, T. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform. Med. Unlocked 2020, 19, 100345. [Google Scholar] [CrossRef]
- KUMER, A.; Sarker, M.N.; Sunanda, P. The theoretical investigation of homo, lumo, thermophysical properties and qsar study of some aromatic carboxylic acids using hyperchem programming. Int. J. Chem. Technol. 2019, 3, 26–37. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Al-Sanea, M.M.; Mostafa, E.M.; Qasim, S.; Abelyan, N.; Mokhtar, F.A. A network pharmacology analysis of cytotoxic triterpenes isolated from euphorbia abyssinica latex supported by drug-likeness and admet studies. ACS Omega 2022, 7, 17713–17722. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.H.H.; Hamed, A.N.E.; Elhabal, S.F.; Mokhtar, F.A.; Abdelmohsen, U.R.; Fouad, M.A.; Kamel, M.S. Chemical composition and anti-proliferative activities of hyophorbe lagenicaulis aerial parts and their biogenic nanoparticles supported by network pharmacology study. S. Afr. J. Bot. 2023, 156, 398–410. [Google Scholar] [CrossRef]
- Ketabchi, S.; Papari Moghadamfard, M. Medicinal plants effective in the prevention and control of coronaviruses. Complement. Med. J. 2021, 10, 296–307. [Google Scholar] [CrossRef]
- Prasanth, D.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. In silico identification of potential inhibitors from cinnamon against main protease and spike glycoprotein of SARS CoV-2. J. Biomol. Struct. Dyn. 2021, 39, 4618–4632. [Google Scholar] [CrossRef] [PubMed]
- Ou, R.; Lin, L.; Zhao, M.; Xie, Z. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. Int. J. Biol. Macromol. 2020, 162, 1526–1535. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine b colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-hiv compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Khaled, K.; Al-Qahtani, M. The inhibitive effect of some tetrazole derivatives towards al corrosion in acid solution: Chemical, electrochemical and theoretical studies. Mater. Chem. Phys. 2009, 113, 150–158. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Devi, T.K.; Dabrowski, R.; Bhattacharjee, A. Birefringence, polarizability order parameters and dft calculations in the nematic phase of two bent-core liquid crystals and their correlation. J. Mol. Liq. 2018, 272, 239–252. [Google Scholar] [CrossRef]
- Hassan, A.; Arafa, R.K. On the search for COVID-19 therapeutics: Identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics. J. Biomol. Struct. Dyn. 2022, 40, 7815–7828. [Google Scholar] [CrossRef]
- Elgendy, M.O.; Saeed, H.; Abou-Taleb, H.A. Assessment of educated people awareness level and sources about COVID-19. IJCMR 2023, 1, 19–27. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Gonçalves, S.; Romano, A.; Gutiérrez-Grijalva, E.P.; Heredia, J.B.; Talukdar, A.D.; Shome, S.; Shin, H.-S. Galangal, the multipotent super spices: A comprehensive review. Trends Food Sci. Technol. 2020, 101, 50–62. [Google Scholar] [CrossRef]
- da Silva, M.L.T.; Bernardo, M.A.S.; Singh, J.; de Mesquita, M.F. Beneficial uses of cinnamon in health and diseases: An interdisciplinary approach. In The Role of Functional Food Security in Global Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 565–576. [Google Scholar]
- Carvalho, A.A.; dos Santos, L.R.; de Freitas, J.S.; de Sousa, R.P.; de Farias, R.R.S.; Júnior, G.M.V.; Rai, M.; Chaves, M.H. First report of flavonoids from leaves of machaerium acutifolium by di-esi-ms/ms. Arab. J. Chem. 2022, 15, 103765. [Google Scholar] [CrossRef]
- Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R. Coronavirus susceptibility to the antiviral remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018, 9, e00221-18. [Google Scholar] [CrossRef]
- Murphy, B.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N.C. The nucleoside analog gs-441524 strongly inhibits feline infectious peritonitis (fip) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 2018, 219, 226–233. [Google Scholar] [CrossRef]
- Rahman, F.; Tabrez, S.; Ali, R.; Alqahtani, A.S.; Ahmed, M.Z.; Rub, A. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. J. Tradit. Complement. Med. 2021, 11, 173–179. [Google Scholar] [CrossRef]
- Deetanya, P.; Hengphasatporn, K.; Wilasluck, P.; Shigeta, Y.; Rungrotmongkol, T.; Wangkanont, K. Interaction of 8-anilinonaphthalene-1-sulfonate with SARS-CoV-2 main protease and its application as a fluorescent probe for inhibitor identification. Comput. Struct. Biotechnol. J. 2021, 19, 3364–3371. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Hefnawy, H.M.; Osman, S.M.; El-Raey, M.A.; Mokhtar Ali, F.A. Phenolic profiling of different Jasminum species cultivated in egypt and their antioxidant activity. Nat. Prod. Res. 2021, 35, 4663–4668. [Google Scholar] [CrossRef]
- Ajaiyeoba, E.; Fadare, D. Antimicrobial potential of extracts and fractions of the african walnut–tetracarpidium conophorum. Afr. J. Biotechnol. 2006, 5, 2322–2325. [Google Scholar]
- Owoyele, B.V.; Adebukola, O.M.; Funmilayo, A.A.; Soladoye, A.O. Anti-inflammatory activities of ethanolic extract of carica papaya leaves. Inflammopharmacology 2008, 16, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, B.; Zhou, K.; Chen, M.; Wang, M.; Jia, Y.; Song, Y.; Li, Y.; Wen, A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: Role of nrf2 activation. Int. J. Cardiol. 2014, 175, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.G.; Kang, S.; Im, S.; Pak, Y.K. Cinnamic acid attenuates peripheral and hypothalamic inflammation in high-fat diet-induced obese mice. Pharmaceutics 2022, 14, 1675. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Feng, L.H. Gallic acid regulates immune response in a mouse model of rheumatoid arthritis. Immun. Inflamm. Dis. 2023, 11, e782. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Sui, Y.; Tian, R.; Lu, N. Formation of a bovine serum albumin diligand complex with rutin for the suppression of heme toxicity. Biophys. Chem. 2020, 258, 106327. [Google Scholar] [CrossRef] [PubMed]
- Cao-Ngoc, P.; Leclercq, L.; Rossi, J.-C.; Hertzog, J.; Tixier, A.-S.; Chemat, F.; Nasreddine, R.; Al Hamoui Dit Banni, G.; Nehmé, R.; Schmitt-Kopplin, P. Water-based extraction of bioactive principles from blackcurrant leaves and chrysanthellum americanum: A comparative study. Foods 2020, 9, 1478. [Google Scholar] [CrossRef]
- Houghton, P.; Fang, R.; Techatanawat, I.; Steventon, G.; Hylands, P.J.; Lee, C. The sulphorhodamine (srb) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 2007, 42, 377–387. [Google Scholar] [CrossRef]
- Ogliaro, F.; Bearpark, M.; Heyd, J.; Brothers, E.; Kudin, K.; Staroverov, V.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. Gaussian 09, Revision a. 02; Gaussian. Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Janjua, M.R.S.A. All-small-molecule organic solar cells with high fill factor and enhanced open-circuit voltage with 18.25% pce: Physical insights from quantum chemical calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121487. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of b3lyp density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef]
- Oyewole, R.O.; Oyebamiji, A.K.; Semire, B. Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (mgc-803): Dft, qsar and docking approaches. Heliyon 2020, 6, e03926. [Google Scholar] [CrossRef]
- Obot, I.; Obi-Egbedi, N.; Eseola, A. Anticorrosion potential of 2-mesityl-1h-imidazo [4, 5-f][1, 10] phenanthroline on mild steel in sulfuric acid solution: Experimental and theoretical study. Ind. Eng. Chem. Res. 2011, 50, 2098–2110. [Google Scholar] [CrossRef]
- Obot, I.; Obi-Egbedi, N.; Ebenso, E.; Afolabi, A.; Oguzie, E.E. Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl) oxazolo [5, 4-f][1, 10] phenanthroline on mild steel. Res. Chem. Intermed. 2013, 39, 1927–1948. [Google Scholar] [CrossRef]
- Rauk, A. Orbital Interaction Theory of Organic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Pearson, R.G. The principle of maximum hardness. Acc. Chem. Res. 1993, 26, 250–255. [Google Scholar] [CrossRef]
- Özalp, A.; Kökbudak, Z.; Saracoglu, M.; Kandemirli, F.; Ilhan, I.Ö.; Vurdu, C.D. Synthesis and theoretical study of the novel 2-oxopyrimidin-1 (2h)-yl-amides derivative. Chem. Sci. Rev. Lett. 2015, 4, 719–728. [Google Scholar]
- Pearson, R.G. Hard and soft acids and bases—The evolution of a chemical concept. Coord. Chem. Rev. 1990, 100, 403–425. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Roy, D.R. Update 1 of: Electrophilicity index. Chem. Rev. 2007, 107, PR46–PR74. [Google Scholar] [CrossRef]
- Ebenso, E.E.; Kabanda, M.M.; Arslan, T.; Saracoglu, M.; Kandemirli, F.; Murulana, L.C.; Singh, A.K.; Shukla, S.K.; Hammouti, B.; Khaled, K. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci. 2012, 7, 5643–5676. [Google Scholar] [CrossRef]
- Shahhamzehei, N.; Abdelfatah, S.; Efferth, T. In silico and in vitro identification of pan-coronaviral main protease inhibitors from a large natural product library. Pharmaceuticals 2022, 15, 308. [Google Scholar] [CrossRef]
- Fuochi, V.; Floresta, G.; Emma, R.; Patamia, V.; Caruso, M.; Zagni, C.; Ronchi, F.; Ronchi, C.; Drago, F.; Rescifina, A. Heparan sulfate and enoxaparin interact at the interface of the spike protein of hcov-229e but not with hcov-oc43. Viruses 2023, 15, 663. [Google Scholar] [CrossRef]
The 50% Inhibitory Concentration (IC50) µg/mL | |
---|---|
GCAE | 15.083 |
Remdesivir | 8.76 |
Cpd No. | RT (min) | Concentration (µg/g) | |||
---|---|---|---|---|---|
Phenolic Compounds | GCAE | CAE | GAE | ||
1 | 3.32 | Gallic acid | 871.34 | 570.91 | 607.15 |
2 | 4.131 | Chlorogenic acid | 386.20 | 338.86 | 366.10 |
3 | 4.51 | Catechin | 140.10 | 1145.88 | 133.45 |
4 | 5.98 | Methyl gallate | 94.78 | 202.50 | 61.67 |
5 | 5.92 | Coffeic acid | 6.26 | 0.00 | 23.61 |
6 | 6.46 | Syringic acid | 68.35 | 51.77 | 48.43 |
7 | 6.67 | Pyro catechol | 0.00 | 0.00 | 0.00 |
8 | 7.76 | Rutin | 1293.35 | 123.13 | 2442.36 |
9 | 8.62 | Ellagic acid | 4057.01 | 64.08 | 7244.25 |
10 | 8.95 | Coumaric acid | 79.59 | 7.86 | 80.72 |
11 | 9.63 | Vanillin | 0.00 | 0.00 | 24.00 |
12 | 10.14 | Ferulic acid | 0.00 | 45.14 | 82.58 |
13 | 10.43 | Naringenin | 0.00 | 164.60 | 66.57 |
14 | 12.23 | Daidzein | 0.00 | 29.76 | 107.54 |
15 | 12.72 | Quercetin | 153.88 | 72.55 | 215.67 |
16 | 14.01 | Cinnamic acid | 1789.61 | 2153.55 | 63.39 |
17 | 14.49 | Apigenin | 0.00 | 0.00 | 7.77 |
18 | 15.00 | Kaempferol | 454.72 | 352.05 | 0.00 |
19 | 15.58 | Hesperetin | 0.00 | 0.00 | 20.81 |
Phenolic Cpds | ELUMO | EHOMO | ΔE | A | I | X | η | σ | ω |
---|---|---|---|---|---|---|---|---|---|
Rutin | −0.18509 | −0.19474 | 0.00965 | 0.18509 | 0.19474 | 0.189915 | 0.004825 | 207.2539 | 7.475172 |
Chlorogenic acid | −0.17956 | −0.20162 | 0.02206 | 0.17956 | 0.20162 | 0.19059 | 0.01103 | 90.66183 | 3.29325 |
Quercetin | −0.16462 | −0.27037 | 0.10575 | 0.16462 | 0.27037 | 0.217495 | 0.052875 | 18.91253 | 0.89464 |
Kaempferol | −0.16468 | −0.27157 | 0.10689 | 0.16468 | 0.27157 | 0.218125 | 0.053445 | 18.71082 | 0.890233 |
Coffeic acid | −0.17679 | −0.28741 | 0.11062 | 0.17679 | 0.28741 | 0.2321 | 0.05531 | 18.07991 | 0.973972 |
Ellagic acid | −0.16152 | −0.27310 | 0.11158 | 0.16152 | 0.2731 | 0.21731 | 0.05579 | 17.92436 | 0.846453 |
Coumaric acid | −0.17712 | −0.29902 | 0.1219 | 0.17712 | 0.29902 | 0.23807 | 0.06095 | 16.40689 | 0.929899 |
Syringic acid | −0.15418 | −0.28435 | 0.13017 | 0.15418 | 0.28435 | 0.219265 | 0.065085 | 15.36452 | 0.738682 |
Cinnamic acid | −0.18398 | −0.31745 | 0.13347 | 0.18398 | 0.31745 | 0.250715 | 0.066735 | 14.98464 | 0.941905 |
Gallic acid | −0.15421 | −0.28885 | 0.13464 | 0.15421 | 0.28885 | 0.22153 | 0.06732 | 14.85443 | 0.728989 |
Methyl gallate | −0.15393 | −0.28880 | 0.13487 | 0.15393 | 0.2888 | 0.221365 | 0.067435 | 14.82909 | 0.726662 |
Catechin | −0.13643 | −0.28986 | 0.15343 | 0.13643 | 0.28986 | 0.213145 | 0.076715 | 13.03526 | 0.592202 |
Cpd | ΔG (Kcal/mol) | |||
---|---|---|---|---|
2ZU2 | 6U7G | 7VN9 | 6WTT | |
Remdesivir | −8.7640 | −6.7442 | −6.8270 | −8.5391 |
Rutin | −7.6667 | −7.0607 | −6.7486 | −8.5519 |
Chlorogenic acid | −5.9897 | −5.3078 | −5.0056 | −6.8119 |
Quercetin | −5.7422 | −5.1478 | −4.9061 | −6.1569 |
Kaempferol | −5.5863 | −4.9378 | −4.9439 | −6.1614 |
Caffeic acid | −4.4261 | −4.2180 | −4.1875 | −4.8618 |
Ellagic acid | −5.1831 | −4.7615 | −4.7619 | −5.9172 |
Coumaric acid | −4.4789 | −4.1064 | −4.2298 | −4.7411 |
Syringic acid | −4.7306 | −4.4892 | −4.6226 | −5.1851 |
Cinnamic acid | −4.2583 | −4.1707 | −4.1572 | −4.6575 |
Gallic acid | −4.3674 | −3.9848 | −4.0322 | −4.5764 |
Methyl gallate | −4.4899 | −4.2326 | −4.3924 | −4.8474 |
Catechin | −5.6074 | −5.1583 | −5.1000 | −6.1628 |
Chemical Softness (σ) | Experimental Concentration µg/g | Experimental Concentration % | Activity | Activity % | |
---|---|---|---|---|---|
Rutin | 207.2539 | 1293.35 | 13.76609 | 2853.07515 | 61.95381 |
Chlorogenic acid | 90.66183 | 386.2 | 4.110614 | 372.675792 | 8.092561 |
Quercetin | 18.91253 | 153.88 | 1.6378 59 | 30.9760645 | 0.672637 |
Kaempferol | 18.71082 | 454.72 | 4.839923 | 90.5589357 | 1.966464 |
Coffeic acid | 18.07991 | 6.26 | 0.06663 | 1.2046615 | 0.026159 |
Ellagic acid | 17.92436 | 4057.01 | 43.18178 | 774.005717 | 16.80734 |
Coumaric acid | 16.40689 | 79.59 | 0.847136 | 13.8988607 | 0.30181 |
Syringic acid | 15.36452 | 68.35 | 0.7275 | 11.1776871 | 0.242721 |
Cinnamic acid | 14.98464 | 1789.61 | 19.04815 | 285.429689 | 6.198034 |
Gallic acid | 14.85443 | 871.34 | 9.27432 | 137.76474 | 2.991527 |
Methyl gallate | 14.82909 | 94.78 | 1.008814 | 14.9597949 | 0.324848 |
Catechin | 13.03526 | 140.1 | 1.491189 | 19.4380308 | 0.422092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hosari, D.G.; Hussein, W.M.; Elgendy, M.O.; Elgendy, S.O.; Ibrahim, A.R.N.; Fahmy, A.M.; Hassan, A.; Mokhtar, F.A.; Hussein, M.F.; Abdelrahim, M.E.A.; et al. Galangal–Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 MPro, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation. Pharmaceuticals 2023, 16, 1378. https://doi.org/10.3390/ph16101378
El-Hosari DG, Hussein WM, Elgendy MO, Elgendy SO, Ibrahim ARN, Fahmy AM, Hassan A, Mokhtar FA, Hussein MF, Abdelrahim MEA, et al. Galangal–Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 MPro, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation. Pharmaceuticals. 2023; 16(10):1378. https://doi.org/10.3390/ph16101378
Chicago/Turabian StyleEl-Hosari, Doaa G., Wesam M. Hussein, Marwa O. Elgendy, Sara O. Elgendy, Ahmed R. N. Ibrahim, Alzhraa M. Fahmy, Afnan Hassan, Fatma Alzahraa Mokhtar, Modather F. Hussein, Mohamed E. A. Abdelrahim, and et al. 2023. "Galangal–Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 MPro, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation" Pharmaceuticals 16, no. 10: 1378. https://doi.org/10.3390/ph16101378
APA StyleEl-Hosari, D. G., Hussein, W. M., Elgendy, M. O., Elgendy, S. O., Ibrahim, A. R. N., Fahmy, A. M., Hassan, A., Mokhtar, F. A., Hussein, M. F., Abdelrahim, M. E. A., & Haggag, E. G. (2023). Galangal–Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 MPro, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation. Pharmaceuticals, 16(10), 1378. https://doi.org/10.3390/ph16101378